#include "storage.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gridsampling.hpp" namespace ESMTerrain { namespace { UniqueTextureId getTextureIdAt(const LandObject* land, std::size_t x, std::size_t y) { assert(x < ESM::Land::LAND_TEXTURE_SIZE); assert(y < ESM::Land::LAND_TEXTURE_SIZE); if (land == nullptr) return { 0, 0 }; const ESM::LandData* data = land->getData(ESM::Land::DATA_VTEX); if (data == nullptr) return { 0, 0 }; const std::uint16_t tex = data->getTextures()[y * ESM::Land::LAND_TEXTURE_SIZE + x]; if (tex == 0) return { 0, 0 }; // vtex 0 is always the base texture, regardless of plugin return { tex, land->getPlugin() }; } } class LandCache { public: explicit LandCache(int offsetX, int offsetY, std::size_t size) : mOffsetX(offsetX) , mOffsetY(offsetY) , mSize(size) , mValues(size * size) { } std::optional find(int x, int y) const { const std::size_t index = getIndex(x, y); if (const auto& value = mValues[index]) return value->get(); return std::nullopt; } void insert(int x, int y, osg::ref_ptr&& value) { const std::size_t index = getIndex(x, y); mValues[index] = std::move(value); } private: int mOffsetX; int mOffsetY; std::size_t mSize; std::vector>> mValues; std::size_t getIndex(int x, int y) const { return normalizeCoordinate(x, mOffsetX) * mSize + normalizeCoordinate(y, mOffsetY); } std::size_t normalizeCoordinate(int value, int offset) const { assert(value >= offset); assert(value < offset + static_cast(mSize)); return static_cast(value - offset); } }; LandObject::LandObject(const ESM4::Land& land, int loadFlags) : mData(land, loadFlags) { mEsm4DefaultLayerInfo.mDiffuseMap = land.mDefaultDiffuseMap; mEsm4DefaultLayerInfo.mNormalMap = land.mDefaultNormalMap; } LandObject::LandObject(const ESM::Land& land, int loadFlags) : mData(land, loadFlags) { } LandObject::LandObject(const LandObject& /*copy*/, const osg::CopyOp& /*copyOp*/) { throw std::logic_error("LandObject copy constructor is not implemented"); } const float defaultHeight = ESM::Land::DEFAULT_HEIGHT; Storage::Storage(const VFS::Manager* vfs, std::string_view normalMapPattern, std::string_view normalHeightMapPattern, bool autoUseNormalMaps, std::string_view specularMapPattern, bool autoUseSpecularMaps) : mVFS(vfs) , mNormalMapPattern(normalMapPattern) , mNormalHeightMapPattern(normalHeightMapPattern) , mAutoUseNormalMaps(autoUseNormalMaps) , mSpecularMapPattern(specularMapPattern) , mAutoUseSpecularMaps(autoUseSpecularMaps) { } bool Storage::getMinMaxHeights(float size, const osg::Vec2f& center, ESM::RefId worldspace, float& min, float& max) { assert(size <= 1 && "Storage::getMinMaxHeights, chunk size should be <= 1 cell"); osg::Vec2f origin = center - osg::Vec2f(size / 2.f, size / 2.f); int cellX = static_cast(std::floor(origin.x())); int cellY = static_cast(std::floor(origin.y())); osg::ref_ptr land = getLand(ESM::ExteriorCellLocation(cellX, cellY, worldspace)); const ESM::LandData* data = land ? land->getData(ESM::Land::DATA_VHGT) : nullptr; const int landSize = ESM::getLandSize(worldspace); int startRow = (origin.x() - cellX) * landSize; int startColumn = (origin.y() - cellY) * landSize; int endRow = startRow + size * (landSize - 1) + 1; int endColumn = startColumn + size * (landSize - 1) + 1; if (data) { min = std::numeric_limits::max(); max = -std::numeric_limits::max(); for (int row = startRow; row < endRow; ++row) { for (int col = startColumn; col < endColumn; ++col) { float h = data->getHeights()[col * landSize + row]; if (h > max) max = h; if (h < min) min = h; } } return true; } min = defaultHeight; max = defaultHeight; return false; } void Storage::fixNormal( osg::Vec3f& normal, ESM::ExteriorCellLocation cellLocation, int col, int row, LandCache& cache) { const int landSize = ESM::getLandSize(cellLocation.mWorldspace); while (col >= landSize - 1) { ++cellLocation.mY; col -= landSize - 1; } while (row >= landSize - 1) { ++cellLocation.mX; row -= landSize - 1; } while (col < 0) { --cellLocation.mY; col += landSize - 1; } while (row < 0) { --cellLocation.mX; row += landSize - 1; } const LandObject* land = getLand(cellLocation, cache); const ESM::LandData* data = land ? land->getData(ESM::Land::DATA_VNML) : nullptr; if (data) { normal.x() = data->getNormals()[col * landSize * 3 + row * 3]; normal.y() = data->getNormals()[col * landSize * 3 + row * 3 + 1]; normal.z() = data->getNormals()[col * landSize * 3 + row * 3 + 2]; normal.normalize(); } else normal = osg::Vec3f(0, 0, 1); } void Storage::averageNormal( osg::Vec3f& normal, ESM::ExteriorCellLocation cellLocation, int col, int row, LandCache& cache) { osg::Vec3f n1, n2, n3, n4; fixNormal(n1, cellLocation, col + 1, row, cache); fixNormal(n2, cellLocation, col - 1, row, cache); fixNormal(n3, cellLocation, col, row + 1, cache); fixNormal(n4, cellLocation, col, row - 1, cache); normal = (n1 + n2 + n3 + n4); normal.normalize(); } void Storage::fixColour( osg::Vec4ub& color, ESM::ExteriorCellLocation cellLocation, int col, int row, LandCache& cache) { const int landSize = ESM::getLandSize(cellLocation.mWorldspace); if (col == landSize - 1) { ++cellLocation.mY; col = 0; } if (row == landSize - 1) { ++cellLocation.mX; row = 0; } const LandObject* land = getLand(cellLocation, cache); const ESM::LandData* data = land ? land->getData(ESM::Land::DATA_VCLR) : nullptr; if (data) { color.r() = data->getColors()[col * landSize * 3 + row * 3]; color.g() = data->getColors()[col * landSize * 3 + row * 3 + 1]; color.b() = data->getColors()[col * landSize * 3 + row * 3 + 2]; } else { color.r() = 255; color.g() = 255; color.b() = 255; } } void Storage::fillVertexBuffers(int lodLevel, float size, const osg::Vec2f& center, ESM::RefId worldspace, osg::Vec3Array& positions, osg::Vec3Array& normals, osg::Vec4ubArray& colours) { if (lodLevel < 0 || 63 < lodLevel) throw std::invalid_argument("Invalid terrain lod level: " + std::to_string(lodLevel)); if (size <= 0) throw std::invalid_argument("Invalid terrain size: " + std::to_string(size)); // LOD level n means every 2^n-th vertex is kept const std::size_t sampleSize = std::size_t{ 1 } << lodLevel; const std::size_t cellSize = static_cast(ESM::getLandSize(worldspace)); const std::size_t numVerts = static_cast(size * (cellSize - 1) / sampleSize) + 1; positions.resize(numVerts * numVerts); normals.resize(numVerts * numVerts); colours.resize(numVerts * numVerts); const bool alteration = useAlteration(); const int landSizeInUnits = ESM::getCellSize(worldspace); const osg::Vec2f origin = center - osg::Vec2f(size, size) * 0.5f; const int startCellX = static_cast(std::floor(origin.x())); const int startCellY = static_cast(std::floor(origin.y())); LandCache cache(startCellX - 1, startCellY - 1, static_cast(std::ceil(size)) + 2); std::pair lastCell{ startCellX, startCellY }; const LandObject* land = getLand(ESM::ExteriorCellLocation(startCellX, startCellY, worldspace), cache); const ESM::LandData* heightData = nullptr; const ESM::LandData* normalData = nullptr; const ESM::LandData* colourData = nullptr; bool validHeightDataExists = false; if (land != nullptr) { heightData = land->getData(ESM::Land::DATA_VHGT); normalData = land->getData(ESM::Land::DATA_VNML); colourData = land->getData(ESM::Land::DATA_VCLR); validHeightDataExists = true; } const auto handleSample = [&](std::size_t cellShiftX, std::size_t cellShiftY, std::size_t row, std::size_t col, std::size_t vertX, std::size_t vertY) { const int cellX = startCellX + cellShiftX; const int cellY = startCellY + cellShiftY; const std::pair cell{ cellX, cellY }; const ESM::ExteriorCellLocation cellLocation(cellX, cellY, worldspace); if (lastCell != cell) { land = getLand(cellLocation, cache); heightData = nullptr; normalData = nullptr; colourData = nullptr; if (land != nullptr) { heightData = land->getData(ESM::Land::DATA_VHGT); normalData = land->getData(ESM::Land::DATA_VNML); colourData = land->getData(ESM::Land::DATA_VCLR); validHeightDataExists = true; } lastCell = cell; } float height = defaultHeight; if (heightData != nullptr) height = heightData->getHeights()[col * cellSize + row]; if (alteration) height += getAlteredHeight(col, row); const std::size_t vertIndex = vertX * numVerts + vertY; positions[vertIndex] = osg::Vec3f((vertX / static_cast(numVerts - 1) - 0.5f) * size * landSizeInUnits, (vertY / static_cast(numVerts - 1) - 0.5f) * size * landSizeInUnits, height); const std::size_t srcArrayIndex = col * cellSize * 3 + row * 3; osg::Vec3f normal(0, 0, 1); if (normalData != nullptr) { for (std::size_t i = 0; i < 3; ++i) normal[i] = normalData->getNormals()[srcArrayIndex + i]; normal.normalize(); } // Normals apparently don't connect seamlessly between cells if (col == cellSize - 1 || row == cellSize - 1) fixNormal(normal, cellLocation, col, row, cache); // some corner normals appear to be complete garbage (z < 0) if ((row == 0 || row == cellSize - 1) && (col == 0 || col == cellSize - 1)) averageNormal(normal, cellLocation, col, row, cache); assert(normal.z() > 0); normals[vertIndex] = normal; osg::Vec4ub color(255, 255, 255, 255); if (colourData != nullptr) for (std::size_t i = 0; i < 3; ++i) color[i] = colourData->getColors()[srcArrayIndex + i]; // Does nothing by default, override in OpenMW-CS if (alteration) adjustColor(col, row, heightData, color); // Unlike normals, colors mostly connect seamlessly between cells, but not always... if (col == cellSize - 1 || row == cellSize - 1) fixColour(color, cellLocation, col, row, cache); colours[vertIndex] = color; }; const std::size_t beginX = static_cast((origin.x() - startCellX) * cellSize); const std::size_t beginY = static_cast((origin.y() - startCellY) * cellSize); const std::size_t distance = static_cast(size * (cellSize - 1)) + 1; sampleCellGrid(cellSize, sampleSize, beginX, beginY, distance, handleSample); if (!validHeightDataExists && ESM::isEsm4Ext(worldspace)) std::fill(positions.begin(), positions.end(), osg::Vec3f()); } std::string Storage::getTextureName(UniqueTextureId id) { std::string_view texture = "_land_default.dds"; if (id.first != 0) { // NB: All vtex ids are +1 compared to the ltex ids const std::string* ltex = getLandTexture(id.first - 1, id.second); if (ltex) texture = *ltex; else { Log(Debug::Warning) << "Warning: Unable to find land texture index " << id.first - 1 << " in plugin " << id.second << ", using default texture instead"; } } // this is needed due to MWs messed up texture handling return Misc::ResourceHelpers::correctTexturePath(texture, mVFS); } void Storage::getEsm4Blendmaps(float chunkSize, const osg::Vec2f& chunkCenter, ImageVector& blendmaps, std::vector& layerList, ESM::RefId worldspace) { const osg::Vec2f origin = chunkCenter - osg::Vec2f(chunkSize - 1, chunkSize + 1) * 0.5f; const int startCellX = static_cast(std::floor(origin.x())); const int startCellY = static_cast(std::floor(origin.y())); constexpr int quadsPerCell = 2; constexpr int quadSize = ESM4::Land::sVertsPerSide / quadsPerCell; const int quadCount = static_cast(chunkSize * quadsPerCell); assert(quadCount > 0); const int blendmapSize = quadCount * quadSize + 1; LandCache cache(startCellX - 1, startCellY - 1, static_cast(std::ceil(chunkSize)) + 2); std::pair lastCell{ startCellX, startCellY }; const LandObject* land = getLand(ESM::ExteriorCellLocation(startCellX, startCellY, worldspace), cache); std::map textureIndicesMap; auto getOrCreateBlendmap = [&](ESM::FormId texId) -> unsigned