/// File to handle keys used by nif file records #ifndef OPENMW_COMPONENTS_NIF_NIFKEY_HPP #define OPENMW_COMPONENTS_NIF_NIFKEY_HPP #include #include #include "exception.hpp" #include "niffile.hpp" #include "nifstream.hpp" namespace Nif { enum InterpolationType { InterpolationType_Unknown = 0, InterpolationType_Linear = 1, InterpolationType_Quadratic = 2, InterpolationType_TCB = 3, InterpolationType_XYZ = 4, InterpolationType_Constant = 5 }; template struct KeyT { T mValue; T mInTan; // Only for Quadratic interpolation, and never for QuaternionKeyList T mOutTan; // Only for Quadratic interpolation, and never for QuaternionKeyList }; template struct TCBKey { float mTime; T mValue{}; T mInTan{}; T mOutTan{}; float mTension; float mContinuity; float mBias; }; template struct KeyMapT { // This is theoretically a "flat map" sorted by time using MapType = std::vector>>; using ValueType = T; using KeyType = KeyT; std::string mFrameName; float mLegacyWeight; uint32_t mInterpolationType = InterpolationType_Unknown; MapType mKeys; // Read in a KeyGroup (see http://niftools.sourceforge.net/doc/nif/NiKeyframeData.html) void read(NIFStream* nif, bool morph = false) { assert(nif); if (morph) { if (nif->getVersion() >= NIFStream::generateVersion(10, 1, 0, 106)) nif->read(mFrameName); if (nif->getVersion() > NIFStream::generateVersion(10, 1, 0, 0)) { if (nif->getVersion() >= NIFStream::generateVersion(10, 1, 0, 104) && nif->getVersion() <= NIFStream::generateVersion(20, 1, 0, 2) && nif->getBethVersion() < 10) nif->read(mLegacyWeight); return; } } uint32_t count; nif->read(count); if (count == 0 && !morph) return; nif->read(mInterpolationType); mKeys.reserve(count); KeyType key = {}; if (mInterpolationType == InterpolationType_Linear || mInterpolationType == InterpolationType_Constant) { for (size_t i = 0; i < count; i++) { float time; nif->read(time); readValue(*nif, key); mKeys.emplace_back(time, key); } } else if (mInterpolationType == InterpolationType_Quadratic) { for (size_t i = 0; i < count; i++) { float time; nif->read(time); readQuadratic(*nif, key); mKeys.emplace_back(time, key); } } else if (mInterpolationType == InterpolationType_TCB) { std::vector> tcbKeys(count); for (TCBKey& tcbKey : tcbKeys) { nif->read(tcbKey.mTime); tcbKey.mValue = ((*nif).*getValue)(); nif->read(tcbKey.mTension); nif->read(tcbKey.mContinuity); nif->read(tcbKey.mBias); } generateTCBTangents(tcbKeys); for (TCBKey& tcbKey : tcbKeys) mKeys.emplace_back(std::move(tcbKey.mTime), KeyType{ std::move(tcbKey.mValue), std::move(tcbKey.mInTan), std::move(tcbKey.mOutTan) }); } else if (mInterpolationType == InterpolationType_XYZ) { // XYZ keys aren't actually read here. // data.cpp sees that the last type read was InterpolationType_XYZ and: // Eats a floating point number, then // Re-runs the read function 3 more times. // When it does that it's reading in a bunch of InterpolationType_Linear keys, not // InterpolationType_XYZ. } else if (count != 0) { throw Nif::Exception("Unhandled interpolation type: " + std::to_string(mInterpolationType), nif->getFile().getFilename()); } // Note: NetImmerse does NOT sort keys or remove duplicates } private: static void readValue(NIFStream& nif, KeyT& key) { key.mValue = (nif.*getValue)(); } template static void readQuadratic(NIFStream& nif, KeyT& key) { readValue(nif, key); key.mInTan = (nif.*getValue)(); key.mOutTan = (nif.*getValue)(); } static void readQuadratic(NIFStream& nif, KeyT& key) { readValue(nif, key); } template static void generateTCBTangents(std::vector>& keys) { if (keys.size() <= 1) return; for (std::size_t i = 0; i < keys.size(); ++i) { TCBKey& curr = keys[i]; const TCBKey* prev = (i == 0) ? nullptr : &keys[i - 1]; const TCBKey* next = (i == keys.size() - 1) ? nullptr : &keys[i + 1]; const float prevLen = prev != nullptr && next != nullptr ? curr.mTime - prev->mTime : 1.f; const float nextLen = prev != nullptr && next != nullptr ? next->mTime - curr.mTime : 1.f; if (prevLen + nextLen == 0.f) continue; const float x = (1.f - curr.mTension) * (1.f - curr.mContinuity) * (1.f + curr.mBias); const float y = (1.f - curr.mTension) * (1.f + curr.mContinuity) * (1.f - curr.mBias); const float z = (1.f - curr.mTension) * (1.f + curr.mContinuity) * (1.f + curr.mBias); const float w = (1.f - curr.mTension) * (1.f - curr.mContinuity) * (1.f - curr.mBias); const U prevDelta = prev != nullptr ? curr.mValue - prev->mValue : next->mValue - curr.mValue; const U nextDelta = next != nullptr ? next->mValue - curr.mValue : curr.mValue - prev->mValue; curr.mInTan = (prevDelta * x + nextDelta * y) * prevLen / (prevLen + nextLen); curr.mOutTan = (prevDelta * z + nextDelta * w) * nextLen / (prevLen + nextLen); } } static void generateTCBTangents(std::vector>& keys) { // TODO: is this even legal? } static void generateTCBTangents(std::vector>& keys) { // TODO: implement TCB interpolation for quaternions } }; using FloatKeyMap = KeyMapT>; using Vector3KeyMap = KeyMapT>; using Vector4KeyMap = KeyMapT>; using QuaternionKeyMap = KeyMapT>; using BoolKeyMap = KeyMapT>; using FloatKeyMapPtr = std::shared_ptr; using Vector3KeyMapPtr = std::shared_ptr; using Vector4KeyMapPtr = std::shared_ptr; using QuaternionKeyMapPtr = std::shared_ptr; using BoolKeyMapPtr = std::shared_ptr; } // Namespace #endif //#ifndef OPENMW_COMPONENTS_NIF_NIFKEY_HPP