Initial Client Implimented in GUI.

The code is implimented in this commit and is launchable with the BUILD_CLIENT compile option.
Everything should be launchable by running the one function within
src/nyqubel-client/client.hpp: start_nyqubel_client()
This commit is contained in:
Rebekah 2024-02-13 10:47:58 -05:00
parent 88809475cc
commit 0606ca3008
Signed by: oneechanhax
GPG Key ID: 183EB7902964DAE5
16 changed files with 1584 additions and 2 deletions

11
.gitmodules vendored
View File

@ -65,3 +65,14 @@
[submodule "lib/libdeflate"]
path = lib/libdeflate
url = https://github.com/cuberite/libdeflate
[submodule "lib/libpdw"]
path = lib/libpdw
url = https://github.com/oneechanhax/libpdw
branch = async
[submodule "lib/libglez"]
path = lib/libglez
url = https://github.com/oneechanhax/libglez
branch = rainbow
[submodule "lib/libhydride"]
path = lib/libhydride
url = https://github.com/oneechanhax/libhydride

View File

@ -31,6 +31,9 @@ function(build_dependencies)
# Enumerate all submodule libraries
# SQLiteCpp needs to be included before sqlite so the lsqlite target is available:
set(DEPENDENCIES expat fmt jsoncpp libdeflate libevent mbedtls SQLiteCpp)
if (BUILD_CLIENT)
set(DEPENDENCIES ${DEPENDENCIES} libglez libhydride libpdw)
endif()
foreach(DEPENDENCY ${DEPENDENCIES})
# Check that the libraries are present:
if (NOT EXISTS "${PROJECT_SOURCE_DIR}/lib/${DEPENDENCY}/CMakeLists.txt")
@ -42,6 +45,7 @@ function(build_dependencies)
# (mbedTLS also has test and example programs in their CMakeLists.txt, we don't want those):
add_subdirectory("lib/${DEPENDENCY}" EXCLUDE_FROM_ALL)
endforeach()
endfunction()
function(link_dependencies TARGET)
@ -80,4 +84,24 @@ function(link_dependencies TARGET)
if(${CMAKE_SYSTEM_NAME} MATCHES FreeBSD)
target_link_libraries(${TARGET} PRIVATE kvm)
endif()
if(BUILD_CLIENT)
set(OpenGL_GL_PREFERENCE "GLVND")
find_package(PNG REQUIRED) # We need to link all this again since we prebuilt them staticly
find_package(GLEW REQUIRED)
find_package(OpenGL REQUIRED)
find_package(X11 REQUIRED)
find_package(Freetype REQUIRED)
target_include_directories(
${TARGET} SYSTEM PRIVATE
lib/libpdw/include
)
target_link_libraries(${TARGET} PRIVATE
libpdw
hydride
glez
${PNG_LIBRARIES} GL GLU GLEW ${FREETYPE_LIBRARIES} ${X11_X11_LIB} ${X11_Xext_LIB} ${X11_Xfixes_LIB})
endif()
endfunction()

View File

@ -1,4 +1,4 @@
# This is the top-level CMakeLists.txt file for the Cuberite project
#
# Use CMake to generate the build files for your platform
@ -11,6 +11,7 @@ project(
LANGUAGES C CXX
)
option(BUILD_CLIENT "Sets up the build to create a client rather than a server. This is in tesing and will result in a hybrid server/client setup." OFF)
option(BUILD_TOOLS "Sets up additional executables to be built along with the server" OFF)
option(BUILD_UNSTABLE_TOOLS "Sets up yet more executables to be built, these can be broken and generally are obsolete" OFF)
option(NO_NATIVE_OPTIMIZATION "Disables CPU-specific optimisations for the current machine, allows use on other CPUs of the same platform" OFF)

BIN
client-resources/logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

BIN
client-resources/logo.xcf Normal file

Binary file not shown.

Binary file not shown.

