ClassiCube/misc/n64/rsp_gpu.S

666 lines
18 KiB
ArmAsm

#include <rsp_queue.inc>
#include <rdpq_macros.h>
#define GUARD_BAND_FACTOR 2
// 1 << VTX_SHIFT, keep in sync with gpu.c
#define ONE_W K32
#define xxxxXXXX h0
#define yyyyYYYY h1
#define zzzzZZZZ h2
#define wwwwWWWW h3
#define XYZ_CLIP_FLAGS 0x707 // Isolate -X/Y/Z and +X/Y/Z clipping flags
#define SCREEN_VTX_CS_POSi 0 // X, Y, Z, W (all 32-bit)
#define SCREEN_VTX_CS_POSf 8 // X, Y, Z, W (all 32-bit)
#define SCREEN_VTX_X 16
#define SCREEN_VTX_Y 18
#define SCREEN_VTX_Z 20
#define SCREEN_VTX_CLIP_CODE 22
#define SCREEN_VTX_PADDING 23
#define SCREEN_VTX_RGBA 24
#define SCREEN_VTX_S_T 28 // 28 S, 30 T
#define SCREEN_VTX_W 32 // FIXME: this is duplicated in CS_POS
#define SCREEN_VTX_INVW 36 // 32-bit
#define SCREEN_VTX_SIZE 40
#define V0_OFFSET 0 * SCREEN_VTX_SIZE
#define V1_OFFSET 1 * SCREEN_VTX_SIZE
#define V2_OFFSET 2 * SCREEN_VTX_SIZE
#define V3_OFFSET 3 * SCREEN_VTX_SIZE
#define MAX_TRI_CMD_SIZE 0xB0
.macro compressClipCodes
andi t2, t0, 0x707 // Isolate X/Y/Z clipping flags
srl t1, t2, 5 // Shift hi flags to be aligned next to lo flags
andi t2, t2, 0x7 // Isolate lo clip flags
or t2, t1 // Merge clip flags (compressed to 6 bits)
.endm
.data
RSPQ_BeginOverlayHeader
RSPQ_DefineCommand GPUCmd_SetShort, 8 # 0x0
RSPQ_DefineCommand GPUCmd_SetTexWord, 8 # 0x1
RSPQ_DefineCommand GPUCmd_SetLong, 12 # 0x2
RSPQ_DefineCommand GPUCmd_DrawQuad, 68 # 0x3
RSPQ_DefineCommand GPUCmd_MatrixLoad, 68 # 0x4
RSPQ_DefineCommand GPUCmd_PushRDP, 12 # 0x5
RSPQ_EndOverlayHeader
.align 4
BANNER0: .ascii " RSP OpenGL T&L "
BANNER1: .ascii "Rasky & Snacchus"
RSPQ_BeginSavedState
GPU_MATRIX_MVP: .ds.b 128
GL_STATE:
# This is the GL state that is updated by CPU via GPUCmd_Set commands
GL_VIEWPORT_SCALE: .half 0,0,0,0
GL_VIEWPORT_OFFSET: .half 0,0,0,0
GL_STATE_TEX_SIZE: .half 0,0, 0,0, 0,0, 0,0
GL_STATE_TEX_OFFSET: .half 0,0, 0,0, 0,0, 0,0
GL_TRI_CMD: .half 0
GL_TRI_CULL: .half 0
RSPQ_EndSavedState
.align 4
CLIP_CODE_FACTORS: .half 1, 1, GUARD_BAND_FACTOR, GUARD_BAND_FACTOR
.bss
.align 3
VERTEX_CACHE: .ds.b SCREEN_VTX_SIZE * 4
.align 4
// Enough for all 10 triangle commands in worse case quad clipped scenario
TRI_CMD_BUFFER: .ds.b (MAX_TRI_CMD_SIZE * 10)
.text
.func GPUCmd_SetShort
GPUCmd_SetShort:
jr ra
sh a1, %lo(GL_STATE)(a0)
