2017-01-20 15:51:02 +11:00

124 lines
4.2 KiB
C#

// Copyright 2014-2017 ClassicalSharp | Licensed under BSD-3
using ClassicalSharp.Entities;
using ClassicalSharp.Map;
using System;
using OpenTK;
namespace ClassicalSharp.Physics {
public struct State {
public int X, Y, Z;
public float tSquared;
public State(int x, int y, int z, byte block, float tSquared) {
X = x << 3; Y = y << 3; Z = z << 3;
X |= (block & 0x07);
Y |= (block & 0x38) >> 3;
Z |= (block & 0xC0) >> 6;
this.tSquared = tSquared;
}
}
/// <summary> Calculates all possible blocks that a moving entity can intersect with. </summary>
public sealed class Searcher {
public static State[] stateCache = new State[0];
public static int FindReachableBlocks(Game game, Entity entity,
out AABB entityBB, out AABB entityExtentBB) {
Vector3 vel = entity.Velocity;
entityBB = entity.Bounds;
// Exact maximum extent the entity can reach, and the equivalent map coordinates.
entityExtentBB = new AABB(
vel.X < 0 ? entityBB.Min.X + vel.X : entityBB.Min.X,
vel.Y < 0 ? entityBB.Min.Y + vel.Y : entityBB.Min.Y,
vel.Z < 0 ? entityBB.Min.Z + vel.Z : entityBB.Min.Z,
vel.X > 0 ? entityBB.Max.X + vel.X : entityBB.Max.X,
vel.Y > 0 ? entityBB.Max.Y + vel.Y : entityBB.Max.Y,
vel.Z > 0 ? entityBB.Max.Z + vel.Z : entityBB.Max.Z
);
Vector3I min = Vector3I.Floor(entityExtentBB.Min);
Vector3I max = Vector3I.Floor(entityExtentBB.Max);
int elements = (max.X + 1 - min.X) * (max.Y + 1 - min.Y) * (max.Z + 1 - min.Z);
if (elements > stateCache.Length) {
stateCache = new State[elements];
}
AABB blockBB = default(AABB);
BlockInfo info = game.BlockInfo;
int count = 0;
// Order loops so that we minimise cache misses
for (int y = min.Y; y <= max.Y; y++)
for (int z = min.Z; z <= max.Z; z++)
for (int x = min.X; x <= max.X; x++)
{
byte block = game.World.GetPhysicsBlock(x, y, z);
if (info.Collide[block] != CollideType.Solid) continue;
blockBB.Min = info.MinBB[block];
blockBB.Min.X += x; blockBB.Min.Y += y; blockBB.Min.Z += z;
blockBB.Max = info.MaxBB[block];
blockBB.Max.X += x; blockBB.Max.Y += y; blockBB.Max.Z += z;
if (!entityExtentBB.Intersects(blockBB)) continue; // necessary for non whole blocks. (slabs)
float tx = 0, ty = 0, tz = 0;
CalcTime(ref vel, ref entityBB, ref blockBB, out tx, out ty, out tz);
if (tx > 1 || ty > 1 || tz > 1) continue;
float tSquared = tx * tx + ty * ty + tz * tz;
stateCache[count++] = new State(x, y, z, block, tSquared);
}
if (count > 0)
QuickSort(stateCache, 0, count - 1);
return count;
}
public static void CalcTime(ref Vector3 vel, ref AABB entityBB, ref AABB blockBB,
out float tx, out float ty, out float tz) {
float dx = vel.X > 0 ? blockBB.Min.X - entityBB.Max.X : entityBB.Min.X - blockBB.Max.X;
float dy = vel.Y > 0 ? blockBB.Min.Y - entityBB.Max.Y : entityBB.Min.Y - blockBB.Max.Y;
float dz = vel.Z > 0 ? blockBB.Min.Z - entityBB.Max.Z : entityBB.Min.Z - blockBB.Max.Z;
tx = vel.X == 0 ? float.PositiveInfinity : Math.Abs(dx / vel.X);
ty = vel.Y == 0 ? float.PositiveInfinity : Math.Abs(dy / vel.Y);
tz = vel.Z == 0 ? float.PositiveInfinity : Math.Abs(dz / vel.Z);
if (entityBB.Max.X >= blockBB.Min.X && entityBB.Min.X <= blockBB.Max.X) tx = 0; // Inlined XIntersects
if (entityBB.Max.Y >= blockBB.Min.Y && entityBB.Min.Y <= blockBB.Max.Y) ty = 0; // Inlined YIntersects
if (entityBB.Max.Z >= blockBB.Min.Z && entityBB.Min.Z <= blockBB.Max.Z) tz = 0; // Inlined ZIntersects
}
static void QuickSort(State[] keys, int left, int right) {
while (left < right) {
int i = left, j = right;
float pivot = keys[(i + j) / 2].tSquared;
// partition the list
while (i <= j) {
while (pivot > keys[i].tSquared) i++;
while (pivot < keys[j].tSquared) j--;
if (i <= j) {
State key = keys[i]; keys[i] = keys[j]; keys[j] = key;
i++; j--;
}
}
// recurse into the smaller subset
if (j - left <= right - i) {
if (left < j)
QuickSort(keys, left, j);
left = i;
} else {
if (i < right)
QuickSort(keys, i, right);
right = j;
}
}
}
}
}