1
lib/libglez Submodule

@ -0,0 +1 @@
Subproject commit 221db8e9721510449e7f14a644410b8c7aead09c

1
lib/libhydride Submodule

@ -0,0 +1 @@
Subproject commit 30659e1877f036b090bafc1a1e76170b88ab9fda

1
lib/libpdw Submodule

@ -0,0 +1 @@
Subproject commit 9cbc0a088d5e65a498c4ddab2beeb8643a76a865

View File

@ -152,6 +152,7 @@ set(FOLDERS
Generating HTTP Items mbedTLS++ Mobs Noise
OSSupport Physics Protocol Registries Simulator
Simulator/IncrementalRedstoneSimulator UI WorldStorage
nyqubel-client
)
# Add all child source directories:

View File

@ -67,7 +67,9 @@
#include "Logger.h"
#include "ClientHandle.h"
#ifdef NYQUBEL_CLIENT
#include "nyqubel-client/client.hpp"
#endif
@ -145,6 +147,12 @@ bool cRoot::Run(cSettingsRepositoryInterface & a_OverridesRepo)
LoadGlobalSettings();
#ifdef NYQUBEL_CLIENT
start_nyqubel_client();
return s_NextState == NextState::Restart;
#endif
LOG("Creating new server instance...");
m_Server = new cServer();

View File

@ -0,0 +1,14 @@
if(BUILD_CLIENT)
target_sources(
${CMAKE_PROJECT_NAME} PRIVATE
client.cpp
client.hpp
util/geometry.cpp
util/geometry.hpp
)
target_compile_definitions(${CMAKE_PROJECT_NAME} PUBLIC "-DNYQUBEL_CLIENT=1")
endif()