.endfunc
// Store 4 times, so can be transformed by 4 vertices later
.func GPUCmd_SetTexWord
GPUCmd_SetTexWord:
sw a1, %lo(GL_STATE) + 0(a0)
sw a1, %lo(GL_STATE) + 4(a0)
sw a1, %lo(GL_STATE) + 8(a0)
jr ra
sw a1, %lo(GL_STATE) + 12(a0)
.endfunc
.func GPUCmd_SetLong
GPUCmd_SetLong:
sw a2, %lo(GL_STATE) + 4(a0)
jr ra
sw a1, %lo(GL_STATE) + 0(a0)
.endfunc
.func GPUCmd_PushRDP
GPUCmd_PushRDP:
# RDP command is expected in a0 and a1
move a0, a1
move a1, a2
jal_and_j RDPQ_Write8, RDPQ_Finalize
.endfunc
.func GPUCmd_MatrixLoad
GPUCmd_MatrixLoad:
#define src t4
#define dst t5
#define vmat0_i $v02
#define vmat1_i $v03
#define vmat2_i $v04
#define vmat3_i $v05
#define vmat0_f $v06
#define vmat1_f $v07
#define vmat2_f $v08
#define vmat3_f $v09
addi src, rspq_dmem_buf_ptr, %lo(RSPQ_DMEM_BUFFER) - 64
addi dst, zero, %lo(GPU_MATRIX_MVP)
// Load the matrix from command parameters
ldv vmat0_i, 0x00,src
ldv vmat1_i, 0x08,src
ldv vmat2_i, 0x10,src
ldv vmat3_i, 0x18,src
ldv vmat0_f, 0x20,src
ldv vmat1_f, 0x28,src
ldv vmat2_f, 0x30,src
ldv vmat3_f, 0x38,src
// Store the matrices, with each row stored twice
// This is used by T&L to transform two vertices at once
sdv vmat0_i, 0x00,dst
sdv vmat0_i, 0x08,dst
sdv vmat1_i, 0x10,dst
sdv vmat1_i, 0x18,dst
sdv vmat2_i, 0x20,dst
sdv vmat2_i, 0x28,dst
sdv vmat3_i, 0x30,dst
sdv vmat3_i, 0x38,dst
sdv vmat0_f, 0x40,dst
sdv vmat0_f, 0x48,dst
sdv vmat1_f, 0x50,dst
sdv vmat1_f, 0x58,dst
sdv vmat2_f, 0x60,dst
sdv vmat2_f, 0x68,dst
sdv vmat3_f, 0x70,dst
jr ra
sdv vmat3_f, 0x78,dst
#undef src
#undef dst
.endfunc
// these persist across more than one function
#define vviewscale $v18
#define vviewoff $v19
#define vguardscale $v20
################################################################
# GL_CalcScreenSpace
#
# Args:
# a0 = Destination vertex address
# $v02 = Clip space position (fractional part)
# $v03 = Clip space position (integer part)
#
################################################################
.func GL_CalcScreenSpace
GL_CalcScreenSpace:
#define dst a0
#define vcspos_f $v02
#define vcspos_i $v03
#define vinvw_f $v23
#define vinvw_i $v24
#define vscreenpos_i $v27
#define vscreenpos_f $v28
#define v___ $v29
#define w e3
ldv vcspos_i, SCREEN_VTX_CS_POSi, dst
ldv vcspos_f, SCREEN_VTX_CS_POSf, dst
li t0, %lo(GL_VIEWPORT_SCALE)
