2016-11-27 14:47:09 +11:00

94 lines
2.9 KiB
C#

// ClassicalSharp copyright 2014-2016 UnknownShadow200 | Licensed under MIT
// Source from http://mrl.nyu.edu/~perlin/noise/
// Optimised form as we can always treat Z as being = 0.
// Octave and combined noise based on:
// https://github.com/UnknownShadow200/ClassicalSharp/wiki/Minecraft-Classic-map-generation-algorithm
using System;
namespace ClassicalSharp.Generator {
public abstract class Noise {
public abstract double Compute(double x, double y);
}
public sealed class ImprovedNoise : Noise {
public ImprovedNoise(JavaRandom rnd) {
// shuffle randomly using fisher-yates
for (int i = 0; i < 256; i++)
p[i] = (byte)i;
for (int i = 0; i < 256; i++) {
int j = rnd.Next(i, 256);
byte temp = p[i]; p[i] = p[j]; p[j] = temp;
}
for (int i = 0; i < 256; i++)
p[i + 256] = p[i];
}
public override double Compute(double x, double y) {
int xFloor = x >= 0 ? (int)x : (int)x - 1;
int yFloor = y >= 0 ? (int)y : (int)y - 1;
int X = xFloor & 0xFF, Y = yFloor & 0xFF;
x -= xFloor; y -= yFloor;
double u = x * x * x * (x * (x * 6 - 15) + 10); // Fade(x)
double v = y * y * y * (y * (y * 6 - 15) + 10); // Fade(y)
int A = p[X] + Y, B = p[X + 1] + Y;
const int xFlags = 0x46552222, yFlags = 0x2222550A;
int hash = (p[p[A]] & 0xF) << 1;
double g22 = (((xFlags >> hash) & 3) - 1) * x + (((yFlags >> hash) & 3) - 1) * y; // Grad(p[p[A], x, y)
hash = (p[p[B]] & 0xF) << 1;
double g12 = (((xFlags >> hash) & 3) - 1) * (x - 1) + (((yFlags >> hash) & 3) - 1) * y; // Grad(p[p[B], x - 1, y)
double c1 = g22 + u * (g12 - g22);
hash = (p[p[A + 1]] & 0xF) << 1;
double g21 = (((xFlags >> hash) & 3) - 1) * x + (((yFlags >> hash) & 3) - 1) * (y - 1); // Grad(p[p[A + 1], x, y - 1)
hash = (p[p[B + 1]] & 0xF) << 1;
double g11 = (((xFlags >> hash) & 3) - 1) * (x - 1) + (((yFlags >> hash) & 3) - 1) * (y - 1); // Grad(p[p[B + 1], x - 1, y - 1)
double c2 = g21 + u * (g11 - g21);
return c1 + v * (c2 - c1);
}
byte[] p = new byte[512];
}
public sealed class OctaveNoise : Noise {
readonly ImprovedNoise[] baseNoise;
public OctaveNoise(int octaves, JavaRandom rnd) {
baseNoise = new ImprovedNoise[octaves];
for (int i = 0; i < octaves; i++)
baseNoise[i] = new ImprovedNoise(rnd);
}
public override double Compute(double x, double y) {
double amplitude = 1, frequency = 1;
double sum = 0;
for (int i = 0; i < baseNoise.Length; i++) {
sum += baseNoise[i].Compute(x * frequency, y * frequency) * amplitude;
amplitude *= 2;
frequency /= 2;
}
return sum;
}
}
public sealed class CombinedNoise : Noise {
readonly Noise noise1, noise2;
public CombinedNoise(Noise noise1, Noise noise2) {
this.noise1 = noise1;
this.noise2 = noise2;
}
public override double Compute(double x, double y) {
double offset = noise2.Compute(x, y);
return noise1.Compute(x + offset, y);
}
}
}