// ClassicalSharp copyright 2014-2016 UnknownShadow200 | Licensed under MIT using ClassicalSharp.Entities; using ClassicalSharp.Map; using System; using OpenTK; namespace ClassicalSharp.Physics { public struct State { public int X, Y, Z; public float tSquared; public State( int x, int y, int z, byte block, float tSquared ) { X = x << 3; Y = y << 3; Z = z << 3; X |= (block & 0x07); Y |= (block & 0x38) >> 3; Z |= (block & 0xC0) >> 6; this.tSquared = tSquared; } } /// Calculates all possible blocks that a moving entity can intersect with. public sealed class Searcher { public static State[] stateCache = new State[0]; public static int FindReachableBlocks( Game game, Entity entity, out AABB entityBB, out AABB entityExtentBB ) { Vector3 vel = entity.Velocity; entityBB = entity.Bounds; // Exact maximum extent the entity can reach, and the equivalent map coordinates. entityExtentBB = new AABB( vel.X < 0 ? entityBB.Min.X + vel.X : entityBB.Min.X, vel.Y < 0 ? entityBB.Min.Y + vel.Y : entityBB.Min.Y, vel.Z < 0 ? entityBB.Min.Z + vel.Z : entityBB.Min.Z, vel.X > 0 ? entityBB.Max.X + vel.X : entityBB.Max.X, vel.Y > 0 ? entityBB.Max.Y + vel.Y : entityBB.Max.Y, vel.Z > 0 ? entityBB.Max.Z + vel.Z : entityBB.Max.Z ); Vector3I min = Vector3I.Floor( entityExtentBB.Min ); Vector3I max = Vector3I.Floor( entityExtentBB.Max ); int elements = (max.X + 1 - min.X) * (max.Y + 1 - min.Y) * (max.Z + 1 - min.Z); if( elements > stateCache.Length ) { stateCache = new State[elements]; } AABB blockBB = default( AABB ); BlockInfo info = game.BlockInfo; int count = 0; // Order loops so that we minimise cache misses for( int y = min.Y; y <= max.Y; y++ ) for( int z = min.Z; z <= max.Z; z++ ) for( int x = min.X; x <= max.X; x++ ) { byte block = GetPhysicsBlockId( game.World, x, y, z ); if( info.Collide[block] != CollideType.Solid ) continue; blockBB.Min = info.MinBB[block]; blockBB.Min.X += x; blockBB.Min.Y += y; blockBB.Min.Z += z; blockBB.Max = info.MaxBB[block]; blockBB.Max.X += x; blockBB.Max.Y += y; blockBB.Max.Z += z; if( !entityExtentBB.Intersects( blockBB ) ) continue; // necessary for non whole blocks. (slabs) float tx = 0, ty = 0, tz = 0; CalcTime( ref vel, ref entityBB, ref blockBB, out tx, out ty, out tz ); if( tx > 1 || ty > 1 || tz > 1 ) continue; float tSquared = tx * tx + ty * ty + tz * tz; stateCache[count++] = new State( x, y, z, block, tSquared ); } if( count > 0 ) QuickSort( stateCache, 0, count - 1 ); return count; } public static byte GetPhysicsBlockId( World world, int x, int y, int z ) { if( x < 0 || x >= world.Width || z < 0 || z >= world.Length || y < 0 ) return Block.Bedrock; if( y >= world.Height ) return Block.Air; return world.GetBlock( x, y, z ); } public static void CalcTime( ref Vector3 vel, ref AABB entityBB, ref AABB blockBB, out float tx, out float ty, out float tz ) { float dx = vel.X > 0 ? blockBB.Min.X - entityBB.Max.X : entityBB.Min.X - blockBB.Max.X; float dy = vel.Y > 0 ? blockBB.Min.Y - entityBB.Max.Y : entityBB.Min.Y - blockBB.Max.Y; float dz = vel.Z > 0 ? blockBB.Min.Z - entityBB.Max.Z : entityBB.Min.Z - blockBB.Max.Z; tx = vel.X == 0 ? float.PositiveInfinity : Math.Abs( dx / vel.X ); ty = vel.Y == 0 ? float.PositiveInfinity : Math.Abs( dy / vel.Y ); tz = vel.Z == 0 ? float.PositiveInfinity : Math.Abs( dz / vel.Z ); if( entityBB.XIntersects( blockBB ) ) tx = 0; if( entityBB.YIntersects( blockBB ) ) ty = 0; if( entityBB.ZIntersects( blockBB ) ) tz = 0; } static void QuickSort( State[] keys, int left, int right ) { while( left < right ) { int i = left, j = right; float pivot = keys[(i + j) / 2].tSquared; // partition the list while( i <= j ) { while( pivot > keys[i].tSquared ) i++; while( pivot < keys[j].tSquared ) j--; if( i <= j ) { State key = keys[i]; keys[i] = keys[j]; keys[j] = key; i++; j--; } } // recurse into the smaller subset if( j - left <= right - i ) { if( left < j ) QuickSort( keys, left, j ); left = i; } else { if( i < right ) QuickSort( keys, i, right ); right = j; } } } } }