ldv vviewscale.e0, 0, t0
ldv vviewoff.e0, 8, t0
# Calculate 32-bit inverse W
# TODO: NR?
vrcph vinvw_i.w, vcspos_i.w
vrcpl vinvw_f.w, vcspos_f.w
vrcph vinvw_i.w, vzero.e0
vmudl v___, vcspos_f, vinvw_f.w
vmadm v___, vcspos_i, vinvw_f.w
vmadn vscreenpos_f, vcspos_f, vinvw_i.w
vmadh vscreenpos_i, vcspos_i, vinvw_i.w
li t0, 0x3F
vmudn v___, vscreenpos_f, vviewscale
vmadh v___, vscreenpos_i, vviewscale
vmadh vscreenpos_i, vviewoff, K1
ssv vcspos_i.w, SCREEN_VTX_W+0 ,dst
ssv vcspos_f.w, SCREEN_VTX_W+2 ,dst
ssv vinvw_i.w, SCREEN_VTX_INVW+0,dst
ssv vinvw_f.w, SCREEN_VTX_INVW+2,dst
sdv vscreenpos_i, SCREEN_VTX_X ,dst
jr ra
sb t0, SCREEN_VTX_PADDING(dst)
#undef dst
#undef vcspos_f
#undef vcspos_i
#undef vinvw_f
#undef vinvw_i
#undef vscreenpos_i
#undef vscreenpos_f
#undef v___
#undef w
.endfunc
################################################################
# GL_TnL
#
# Args:
# a2 = address of the vertex in DMEM (usually within VERTEX_CACHE)
# a3 = address of the vertex in DMEM (usually within VERTEX_CACHE)
#
################################################################
.func GL_TnL
GL_TnL:
#define vtx1 a2
#define vtx2 a3
#define w e3
#define W e7
#define v___ $v29
#define vcspos_f $v02
#define vcspos_i $v03
#define vinvw_f $v23
#define vinvw_i $v24
#define vguard_f $v25
#define vguard_i $v26
#define vscreenpos_i $v27
#define vscreenpos_f $v28
//emux_trace_start
ldv vcspos_i.e0, SCREEN_VTX_CS_POSi,vtx1
ldv vcspos_i.e4, SCREEN_VTX_CS_POSi,vtx2
ldv vcspos_f.e0, SCREEN_VTX_CS_POSf,vtx1
ldv vcspos_f.e4, SCREEN_VTX_CS_POSf,vtx2
li t1, 0x3F
// Calculate 32-bit inverse W for vertex 1
vrcph vinvw_i.w, vcspos_i.w
vrcpl vinvw_f.w, vcspos_f.w
vrcph vinvw_i.w, vzero.e0
vmudn vguard_f, vcspos_f, vguardscale
vmadh vguard_i, vcspos_i, vguardscale
// Calculate 32-bit inverse W for vertex 2
vrcph vinvw_i.W, vcspos_i.W
vrcpl vinvw_f.W, vcspos_f.W
vrcph vinvw_i.W, vzero.e0
ssv vcspos_i.w, SCREEN_VTX_W+0, vtx1
ssv vcspos_f.w, SCREEN_VTX_W+2, vtx1
ssv vcspos_i.W, SCREEN_VTX_W+0, vtx2
ssv vcspos_f.W, SCREEN_VTX_W+2, vtx2
vmudl v___, vcspos_f, vinvw_f.wwwwWWWW
vmadm v___, vcspos_i, vinvw_f.wwwwWWWW
vmadn vscreenpos_f, vcspos_f, vinvw_i.wwwwWWWW
vmadh vscreenpos_i, vcspos_i, vinvw_i.wwwwWWWW
vch v___, vguard_i, vguard_i.wwwwWWWW
vcl v___, vguard_f, vguard_f.wwwwWWWW
vmudn v___, vscreenpos_f, vviewscale
vmadh v___, vscreenpos_i, vviewscale
vmadh vscreenpos_i, vviewoff, K1
ssv vinvw_i.w, SCREEN_VTX_INVW+0,vtx1
ssv vinvw_f.w, SCREEN_VTX_INVW+2,vtx1
ssv vinvw_i.W, SCREEN_VTX_INVW+0,vtx2
ssv vinvw_f.W, SCREEN_VTX_INVW+2,vtx2
cfc2 t0, COP2_CTRL_VCC
sdv vscreenpos_i.e0, SCREEN_VTX_X ,vtx1
sdv vscreenpos_i.e4, SCREEN_VTX_X ,vtx2
