112 lines
5.0 KiB
C#

using System;
using OpenTK;
namespace ClassicalSharp {
public static class Picking {
// http://www.xnawiki.com/index.php/Voxel_traversal
//https://web.archive.org/web/20120113051728/http://www.xnawiki.com/index.php?title=Voxel_traversal
/// <summary> Determines the picked block based on the given origin and direction vector.<br/>
/// Marks pickedPos as invalid if a block could not be found due to going outside map boundaries
/// or not being able to find a suitable candiate within the given reach distance. </summary>
public static void CalculatePickedBlock( Game window, Vector3 origin, Vector3 dir, float reach, PickedPos pickedPos ) {
// Implementation based on: "A Fast Voxel Traversal Algorithm for Ray Tracing"
// John Amanatides, Andrew Woo
// http://www.cse.yorku.ca/~amana/research/grid.pdf
// http://www.devmaster.net/articles/raytracing_series/A%20faster%20voxel%20traversal%20algorithm%20for%20ray%20tracing.pdf
// The cell in which the ray starts.
Vector3I start = Vector3I.Floor( origin ); // Rounds the position's X, Y and Z down to the nearest integer values.
int x = start.X, y = start.Y, z = start.Z;
// Determine which way we go.
int stepX = Math.Sign( dir.X ), stepY = Math.Sign( dir.Y ), stepZ = Math.Sign( dir.Z );
// Calculate cell boundaries. When the step (i.e. direction sign) is positive,
// the next boundary is AFTER our current position, meaning that we have to add 1.
// Otherwise, it is BEFORE our current position, in which case we add nothing.
Vector3I cellBoundary = new Vector3I(
x + (stepX > 0 ? 1 : 0),
y + (stepY > 0 ? 1 : 0),
z + (stepZ > 0 ? 1 : 0) );
// NOTE: we want it so if dir.x = 0, tmax.x = positive infinity
// Determine how far we can travel along the ray before we hit a voxel boundary.
Vector3 tMax = new Vector3(
(cellBoundary.X - origin.X) / dir.X, // Boundary is a plane on the YZ axis.
(cellBoundary.Y - origin.Y) / dir.Y, // Boundary is a plane on the XZ axis.
(cellBoundary.Z - origin.Z) / dir.Z ); // Boundary is a plane on the XY axis.
if( Single.IsNaN( tMax.X ) || Single.IsInfinity( tMax.X ) ) tMax.X = Single.PositiveInfinity;
if( Single.IsNaN( tMax.Y ) || Single.IsInfinity( tMax.Y ) ) tMax.Y = Single.PositiveInfinity;
if( Single.IsNaN( tMax.Z ) || Single.IsInfinity( tMax.Z ) ) tMax.Z = Single.PositiveInfinity;
// Determine how far we must travel along the ray before we have crossed a gridcell.
Vector3 tDelta = new Vector3( stepX / dir.X, stepY / dir.Y, stepZ / dir.Z );
if( Single.IsNaN( tDelta.X ) ) tDelta.X = Single.PositiveInfinity;
if( Single.IsNaN( tDelta.Y ) ) tDelta.Y = Single.PositiveInfinity;
if( Single.IsNaN( tDelta.Z ) ) tDelta.Z = Single.PositiveInfinity;
Map map = window.Map;
BlockInfo info = window.BlockInfo;
float reachSquared = reach * reach;
int iterations = 0;
// For each step, determine which distance to the next voxel boundary is lowest (i.e.
// which voxel boundary is nearest) and walk that way.
while( iterations < 10000 ) {
byte block = GetBlock( map, x, y, z, origin );
Vector3 min = new Vector3( x, y, z ) + info.MinBB[block];
Vector3 max = new Vector3( x, y, z ) + info.MaxBB[block];
float dx = Math.Min( Math.Abs( origin.X - min.X ), Math.Abs( origin.X - max.X ) );
float dy = Math.Min( Math.Abs( origin.Y - min.Y ), Math.Abs( origin.Y - max.Y ) );
float dz = Math.Min( Math.Abs( origin.Z - min.Z ), Math.Abs( origin.Z - max.Z ) );
if( dx * dx + dy * dy + dz * dz > reachSquared ) {
pickedPos.SetAsInvalid();
return;
}
if( window.CanPick( block ) ) {
// This cell falls on the path of the ray. Now perform an additional bounding box test,
// since some blocks do not occupy a whole cell.
float t0, t1;
if( Intersection.RayIntersectsBox( origin, dir, min, max, out t0, out t1 ) ) {
Vector3 intersect = origin + dir * t0;
pickedPos.SetAsValid( min, max, block, intersect );
return;
}
}
if( tMax.X < tMax.Y && tMax.X < tMax.Z ) {
// tMax.X is the lowest, an YZ cell boundary plane is nearest.
x += stepX;
tMax.X += tDelta.X;
} else if( tMax.Y < tMax.Z ) {
// tMax.Y is the lowest, an XZ cell boundary plane is nearest.
y += stepY;
tMax.Y += tDelta.Y;
} else {
// tMax.Z is the lowest, an XY cell boundary plane is nearest.
z += stepZ;
tMax.Z += tDelta.Z;
}
iterations++;
}
throw new InvalidOperationException( "did over 10000 iterations in GetPickedBlockPos(). " +
"Something has gone wrong. (dir: " + dir + ")" );
}
static byte GetBlock( Map map, int x, int y, int z, Vector3 origin ) {
if( x >= 0 && z >= 0 && x < map.Width && z < map.Length ) {
if( y >= map.Height ) return 0;
if( y >= 0 ) return map.GetBlock( x, y, z );
// special case: we want to be able to pick bedrock when we're standing on top of it
if( origin.Y >= 0 && y == -1 )
return (byte)Block.Bedrock;
}
return 0;
}
}
}