Cubyz/assets/cubyz/shaders/item_drop.fs
2025-05-02 15:49:01 +02:00

193 lines
5.7 KiB
GLSL

#version 460
layout(location = 0) in vec3 startPosition;
layout(location = 1) in vec3 direction;
layout(location = 2) in vec3 cameraSpacePos;
layout(location = 3) in vec2 uv;
layout(location = 4) flat in int faceNormalIndex;
layout(location = 5) flat in vec3 faceNormal;
layout(location = 6) flat in int voxelModel;
layout(location = 7) flat in int textureIndex;
layout(location = 8) flat in uvec3 lower;
layout(location = 9) flat in uvec3 upper;
layout(location = 0) out vec4 fragColor;
layout(binding = 0) uniform sampler2DArray textureSampler;
layout(binding = 1) uniform sampler2DArray emissionSampler;
layout(binding = 2) uniform sampler2DArray reflectivityAndAbsorptionSampler;
layout(binding = 4) uniform samplerCube reflectionMap;
uniform vec3 ambientLight;
uniform mat4 projectionMatrix;
uniform float sizeScale;
uniform float reflectionMapSize;
uniform float contrast;
const float[6] normalVariations = float[6](
1.0,
0.80,
0.9,
0.9,
0.95,
0.85
);
layout(std430, binding = 1) buffer _animatedTexture
{
float animatedTexture[];
};
// block drops -------------------------------------------------------------------------------------------------------------------------
float lightVariation(vec3 normal) {
const vec3 directionalPart = vec3(0, contrast/2, contrast);
const float baseLighting = 1 - contrast;
return baseLighting + dot(normal, directionalPart);
}
vec4 fixedCubeMapLookup(vec3 v) { // Taken from http://the-witness.net/news/2012/02/seamless-cube-map-filtering/
float M = max(max(abs(v.x), abs(v.y)), abs(v.z));
float scale = (reflectionMapSize - 1)/reflectionMapSize;
if (abs(v.x) != M) v.x *= scale;
if (abs(v.y) != M) v.y *= scale;
if (abs(v.z) != M) v.z *= scale;
return texture(reflectionMap, v);
}
float ditherThresholds[16] = float[16] (
1/17.0, 9/17.0, 3/17.0, 11/17.0,
13/17.0, 5/17.0, 15/17.0, 7/17.0,
4/17.0, 12/17.0, 2/17.0, 10/17.0,
16/17.0, 8/17.0, 14/17.0, 6/17.0
);
bool passDitherTest(float alpha) {
ivec2 screenPos = ivec2(gl_FragCoord.xy);
screenPos &= 3;
return alpha > ditherThresholds[screenPos.x*4 + screenPos.y];
}
void mainBlockDrop() {
float animatedTextureIndex = animatedTexture[textureIndex];
float normalVariation = lightVariation(faceNormal);
vec3 textureCoords = vec3(uv, animatedTextureIndex);
float reflectivity = texture(reflectivityAndAbsorptionSampler, textureCoords).a;
float fresnelReflection = (1 + dot(normalize(direction), faceNormal));
fresnelReflection *= fresnelReflection;
fresnelReflection *= min(1, 2*reflectivity); // Limit it to 2*reflectivity to avoid making every block reflective.
reflectivity = reflectivity*fixedCubeMapLookup(reflect(direction, faceNormal)).x;
reflectivity = reflectivity*(1 - fresnelReflection) + fresnelReflection;
vec3 pixelLight = ambientLight*max(vec3(normalVariation), texture(emissionSampler, textureCoords).r*4);
fragColor = texture(textureSampler, textureCoords)*vec4(pixelLight, 1);
fragColor.rgb += reflectivity*pixelLight;
if(!passDitherTest(fragColor.a)) discard;
fragColor.a = 1;
gl_FragDepth = gl_FragCoord.z;
}
// itemDrops -------------------------------------------------------------------------------------------------------------------------
layout(std430, binding = 2) buffer _modelInfo
{
uint modelInfo[];
};
uint getVoxel(uvec3 pos) {
uint index = (pos.x | pos.y*upper.x)*upper.z | pos.z;
return modelInfo[voxelModel + index];
}
vec4 decodeColor(uint block) {
return vec4(block >> 16 & uint(255), block >> 8 & uint(255), block & uint(255), block >> 24 & uint(255))/255.0;
}
void mainItemDrop() {
// Implementation of "A Fast Voxel Traversal Algorithm for Ray Tracing" http://www.cse.yorku.ca/~amana/research/grid.pdf
ivec3 step = ivec3(sign(direction));
vec3 t1 = (floor(startPosition) - startPosition)/direction;
vec3 tDelta = 1/direction;
vec3 t2 = t1 + tDelta;
tDelta = abs(tDelta);
vec3 tMax = max(t1, t2);
if(direction.x == 0) tMax.x = 1.0/0.0;
if(direction.y == 0) tMax.y = 1.0/0.0;
if(direction.z == 0) tMax.z = 1.0/0.0;
uvec3 voxelPosition = uvec3(floor(startPosition));
int lastNormal = faceNormalIndex;
uint block = getVoxel(voxelPosition);
float total_tMax = 0;
uvec3 sizeMask = upper - 1;
while(block == 0) {
if(tMax.x < tMax.y) {
if(tMax.x < tMax.z) {
voxelPosition.x += step.x;
if((voxelPosition.x & sizeMask.x) != voxelPosition.x) {
block = 0;
break;
}
total_tMax = tMax.x;
tMax.x += tDelta.x;
lastNormal = 2 + (1 + int(step.x))/2;
} else {
voxelPosition.z += step.z;
if((voxelPosition.z & sizeMask.z) != voxelPosition.z) {
block = 0;
break;
}
total_tMax = tMax.z;
tMax.z += tDelta.z;
lastNormal = 4 + (1 + int(step.z))/2;
}
} else {
if(tMax.y < tMax.z) {
voxelPosition.y += step.y;
if((voxelPosition.y & sizeMask.y) != voxelPosition.y) {
block = 0;
break;
}
total_tMax = tMax.y;
tMax.y += tDelta.y;
lastNormal = 0 + (1 + int(step.y))/2;
} else {
voxelPosition.z += step.z;
if((voxelPosition.z & sizeMask.z) != voxelPosition.z) {
block = 0;
break;
}
total_tMax = tMax.z;
tMax.z += tDelta.z;
lastNormal = 4 + (1 + int(step.z))/2;
}
}
block = getVoxel(voxelPosition);
}
if(block == 0) discard;
vec3 modifiedCameraSpacePos = cameraSpacePos*(1 + total_tMax*sizeScale*length(direction)/length(cameraSpacePos));
vec4 projection = projectionMatrix*vec4(modifiedCameraSpacePos, 1);
float depth = projection.z/projection.w;
gl_FragDepth = ((gl_DepthRange.diff * depth) + gl_DepthRange.near + gl_DepthRange.far)/2.0;
fragColor = decodeColor(block);
fragColor.a = 1; // No transparency supported!
fragColor = fragColor*vec4(ambientLight*normalVariations[lastNormal], 1);
}
void main() {
if(textureIndex >= 0) {
mainBlockDrop();
} else {
mainItemDrop();
}
}