sb t1, SCREEN_VTX_PADDING(vtx1)
sb t1, SCREEN_VTX_PADDING(vtx2)
compressClipCodes # TODO move to overlap with vector ops
sb t2, SCREEN_VTX_CLIP_CODE(vtx1)
srl t0, t0, 4
compressClipCodes # TODO move to overlap with vector ops
//emux_trace_stop
jr ra
sb t2, SCREEN_VTX_CLIP_CODE(vtx2)
#undef vinvw_f
#undef vinvw_i
#undef vscreenpos_i
#undef vscreenpos_f
#undef vguard_i
#undef vguard_f
#undef vcspos_f
#undef vcspos_i
#undef vtx1
#undef vtx2
#undef v___
#undef w
.endfunc
.align 3
.func GPUCmd_DrawQuad
GPUCmd_DrawQuad:
#define vtx_ptr a0
#define mtx_ptr v0
#define src_ptr v1
#define v___ $v01
#define vst_i $v12
#define vst_f $v13
#define vtexsize $v14
#define vtexoffset $v15
#define vmtx0_i $v16 // m00 m01 m02 m03
#define vmtx0_f $v17
#define vmtx1_i $v18 // m10 m11 m12 m13
#define vmtx1_f $v19
#define vmtx2_i $v20 // m20 m21 m22 m23
#define vmtx2_f $v21
#define vmtx3_i $v22 // m30 m31 m32 m03
#define vmtx3_f $v23
#define vpos $v24
#define vcol $v25
#define vtex $v26
#define vcspos_i $v28
#define vcspos_f $v29
#define tmp t0
#define v0_cflags t1
#define v1_cflags t2
#define v2_cflags t3
#define v3_cflags t4
// t5 is used by GL_ClipTriangle
addi src_ptr, rspq_dmem_buf_ptr, %lo(RSPQ_DMEM_BUFFER) - 64
li vtx_ptr, %lo(VERTEX_CACHE)
li mtx_ptr, %lo(GPU_MATRIX_MVP)
ldv vpos.e0, 0, src_ptr // Load v0 X, Y, Z
ldv vpos.e4, 16, src_ptr // Load v1 X, Y, Z
lqv vmtx0_i, 0x00,mtx_ptr // [m00.I m01.I m02.I m03.I m00.I m01.I m02.I m03.I]
lqv vmtx1_i, 0x10,mtx_ptr // etc
lqv vmtx2_i, 0x20,mtx_ptr
lqv vmtx3_i, 0x30,mtx_ptr
lqv vmtx0_f, 0x40,mtx_ptr
lqv vmtx1_f, 0x50,mtx_ptr
lqv vmtx2_f, 0x60,mtx_ptr
lqv vmtx3_f, 0x70,mtx_ptr
// ########################
// Vertex 0 and 1 transform
// ########################
// matrix multiply
vmudn v___, vmtx0_f, vpos.xxxxXXXX
vmadh v___, vmtx0_i, vpos.xxxxXXXX
vmadn v___, vmtx1_f, vpos.yyyyYYYY
vmadh v___, vmtx1_i, vpos.yyyyYYYY
vmadn v___, vmtx2_f, vpos.zzzzZZZZ
vmadh v___, vmtx2_i, vpos.zzzzZZZZ
vmadn v___, vmtx3_f, ONE_W
vmadh vcspos_i, vmtx3_i, ONE_W
vmadn vcspos_f, vzero, vzero
llv vcol.e0, 8, src_ptr // Load v0 RGBA
llv vtex.e0, 12, src_ptr // Load v0 U, V
llv vcol.e2, 24, src_ptr // Load v1 RGBA
llv vtex.e2, 28, src_ptr // Load v1 U, V
// 32-bit right shift by 5, to keep the clip space coordinates unscaled
vmudm vcspos_i, vcspos_i, K2048
vmadl vcspos_f, vcspos_f, K2048
li t6, %lo(GL_STATE_TEX_SIZE)
lqv vtexsize, 0x00, t6
slv vcol.e0, SCREEN_VTX_RGBA + V0_OFFSET, vtx_ptr
lqv vtexoffset, 0x10, t6
slv vcol.e2, SCREEN_VTX_RGBA + V1_OFFSET, vtx_ptr
// Calculate and store clipping flags against CS.W.
// These will be used for trivial rejections.
