using System; using System.Drawing; using ClassicalSharp.Renderers; using OpenTK; using OpenTK.Input; namespace ClassicalSharp { public partial class LocalPlayer : Player { bool useLiquidGravity = false; // used by BlockDefinitions. bool canLiquidJump = true; bool firstJump = false, secondJump = false; void UpdateVelocityState( float xMoving, float zMoving ) { if( !NoclipSlide && (noClip && xMoving == 0 && zMoving == 0) ) Velocity = Vector3.Zero; if( flying || noClip ) { Velocity.Y = 0; // eliminate the effect of gravity if( flyingUp || jumping ) { Velocity.Y = 0.12f; if( speeding ) Velocity.Y += 0.12f; if( halfSpeeding ) Velocity.Y += 0.06f; } else if( flyingDown ) { Velocity.Y -= 0.12f; if( speeding ) Velocity.Y -= 0.12f; if( halfSpeeding ) Velocity.Y -= 0.06f; } } else if( jumping && TouchesAnyRope() && Velocity.Y > 0.02f ) { Velocity.Y = 0.02f; } if( !jumping ) { canLiquidJump = false; return; } bool touchWater = TouchesAnyWater(); bool touchLava = TouchesAnyLava(); if( touchWater || touchLava ) { BoundingBox bounds = CollisionBounds; int feetY = Utils.Floor( bounds.Min.Y ), bodyY = feetY + 1; int headY = Utils.Floor( bounds.Max.Y ); if( bodyY > headY ) bodyY = headY; bounds.Max.Y = bounds.Min.Y = feetY; bool liquidFeet = TouchesAny( bounds, StandardLiquid ); bounds.Min.Y = Math.Min( bodyY, headY ); bounds.Max.Y = Math.Max( bodyY, headY ); bool liquidRest = TouchesAny( bounds, StandardLiquid ); bool pastJumpPoint = liquidFeet && !liquidRest && (Position.Y % 1 >= 0.4); if( !pastJumpPoint ) { canLiquidJump = true; Velocity.Y += 0.04f; if( speeding ) Velocity.Y += 0.04f; if( halfSpeeding ) Velocity.Y += 0.02f; } else if( pastJumpPoint ) { // either A) jump bob in water B) climb up solid on side if( canLiquidJump || (collideX || collideZ) ) Velocity.Y += touchLava ? 0.20f : 0.10f; canLiquidJump = false; } } else if( useLiquidGravity ) { Velocity.Y += 0.04f; if( speeding ) Velocity.Y += 0.04f; if( halfSpeeding ) Velocity.Y += 0.02f; canLiquidJump = false; } else if( TouchesAnyRope() ) { Velocity.Y += speeding ? 0.15f : 0.10f; canLiquidJump = false; } else if( onGround ) { DoNormalJump(); } } void DoNormalJump() { Velocity.Y = 0; Velocity.Y += jumpVel; if( speeding ) Velocity.Y += jumpVel; if( halfSpeeding ) Velocity.Y += jumpVel / 2; canLiquidJump = false; } bool StandardLiquid( byte block ) { return info.CollideType[block] == BlockCollideType.SwimThrough; } static Vector3 waterDrag = new Vector3( 0.8f, 0.8f, 0.8f ), lavaDrag = new Vector3( 0.5f, 0.5f, 0.5f ), ropeDrag = new Vector3( 0.5f, 0.85f, 0.5f ), normalDrag = new Vector3( 0.91f, 0.98f, 0.91f ), airDrag = new Vector3( 0.6f, 1f, 0.6f ); const float liquidGrav = 0.02f, ropeGrav = 0.034f, normalGrav = 0.08f; void PhysicsTick( float xMoving, float zMoving ) { if( noClip ) onGround = false; float multiply = GetBaseMultiply(); float modifier = LowestSpeedModifier(); float yMul = Math.Max( 1f, multiply / 5 ) * modifier; float horMul = multiply * modifier; if( !(flying || noClip) ) { if( secondJump ) { horMul *= 93f; yMul *= 10f; } else if( firstJump ) { horMul *= 46.5f; yMul *= 7.5f; } } if( TouchesAnyWater() && !flying && !noClip ) { MoveNormal( xMoving, zMoving, 0.02f * horMul, waterDrag, liquidGrav, yMul ); } else if( TouchesAnyLava() && !flying && !noClip ) { MoveNormal( xMoving, zMoving, 0.02f * horMul, lavaDrag, liquidGrav, yMul ); } else if( TouchesAnyRope() && !flying && !noClip ) { MoveNormal( xMoving, zMoving, 0.02f * 1.7f, ropeDrag, ropeGrav, yMul ); } else { float factor = !(flying || noClip) && onGround ? 0.1f : 0.02f; float gravity = useLiquidGravity ? liquidGrav : normalGrav; if( flying || noClip ) MoveFlying( xMoving, zMoving, factor * horMul, normalDrag, gravity, yMul ); else MoveNormal( xMoving, zMoving, factor * horMul, normalDrag, gravity, yMul ); if( BlockUnderFeet == Block.Ice && !