View File

@ -0,0 +1,953 @@
/*
* Libpdw: Primitives Done Well!
* Copyright (C) 2022 Rebekah Rowe
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <bitset>
#include <chrono>
#include <iostream>
#include <stdexcept>
#include <X11/Xutil.h>
#include <embed_resources.hpp>
#include <glez/detail/render.hpp>
#include <glez/color.hpp>
#include <glez/draw.hpp>
#include <glez/glez.hpp>
#include <hydride.h>
// xorg conflict
#undef RootWindow
#include "libpdw/gui/widgets/slider.hpp"
#include "libpdw/gui/widgets/titlebar.hpp"
#include "libpdw/gui/canvas.hpp"
#include "libpdw/gui/widgets/basebutton.hpp"
#include "libpdw/gui/widgets/basewindow.hpp"
#include "libpdw/gui/widgets/checkbox.hpp"
#include "libpdw/gui/widgets/dropdown.hpp"
#include "libpdw/gui/ncc/logo.hpp"
namespace x11 {
using RawKey = decltype(XK_2);
constexpr std::pair<std::string_view, RawKey> key_dict[] = { { "0", XK_0 }, { "1", XK_1 }, { "2", XK_2 },
{ "3", XK_3 }, { "4", XK_4 }, { "5", XK_5 },
{ "6", XK_6 }, { "7", XK_7 }, { "8", XK_8 },
{ "9", XK_9 }, { "a", XK_A }, { "b", XK_B },
{ "c", XK_C }, { "d", XK_D }, { "e", XK_E },
{ "f", XK_F }, { "g", XK_G }, { "h", XK_H },
{ "i", XK_I }, { "j", XK_J }, { "k", XK_K },
{ "l", XK_L }, { "m", XK_M }, { "n", XK_N },
{ "o", XK_O }, { "p", XK_P }, { "q", XK_Q },
{ "r", XK_R }, { "s", XK_S }, { "t", XK_T },
{ "u", XK_U }, { "v", XK_V }, { "w", XK_W },
{ "x", XK_X }, { "y", XK_Y }, { "z", XK_Z },
{ "escape", XK_Escape }, { "{", XK_bracketleft },
{ "}", XK_bracketright }, { ";", XK_semicolon },
{ "'", XK_apostrophe }, { ",", XK_apostrophe },
{ ".", XK_period }, { "/", XK_slash },
{ "\\", XK_backslash }, { "minus", XK_minus },
{ "=", XK_equal }, { "return", XK_Return },
{ "space", XK_space }, { "backspace", XK_BackSpace },
{ "tab", XK_Tab }, { "capslock", XK_Caps_Lock },
{ "insert", XK_Insert },
{ "delete", XK_Delete },
{ "home", XK_Home }, { "end", XK_End },
{ "pageup", XK_Page_Up }, { "pagedown", XK_Page_Down },
{ "shift_r", XK_Shift_L }, { "shift_r", XK_Shift_R },
{ "alt_l", XK_Alt_L }, { "alt_r", XK_Alt_R },
{ "control_l", XK_Control_L }, { "control_l", XK_Control_R },
{ "0_pad", XK_KP_0 }, { "1_pad", XK_KP_1 }, { "2_pad", XK_KP_2 },
{ "3_pad", XK_KP_3 }, { "4_pad", XK_KP_4 }, { "5_pad", XK_KP_5 },
{ "6_pad", XK_KP_6 }, { "7_pad", XK_KP_7 }, { "8_pad", XK_KP_8 },
{ "9_pad", XK_KP_9 },
{ "/_pad", XK_KP_Divide }, { "*_pad", XK_KP_Multiply },
{ "-_pad", XK_KP_Subtract }, { "+_pad", XK_KP_Add },
{ "enter_pad", XK_KP_Enter }, { "._pad", XK_KP_Decimal },
{ "up", XK_Up }, { "left", XK_Left },
{ "down", XK_Down }, { "right", XK_Right },
{ "f1", XK_F1 }, { "f2", XK_F2 }, { "f3", XK_F3 },
{ "f4", XK_F4 }, { "f5", XK_F5 }, { "f6", XK_F6 },
{ "f7", XK_F7 }, { "f8", XK_F8 }, { "f9", XK_F9 },
{ "f10", XK_F10 }, { "f11", XK_F11 }, { "f12", XK_F12 },
//{ "mouse_1", XK_Pointer_DfltBtnPrev },
//{ "mouse_2", XK_Pointer_DfltBtnNext }
{ "mouse_wheel_up", XK_Pointer_DfltBtnPrev },
{ "mouse_wheel_down", XK_Pointer_DfltBtnNext } };
constexpr auto key_dict_size = []() {
std::size_t ret = 0;
for (auto i : key_dict)
ret++;
return ret;
}();
std::pair<std::pair<int, int>, std::bitset<3>> QueryPointer(decltype(hydride_library.display) dis, decltype(hydride_library.window) win) {
Window root_return, child_return;
std::pair<int, int> mouse, root;
unsigned int mask_return;
if (!XQueryPointer(hydride_library.display, hydride_library.window, &root_return, &child_return, &root.first, &root.second, &mouse.first, &mouse.second, &mask_return))
throw std::runtime_error("Unable to query pointer from X11");
std::bitset<3> ret_buttons;
ret_buttons[0] = (mask_return & (Button1Mask));
ret_buttons[1] = (mask_return & (Button2Mask));
ret_buttons[2] = (mask_return & (Button3Mask));
return { mouse, ret_buttons };
}
using Keymap = std::array<char, 32>;
bool PickFromKeymap(decltype(hydride_library.display) dis, Keymap map, decltype(XK_2) k) {
int current_key = XKeysymToKeycode(dis, k);
return (map[current_key / 8] & (1 << (current_key % 8)));
}
Keymap QueryKeymap(decltype(hydride_library.display) dis) {
Keymap keys;
XQueryKeymap(dis, keys.data());
return keys;
}
bool QueryKey(decltype(hydride_library.display) dis, decltype(XK_2) k) {
auto map = QueryKeymap(dis);
return PickFromKeymap(dis, map, k);
}