vch v___, vcspos_i, vcspos_i.wwwwWWWW
vcl v___, vcspos_f, vcspos_f.wwwwWWWW
cfc2 tmp, COP2_CTRL_VCC
sdv vcspos_i.e0, SCREEN_VTX_CS_POSi + V0_OFFSET, vtx_ptr
sdv vcspos_f.e0, SCREEN_VTX_CS_POSf + V0_OFFSET, vtx_ptr
sdv vcspos_i.e4, SCREEN_VTX_CS_POSi + V1_OFFSET, vtx_ptr
sdv vcspos_f.e4, SCREEN_VTX_CS_POSf + V1_OFFSET, vtx_ptr
// ########################
// Vertex 2 and 3 transform
// ########################
ldv vpos.e0, 32, src_ptr // Load v2 X, Y, Z
ldv vpos.e4, 48, src_ptr // Load v3 X, Y, Z
andi v0_cflags, tmp, XYZ_CLIP_FLAGS
srl tmp, tmp, 4
andi v1_cflags, tmp, XYZ_CLIP_FLAGS
// matrix multiply
vmudn v___, vmtx0_f, vpos.xxxxXXXX
vmadh v___, vmtx0_i, vpos.xxxxXXXX
vmadn v___, vmtx1_f, vpos.yyyyYYYY
vmadh v___, vmtx1_i, vpos.yyyyYYYY
vmadn v___, vmtx2_f, vpos.zzzzZZZZ
vmadh v___, vmtx2_i, vpos.zzzzZZZZ
vmadn v___, vmtx3_f, ONE_W
vmadh vcspos_i, vmtx3_i, ONE_W
vmadn vcspos_f, vzero, vzero
llv vcol.e4, 40, src_ptr # Load v2 RGBA
llv vtex.e4, 44, src_ptr # Load v2 U, V
llv vcol.e6, 56, src_ptr # Load v3 RGBA
llv vtex.e6, 60, src_ptr # Load v3 U, V
// 32-bit right shift by 5, to keep the clip space coordinates unscaled
vmudm vcspos_i, vcspos_i, K2048
vmadl vcspos_f, vcspos_f, K2048
// Scale texcoord by texsize and subtract offset (to correct for bilinear sampling if active)
vmudn vst_f, vtex, vtexsize // ACC = vtex * vtexsize, VST_F = ACC & 0xFFFF
#vmadn vst_f,vtexoffset, K1
vmadh vst_i, vzero, vzero // ACC += zero * zero, VST_I = ACC >> 16
slv vcol.e4, SCREEN_VTX_RGBA + V2_OFFSET, vtx_ptr
slv vcol.e6, SCREEN_VTX_RGBA + V3_OFFSET, vtx_ptr
// Calculate and store clipping flags against CS.W.
// These will be used for trivial rejections.
vch v___, vcspos_i, vcspos_i.wwwwWWWW
vcl v___, vcspos_f, vcspos_f.wwwwWWWW
cfc2 tmp, COP2_CTRL_VCC
sdv vcspos_i.e0, SCREEN_VTX_CS_POSi + V2_OFFSET, vtx_ptr
sdv vcspos_f.e0, SCREEN_VTX_CS_POSf + V2_OFFSET, vtx_ptr
sdv vcspos_i.e4, SCREEN_VTX_CS_POSi + V3_OFFSET, vtx_ptr
sdv vcspos_f.e4, SCREEN_VTX_CS_POSf + V3_OFFSET, vtx_ptr
// Shift texture coords right 5 bits
vmudm v___, vst_i, K2048 # ACC = (vst_i << 11)
vmadl vtex, vst_f, K2048 # ACC += (vst_f << 11) >> 16, vtex = ACC & 0xFFFF
andi v2_cflags, tmp, XYZ_CLIP_FLAGS
srl tmp, tmp, 4
andi v3_cflags, tmp, XYZ_CLIP_FLAGS
#undef src_ptr
#undef vst_i
#undef vst_f
#undef vtexsize
#undef vtexoffset
#undef vmtx0_i
#undef vmtx0_f
#undef vmtx1_i
#undef vmtx1_f
#undef vmtx2_i
#undef vmtx2_f
#undef vmtx3_i
#undef vmtx3_f
#undef vpos
#undef vcspos_i
#undef vcspos_f
// ### Trivial rejection check ###
// If for any plane, all 4 vertices are outside the plane,
// then the quad is out of the viewport and can be trivially rejected
and tmp, v0_cflags, v1_cflags
and tmp, v2_cflags
and tmp, v3_cflags
bnez tmp, JrRa // slv is delay slot
// ### Perform rest of T&L ###
slv vtex.e0, SCREEN_VTX_S_T + V0_OFFSET, vtx_ptr
slv vtex.e2, SCREEN_VTX_S_T + V1_OFFSET, vtx_ptr
slv vtex.e4, SCREEN_VTX_S_T + V2_OFFSET, vtx_ptr
slv vtex.e6, SCREEN_VTX_S_T + V3_OFFSET, vtx_ptr
#undef vtx_ptr
#undef v___
#undef vtex