(flying || noClip) ) { // limit components to +-0.25f by rescaling vector to [-0.25, 0.25] if( Math.Abs( Velocity.X ) > 0.25f || Math.Abs( Velocity.Z ) > 0.25f ) { float scale = Math.Min( Math.Abs( 0.25f / Velocity.X ), Math.Abs( 0.25f / Velocity.Z ) ); Velocity.X *= scale; Velocity.Z *= scale; } } else if( onGround || flying ) { Velocity *= airDrag; // air drag or ground friction } } } void AdjHeadingVelocity( float x, float z, float factor ) { float dist = (float)Math.Sqrt( x * x + z * z ); if( dist < 0.00001f ) return; if( dist < 1 ) dist = 1; float multiply = factor / dist; Velocity += Utils.RotateY( x * multiply, 0, z * multiply, HeadYawRadians ); } void MoveFlying( float xMoving, float zMoving, float factor, Vector3 drag, float gravity, float yMul ) { AdjHeadingVelocity( zMoving, xMoving, factor ); float yVel = (float)Math.Sqrt( Velocity.X * Velocity.X + Velocity.Z * Velocity.Z ); // make vertical speed the same as vertical speed. if( (xMoving != 0 || zMoving != 0) && yVel > 0.001f ) { Velocity.Y = 0; yMul = 1; if( flyingUp || jumping ) Velocity.Y += yVel; if( flyingDown ) Velocity.Y -= yVel; } Move( xMoving, zMoving, factor, drag, gravity, yMul ); } void MoveNormal( float xMoving, float zMoving, float factor, Vector3 drag, float gravity, float yMul ) { AdjHeadingVelocity( zMoving, xMoving, factor ); Move( xMoving, zMoving, factor, drag, gravity, yMul ); } void Move( float xMoving, float zMoving, float factor, Vector3 drag, float gravity, float yMul ) { Velocity.Y *= yMul; if( !noClip ) MoveAndWallSlide(); Position += Velocity; Velocity.Y /= yMul; Velocity *= drag; Velocity.Y -= gravity; } float GetBaseMultiply() { float multiply = 0; if( flying || noClip ) { if( speeding ) multiply += SpeedMultiplier * 8; if( halfSpeeding ) multiply += SpeedMultiplier * 8 / 2; if( multiply == 0 ) multiply = 8f; } else { if( speeding ) multiply += SpeedMultiplier; if( halfSpeeding ) multiply += SpeedMultiplier / 2; if( multiply == 0 ) multiply = 1; } return multiply; } const float inf = float.PositiveInfinity; float LowestSpeedModifier() { BoundingBox bounds = CollisionBounds; useLiquidGravity = false; float baseModifier = LowestModifier( bounds, false ); bounds.Min.Y -= 0.1f; // also check block standing on float solidModifier = LowestModifier( bounds, true ); if( baseModifier == inf && solidModifier == inf ) return 1; return baseModifier == inf ? solidModifier : baseModifier; } float LowestModifier( BoundingBox bounds, bool checkSolid ) { Vector3I bbMin = Vector3I.Floor( bounds.Min ); Vector3I bbMax = Vector3I.Floor( bounds.Max ); float modifier = inf; for( int y = bbMin.Y; y <= bbMax.Y; y++ ) for( int z = bbMin.Z; z <= bbMax.Z; z++ ) for( int x = bbMin.X; x <= bbMax.X; x++ ) { byte block = game.Map.SafeGetBlock( x, y, z ); if( block == 0 ) continue; BlockCollideType type = info.CollideType[block]; if( type == BlockCollideType.Solid && !checkSolid ) continue; Vector3 min = new Vector3( x, y, z ) + info.MinBB[block]; Vector3 max = new Vector3( x, y, z ) + info.MaxBB[block]; BoundingBox blockBB = new BoundingBox( min, max ); if( !blockBB.Intersects( bounds ) ) continue; modifier = Math.Min( modifier, info.SpeedMultiplier[block] ); if( block >= BlockInfo.CpeBlocksCount && type == BlockCollideType.SwimThrough ) useLiquidGravity = true; } return modifier; } /// Calculates the jump velocity required such that when a client presses /// the jump binding they will be able to jump up to the given height. internal void CalculateJumpVelocity( float jumpHeight ) { jumpVel = 0; if( jumpHeight >= 256 ) jumpVel = 10.0f; if( jumpHeight >= 512 ) jumpVel = 16.5f; if( jumpHeight >= 768 ) jumpVel = 22.5f; while( GetMaxHeight( jumpVel ) <= jumpHeight ) { jumpVel += 0.01f; } } static double GetMaxHeight( float u ) { // equation below comes from solving diff(x(t, u))= 0 // We only work in discrete timesteps, so test both rounded up and down. double t = 49.49831645 * Math.Log( 0.247483075 * u + 0.9899323 ); return Math.Max( YPosAt( (int)t, u ), YPosAt( (int)t + 1, u ) ); } static double YPosAt( int t, float u ) { // v(t, u) = (4 + u) * (0.98^t) - 4, where u = initial velocity // x(t, u) = Σv(t, u) from 0 to t (since we work in discrete timesteps) // plugging into Wolfram Alpha gives 1 equation as // (0.98^t) * (-49u - 196) - 4t + 50u + 196 double a = Math.Exp( -0.0202027 * t ); //~0.98^t return a * ( -49 * u - 196 ) - 4 * t + 50 * u + 196; } } }