// ClassicalSharp copyright 2014-2016 UnknownShadow200 | Licensed under MIT using System; using OpenTK; namespace ClassicalSharp { public static partial class Utils { /// Creates a vector with all components at 1E25. public static Vector3 MaxPos() { return new Vector3( 1E25f, 1E25f, 1E25f ); } /// Clamps that specified value such that min ≤ value ≤ max public static void Clamp( ref float value, float min, float max ) { if( value < min ) value = min; if( value > max ) value = max; } /// Clamps that specified value such that min ≤ value ≤ max public static void Clamp( ref int value, int min, int max ) { if( value < min ) value = min; if( value > max ) value = max; } public static Vector3 Mul( Vector3 a, Vector3 scale ) { a.X *= scale.X; a.Y *= scale.Y; a.Z *= scale.Z; return a; } /// Returns the next highest power of 2 that is ≥ to the given value. public static int NextPowerOf2( int value ) { int next = 1; while( value > next ) next <<= 1; return next; } /// Returns whether the given value is a power of 2. public static bool IsPowerOf2( int value ) { return value != 0 && (value & (value - 1)) == 0; } /// Multiply a value in degrees by this to get its value in radians. public const float Deg2Rad = (float)(Math.PI / 180); /// Multiply a value in radians by this to get its value in degrees. public const float Rad2Deg = (float)(180 / Math.PI); public static int DegreesToPacked( double degrees, int period ) { return (int)(degrees * period / 360.0) % period; } public static int DegreesToPacked( double degrees ) { return (int)(degrees * 256 / 360.0) & 0xFF; } public static double PackedToDegrees( byte packed ) { return packed * 360.0 / 256.0; } /// Rotates the given 3D coordinates around the y axis. public static Vector3 RotateY( Vector3 v, float angle ) { float cosA = (float)Math.Cos( angle ); float sinA = (float)Math.Sin( angle ); return new Vector3( cosA * v.X - sinA * v.Z, v.Y, sinA * v.X + cosA * v.Z ); } /// Rotates the given 3D coordinates around the y axis. public static Vector3 RotateY( float x, float y, float z, float angle ) { float cosA = (float)Math.Cos( angle ); float sinA = (float)Math.Sin( angle ); return new Vector3( cosA * x - sinA * z, y, sinA * x + cosA * z ); } /// Rotates the given 3D coordinates around the x axis. public static void RotateX( ref float y, ref float z, float cosA, float sinA ) { float y2 = cosA * y + sinA * z; z = -sinA * y + cosA * z; y = y2; } /// Rotates the given 3D coordinates around the y axis. public static void RotateY( ref float x, ref float z, float cosA, float sinA ) { float x2 = cosA * x - sinA * z; z = sinA * x + cosA * z; x = x2; } /// Rotates the given 3D coordinates around the z axis. public static void RotateZ( ref float x, ref float y, float cosA, float sinA ) { float x2 = cosA * x + sinA * y; y = -sinA * x + cosA * y; x = x2; } /// Returns the square of the euclidean distance between two points. public static float DistanceSquared( Vector3 p1, Vector3 p2 ) { float dx = p2.X - p1.X, dy = p2.Y - p1.Y, dz = p2.Z - p1.Z; return dx * dx + dy * dy + dz * dz; } /// Returns the square of the euclidean distance between two points. public static float DistanceSquared( float x1, float y1, float z1, float x2, float y2, float z2 ) { float dx = x2 - x1, dy = y2 - y1, dz = z2 - z1; return dx * dx + dy * dy + dz * dz; } /// Returns the square of the euclidean distance between two points. public static int DistanceSquared( int x1, int y1, int z1, int x2, int y2, int z2 ) { int dx = x2 - x1, dy = y2 - y1, dz = z2 - z1; return dx * dx + dy * dy + dz * dz; } /// Returns a normalised vector that faces in the direction /// described by the given yaw and pitch. public static Vector3 GetDirVector( double yawRad, double pitchRad ) { double x = -Math.Cos( pitchRad ) * -Math.Sin( yawRad ); double y = -Math.Sin( pitchRad ); double z = -Math.Cos( pitchRad ) * Math.Cos( yawRad ); return new Vector3( (float)x, (float)y, (float)z ); } public static void GetHeading( Vector3 dir, out double yawRad, out double pitchRad ) { pitchRad = Math.Asin( -dir.Y ); yawRad = Math.Atan2( dir.Z, dir.X ); } public static int Floor( float value ) { int valueI = (int)value; return value < valueI ? valueI - 1 : valueI; } /// Performs rounding upwards integer division. public static int CeilDiv( int a, int b ) { return a / b + (a % b != 0 ? 1 : 0); } /// Performs linear interpolation between two values. public static float Lerp( float a, float b, float t ) { return a + (b - a) * t; } // http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/billboards/ public static void CalcBillboardPoints( Vector2 size, Vector3 position, ref Matrix4 view, out Vector3 p111, out Vector3 p121, out Vector3 p212, out Vector3 p222 ) { Vector3 centre = position; centre.Y += size.Y / 2; Vector3 a = new Vector3( view.Row0.X * size.X, view.Row1.X * size.X, view.Row2.X * size.X ); // right * size.X Vector3 b = new Vector3( view.Row0.Y * size.Y, view.Row1.Y * size.Y, view.Row2.Y * size.Y ); // up * size.Y p111 = centre + a * -0.5f + b * -0.5f; p121 = centre + a * -0.5f + b * 0.5f; p212 = centre + a * 0.5f + b * -0.5f; p222 = centre + a * 0.5f + b * 0.5f; } /// Linearly interpolates between a given angle range, adjusting if necessary. public static float LerpAngle( float leftAngle, float rightAngle, float t ) { // we have to cheat a bit for angles here. // Consider 350* --> 0*, we only want to travel 10*, // but without adjusting for this case, we would interpolate back the whole 350* degrees. bool invertLeft = leftAngle > 270 && rightAngle < 90; bool invertRight = rightAngle > 270 && leftAngle < 90; if( invertLeft ) leftAngle = leftAngle - 360; if( invertRight ) rightAngle = rightAngle - 360; return Lerp( leftAngle, rightAngle, t ); } } }