char* { auto found = textureIndicesMap.find(texId); if (found != textureIndicesMap.end()) return blendmaps[found->second]->data(); Terrain::LayerInfo info = texId.isZeroOrUnset() ? land->getEsm4DefaultLayerInfo() : getLandTextureLayerInfo(texId); osg::ref_ptr image(new osg::Image); image->allocateImage(blendmapSize, blendmapSize, 1, GL_ALPHA, GL_UNSIGNED_BYTE); std::memset(image->data(), 0, image->getTotalDataSize()); textureIndicesMap.emplace(texId, blendmaps.size()); blendmaps.push_back(std::move(image)); layerList.push_back(std::move(info)); return blendmaps.back()->data(); }; const auto handleSample = [&](const CellSample& sample) { const std::pair cell{ sample.mCellX, sample.mCellY }; if (lastCell != cell) { land = getLand(ESM::ExteriorCellLocation(sample.mCellX, sample.mCellY, worldspace), cache); lastCell = cell; } if (!land) return; const ESM::LandData* ldata = land->getData(0); if (!ldata) return; int quad; if (sample.mSrcRow == 0) quad = sample.mSrcCol == 0 ? 0 : 2; else quad = sample.mSrcCol == 0 ? 1 : 3; const ESM4::Land::Texture& ltex = ldata->getEsm4Texture(quad); unsigned char* const baseBlendmap = getOrCreateBlendmap(ESM::FormId::fromUint32(ltex.base.formId)); int starty = (static_cast(sample.mDstCol) - 1) * quadSize; int startx = sample.mDstRow * quadSize; for (int y = std::max(0, starty + 1); y <= starty + quadSize && y < blendmapSize; ++y) { unsigned char* const row = baseBlendmap + (blendmapSize - y - 1) * blendmapSize; for (int x = startx; x < startx + quadSize && x < blendmapSize; ++x) row[x] = 255; } for (const auto& layer : ltex.layers) { unsigned char* const layerBlendmap = getOrCreateBlendmap(ESM::FormId::fromUint32(layer.texture.formId)); for (const ESM4::Land::VTXT& v : layer.data) { int y = v.position / (quadSize + 1); int x = v.position % (quadSize + 1); if (x == quadSize || startx + x >= blendmapSize || y == 0 || starty + y >= blendmapSize || starty + y < 0) { continue; } int index = (blendmapSize - starty - y - 1) * blendmapSize + startx + x; int delta = std::clamp(static_cast(v.opacity * 255), 0, 255); baseBlendmap[index] = std::max(0, baseBlendmap[index] - delta); layerBlendmap[index] = delta; } } }; sampleBlendmaps(chunkSize, origin.x(), origin.y(), quadsPerCell, handleSample); if (blendmaps.size() == 1) blendmaps.clear(); // If a single texture fills the whole terrain, there is no need to blend } void Storage::getBlendmaps(float chunkSize, const osg::Vec2f& chunkCenter, ImageVector& blendmaps, std::vector& layerList, ESM::RefId worldspace) { if (ESM::isEsm4Ext(worldspace)) { getEsm4Blendmaps(chunkSize, chunkCenter, blendmaps, layerList, worldspace); return; } const osg::Vec2f origin = chunkCenter - osg::Vec2f(chunkSize, chunkSize) * 0.5f; const int startCellX = static_cast(std::floor(origin.x())); const int startCellY = static_cast(std::floor(origin.y())); const std::size_t blendmapSize = getBlendmapSize(chunkSize, ESM::Land::LAND_TEXTURE_SIZE); // We need to upscale the blendmap 2x with nearest neighbor sampling to look like Vanilla constexpr std::size_t imageScaleFactor = 2; const std::size_t blendmapImageSize = blendmapSize * imageScaleFactor; std::vector textureIds(blendmapSize * blendmapSize); LandCache cache(startCellX - 1, startCellY - 1, static_cast(std::ceil(chunkSize)) + 2); std::pair lastCell{ startCellX, startCellY }; const LandObject* land = getLand(ESM::ExteriorCellLocation(startCellX, startCellY, worldspace), cache); const auto handleSample = [&](const CellSample& sample) { const std::pair cell{ sample.mCellX, sample.mCellY }; if (lastCell != cell) { land = getLand(ESM::ExteriorCellLocation(sample.mCellX, sample.mCellY, worldspace), cache); lastCell = cell; } textureIds[sample.mDstCol * blendmapSize + sample.mDstRow] = getTextureIdAt(land, sample.mSrcRow, sample.mSrcCol); }; sampleBlendmaps(chunkSize, origin.x(), origin.y(), ESM::Land::LAND_TEXTURE_SIZE, handleSample); std::map textureIndicesMap; for (std::size_t y = 0; y < blendmapSize; ++y) { for (std::size_t x = 0; x < blendmapSize; ++x) { const UniqueTextureId id = textureIds[y * blendmapSize + x]; auto found = textureIndicesMap.find(id); if (found == textureIndicesMap.end()) { std::size_t layerIndex = layerList.size(); Terrain::LayerInfo info = getLayerInfo(getTextureName(id)); // look for existing diffuse map, which may be present when several plugins use the same texture for (std::size_t i = 0; i < layerList.size(); ++i) { if (layerList[i].mDiffuseMap == info.mDiffuseMap) { layerIndex = i; break; } } found = textureIndicesMap.emplace(id, layerIndex).first; if (layerIndex >= layerList.size()) { osg::ref_ptr image(new osg::Image); image->allocateImage(static_cast(blendmapImageSize), static_cast(blendmapImageSize), 1, GL_ALPHA, GL_UNSIGNED_BYTE); std::memset(image->data(), 0, image->getTotalDataSize()); blendmaps.push_back(std::move(image)); layerList.push_back(std::move(info)); } } const std::size_t layerIndex = found->second; unsigned char* const data = blendmaps[layerIndex]->data(); const std::size_t realY = (blendmapSize - y - 1) * imageScaleFactor; const std::size_t realX = x * imageScaleFactor; data[((realY + 0) * blendmapImageSize + realX + 0)] = 255; data[((realY + 1) * blendmapImageSize + realX + 0)] = 255; data[((realY + 0) * blendmapImageSize + realX + 1)] = 255; data[((realY + 1) * blendmapImageSize + realX + 1)] = 255; } } if (blendmaps.size() == 1) blendmaps.clear(); // If a single texture fills the whole terrain, there is no need to blend } float Storage::getHeightAt(const osg::Vec3f& worldPos, ESM::RefId worldspace) { const float cellSize = ESM::getCellSize(worldspace); int cellX = static_cast(std::floor(worldPos.x() / cellSize)); int cellY = static_cast(std::floor(worldPos.y() / cellSize)); osg::ref_ptr land = getLand(ESM::ExteriorCellLocation(cellX, cellY, worldspace)); if (!land) return ESM::isEsm4Ext(worldspace) ? std::numeric_limits::lowest() : defaultHeight; const ESM::LandData* data = land->getData(ESM::Land::DATA_VHGT); if (!data) return defaultHeight; const int landSize = data->getLandSize(); // Mostly lifted from Ogre::Terrain::getHeightAtTerrainPosition // Normalized position in the cell float nX = (worldPos.x() - (cellX * cellSize)) / cellSize; float nY = (worldPos.y() - (cellY * cellSize)) / cellSize; // get left / bottom points (rounded down) float factor = landSize - 1.0f; float invFactor = 1.0f / factor; int startX = static_cast(nX * factor); int startY = static_cast(nY * factor); int endX = startX + 1; int endY = startY + 1; endX = std::min(endX, landSize - 1); endY = std::min(endY, landSize - 1); // now get points in terrain space (effectively rounding them to boundaries) float startXTS = startX * invFactor; float startYTS = startY * invFactor; float endXTS = endX * invFactor; float endYTS = endY * invFactor; // get parametric from start coord to next point float xParam = (nX - startXTS) * factor; float yParam = (nY - startYTS) * factor; /* For even / odd tri strip rows, triangles are this shape: even odd 3---2 3---2 | / | | \ | 0---1 0---1 */ // Build all 4 positions in normalized cell space, using point-sampled height osg::Vec3f v0(startXTS, startYTS, getVertexHeight(data, startX, startY) / cellSize); osg::Vec3f v1(endXTS, startYTS, getVertexHeight(data, endX, startY) / cellSize); osg::Vec3f v2(endXTS, endYTS, getVertexHeight(data, endX, endY) / cellSize); osg::Vec3f v3(startXTS, endYTS, getVertexHeight(data, startX, endY) / cellSize); // define this plane in terrain space osg::Plane plane; // FIXME: deal with differing triangle alignment if (true) { // odd row bool secondTri = ((1.0 - yParam) > xParam); if (secondTri) plane = osg::Plane(v0, v1, v3); else plane = osg::Plane(v1, v2, v3); } /* else { // even row bool secondTri = (yParam > xParam); if (secondTri) plane.redefine(v0, v2, v3); else plane.redefine(v0, v1, v2); } */ // Solve plane equation for z return (-plane.getNormal().x() * nX - plane.getNormal().y() * nY - plane[3]) / plane.getNormal().z() * cellSize; } const LandObject* Storage::getLand(ESM::ExteriorCellLocation cellLocation, LandCache& cache) { if (const auto land = cache.find(cellLocation.mX, cellLocation.mY)) return *land; osg::ref_ptr land = getLand(cellLocation); const LandObject* result = land.get(); cache.insert(cellLocation.mX, cellLocation.mY, std::move(land)); return result; } void Storage::adjustColor(int col, int row, const ESM::LandData* heightData, osg::Vec4ub& color) const {} float Storage::getAlteredHeight(int col, int row) const { return 0; } Terrain::LayerInfo Storage::getLayerInfo(const std::string& texture) { std::lock_guard lock(mLayerInfoMutex); // Already have this cached? std::map::iterator found = mLayerInfoMap.find(texture); if (found != mLayerInfoMap.end()) return found->second; Terrain::LayerInfo info; info.mParallax = false; info.mSpecular = false; info.mDiffuseMap = texture; if (mAutoUseNormalMaps) { std::string texture_ = texture; Misc::StringUtils::replaceLast(texture_, ".", mNormalHeightMapPattern + "."); if (mVFS->exists(texture_)) { info.mNormalMap = std::move(texture_); info.mParallax = true; } else { texture_ = texture; Misc::StringUtils::replaceLast(texture_, ".", mNormalMapPattern + "."); if (mVFS->exists(texture_)) info.mNormalMap = std::move(texture_); } } if (mAutoUseSpecularMaps) { std::string texture_ = texture; Misc::StringUtils::replaceLast(texture_, ".", mSpecularMapPattern + "."); if (mVFS->exists(texture_)) { info.mDiffuseMap = std::move(texture_); info.mSpecular = true; } } mLayerInfoMap[texture] = info; return info; } Terrain::LayerInfo Storage::getLandTextureLayerInfo(ESM::FormId id) { if (const ESM4::LandTexture* ltex = getEsm4LandTexture(id)) { if (!ltex->mTextureFile.empty()) return getLayerInfo("textures/landscape/" + ltex->mTextureFile); // TES4 if (const ESM4::TextureSet* txst = getEsm4TextureSet(ltex->mTexture)) return getTextureSetLayerInfo(*txst); // TES5 else Log(Debug::Warning) << "TextureSet not found: " << ltex->mTexture.toString(); } else Log(Debug::Warning) << "LandTexture not found: " << id.toString(); return getLayerInfo(""); } Terrain::LayerInfo Storage::getTextureSetLayerInfo(const ESM4::TextureSet& txst) { Terrain::LayerInfo info; assert(!txst.mDiffuse.empty() && "getlayerInfo: empty diffuse map"); info.mDiffuseMap = "textures/" + txst.mDiffuse; if (!txst.mNormalMap.empty()) info.mNormalMap = "textures/" + txst.mNormalMap; // FIXME: this flag indicates height info in alpha channel of normal map // but the normal map alpha channel has specular info instead // (probably needs some flag in the terrain shader to fix) info.mParallax = false; // FIXME: this flag indicates specular info in alpha channel of diffuse // but the diffuse alpha channel has transparency data instead // (probably needs some flag in the terrain shader to fix) info.mSpecular = false; // FIXME: should support other features of ESM4::TextureSet // probably need corresponding support in the terrain shader return info; } float Storage::getCellWorldSize(ESM::RefId worldspace) { return static_cast(ESM::getCellSize(worldspace)); } int Storage::getCellVertices(ESM::RefId worldspace) { return ESM::getLandSize(worldspace); } int Storage::getTextureTileCount(float chunkSize, ESM::RefId worldspace) { if (ESM::isEsm4Ext(worldspace)) return static_cast(2 * ESM4::Land::sQuadTexturePerSide * chunkSize); else return static_cast(ESM::Land::LAND_TEXTURE_SIZE * chunkSize); } }