// Load viewport factors
li t0, %lo(GL_VIEWPORT_SCALE)
ldv vviewscale.e0, 0, t0
ldv vviewoff.e0, 8, t0
ldv vviewscale.e4, 0, t0
ldv vviewoff.e4, 8, t0
li t0, %lo(CLIP_CODE_FACTORS)
ldv vguardscale.e0, 0, t0
ldv vguardscale.e4, 0, t0
li a2, %lo(VERTEX_CACHE) + V0_OFFSET
jal GL_TnL
li a3, %lo(VERTEX_CACHE) + V1_OFFSET
li a2, %lo(VERTEX_CACHE) + V2_OFFSET
jal GL_TnL
li a3, %lo(VERTEX_CACHE) + V3_OFFSET
// ########################
// Guardband check
// ########################
// Check if all vertices fit within guardband
lbu v0_cflags, (%lo(VERTEX_CACHE) + V0_OFFSET + SCREEN_VTX_CLIP_CODE)(zero)
lbu v1_cflags, (%lo(VERTEX_CACHE) + V1_OFFSET + SCREEN_VTX_CLIP_CODE)(zero)
lbu v2_cflags, (%lo(VERTEX_CACHE) + V2_OFFSET + SCREEN_VTX_CLIP_CODE)(zero)
lbu v3_cflags, (%lo(VERTEX_CACHE) + V3_OFFSET + SCREEN_VTX_CLIP_CODE)(zero)
or tmp, v0_cflags, v1_cflags
or tmp, v2_cflags
or tmp, v3_cflags
#undef v0_cflags
#undef v1_cflags
#undef v2_cflags
#undef v3_cflags
// If all 4 vertices are inside guardband, no need to clip
beqz tmp, DrawQuadForRDP
move t5, tmp // GL_ClipTriangle expects this in t5 instead
#undef tmp
// ###########################
// Slow clipped triangles path
// ###########################
#define vtx1 a1
#define vtx2 a2
#define vtx3 a3
#define vtx4 a0
li vtx1, %lo(VERTEX_CACHE) + V0_OFFSET
li vtx2, %lo(VERTEX_CACHE) + V1_OFFSET
li vtx3, %lo(VERTEX_CACHE) + V2_OFFSET
li vtx4, %lo(VERTEX_CACHE) + V3_OFFSET
// t5 = which guardband planes need to be clipped against
move s1, zero
jal GL_ClipTriangle
move s2, zero
li s3, %lo(TRI_CMD_BUFFER)
beqz v1, gl_draw_triangle_end
addi s2, -6
lhu s5, 0(s1)
jal GL_CalcScreenSpace
lhu a0, 0(s1)
jal GL_CalcScreenSpace
lhu a0, 2(s1)
gl_draw_clipped_triangles_loop:
move vtx1, s5
lhu vtx2, 2(s1)
lhu vtx3, 4(s1)
jal GL_CalcScreenSpace
move a0, vtx3
gl_draw_single_triangle:
addi vtx1, SCREEN_VTX_X
addi vtx2, SCREEN_VTX_X
addi vtx3, SCREEN_VTX_X
lhu a0, %lo(GL_TRI_CMD)
jal RDPQ_Triangle_Send_Async
lh v0, %lo(GL_TRI_CULL)
blt s1, s2, gl_draw_clipped_triangles_loop
addi s1, 2
gl_draw_triangle_end:
jal RDPQ_Triangle_Send_End
nop
j RSPQ_Loop
nop
.endfunc
################################################################
# DrawQuadForRDP - Draws two triangles for a quad
################################################################
.func DrawQuadForRDP
DrawQuadForRDP:
li s3, %lo(TRI_CMD_BUFFER)
li a1, %lo(VERTEX_CACHE) + V0_OFFSET + SCREEN_VTX_X
li a2, %lo(VERTEX_CACHE) + V1_OFFSET + SCREEN_VTX_X
li a3, %lo(VERTEX_CACHE) + V2_OFFSET + SCREEN_VTX_X
lh v0, %lo(GL_TRI_CULL)
jal RDPQ_Triangle_Send_Async
lhu a0, %lo(GL_TRI_CMD)
li a1, %lo(VERTEX_CACHE) + V2_OFFSET + SCREEN_VTX_X
li a2, %lo(VERTEX_CACHE) + V3_OFFSET + SCREEN_VTX_X
li a3, %lo(VERTEX_CACHE) + V0_OFFSET + SCREEN_VTX_X
lh v0, %lo(GL_TRI_CULL)
jal RDPQ_Triangle_Send_Async
lhu a0, %lo(GL_TRI_CMD)
jal RDPQ_Triangle_Send_End
nop
RDPQ_Triangle_Cull:
RDPQ_Triangle_Clip:
j RSPQ_Loop
nop
.endfunc
#undef vtx1
#undef vtx2
#undef vtx3
#include "rsp_gpu_clipping.inc"
#include <rsp_rdpq.inc>