template <int size>
class ChangeDetector { // generate async from sync
std::pair<int, int> previous_mouse { -1, -1 };
std::pair<int, int> previous_bounds { -1, -1 };
std::bitset<size> previous_states;
public:
ChangeDetector() {
this->previous_states.reset();
}
bool UpdateKey(std::size_t k, bool state) {
if (state == previous_states[k]) // Just to prevent issues, idk if we need this at runtime ;-;
return false;
previous_states.set(k, state);
return true;
}
decltype(previous_mouse) UpdateMouse(const decltype(previous_mouse)& state) {
if (state == previous_mouse) // Just to prevent issues, idk if we need this at runtime ;-;
return { 0, 0 };
decltype(previous_mouse) delta = { state.first - previous_mouse.first, state.second - previous_mouse.second };
previous_mouse = state;
return delta;
}
decltype(previous_bounds) UpdateBounds(const decltype(previous_bounds)& state) {
if (state == previous_bounds) // Just to prevent issues, idk if we need this at runtime ;-;
return { 0, 0 };
decltype(previous_bounds) delta = { state.first - previous_bounds.first, state.second - previous_bounds.second };
previous_bounds = state;
return delta;
}
};
class X11Poller {
ChangeDetector<key_dict_size> async_gen;
decltype(hydride_library.display) display;
decltype(hydride_library.window) window;
public:
X11Poller(decltype(hydride_library.display) display, decltype(hydride_library.window) window)
: display(display)
, window(window) {
UpdateKeys();
UpdateMouse();
}
std::vector<std::pair<std::string_view, bool>> UpdateKeys() {
auto km = QueryKeymap(display);
std::vector<std::pair<std::string_view, bool>> ret;
for (std::size_t i = 0; i < key_dict_size; i++) {
bool key_state = PickFromKeymap(display, km, key_dict[i].second);
if (async_gen.UpdateKey(i, key_state))
ret.push_back({ key_dict[i].first, key_state });
}
return ret;
}
std::tuple<std::pair<int, int>, std::pair<int, int>, std::bitset<3>> UpdateMouse() {
auto pointer_info = QueryPointer(this->display, this->window);
auto delta = async_gen.UpdateMouse(pointer_info.first);
return { pointer_info.first, delta, pointer_info.second };
}
};
} // namespace x11
#include "util/geometry.hpp"
namespace qubel {
enum VoxelTypes {
kAir,
kStone,
kDirt,
kSand,
kGrass
};
enum CardinalDirections {
kNorth,
kSouth,
kEast,
kWest // ,
/*kUp,
kDown*/
};
class Chunk {
public:
// "typedefs" or templates go here lol
static constexpr uint _dim_length = 2; // its in 2d!
static constexpr uint _size_in_power = 16; // 8x8 size
static constexpr std::size_t _chunk_array_size = _size_in_power * _size_in_power;
using BlockType = uint8_t;
// Using a single digit to locate the exact voxel's byte in the chunk, for very fast use.
using ChunkDataType = std::array<uint8_t, _chunk_array_size>;
using ChunkVecType = geo::internal::BVec2<uint8_t>;
ChunkDataType raw_chunk_data = {
kStone,
kStone,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kStone,
kStone,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kGrass,
kGrass,
kGrass,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kGrass,
kDirt,
kDirt,
kDirt,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kGrass,
kGrass,
kDirt,
kDirt,
kDirt,
kDirt,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kSand,
kSand,
kDirt,
kDirt,
kDirt,
kStone,
kStone,
kStone,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kSand,
kSand,
kDirt,
kDirt,
kStone,
kStone,
kStone,
kStone,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kSand,
kAir,
kSand,
kAir,
kSand,
kAir,
kAir,
kAir,
kSand,
kAir,
kSand,
kAir,
kSand,
kAir,
kAir,
kAir,
kSand,
kAir,
kSand,
kAir,
kSand,
kAir,
kSand,
kAir,
kSand,
kAir,
kSand,
kAir,
kSand,
kAir,
kAir,
kAir,
kSand,
kAir,
kSand,
kAir,
kAir,
kSand,
kAir,
kSand,
kAir,
kAir,
kSand,
kAir,
kSand,
kAir,
kAir,
kAir,
kAir,
kSand,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kSand,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kAir,
kStone,
};
class LocalVoxel {
public:
std::size_t pos; // yes a single integer, x y and z can all exist due to the way chunking keeps it localized and x + (z * 64) means the values co-exist.
// LocalVoxel(geo::internal::BVec2<uint8_t> raw_chunk_pos)
//: pos(raw_chunk_pos) { }
static LocalVoxel GetVoxelFromPosInChunk(geo::internal::BVec2<uint8_t> in_pos) { // basicly your 2d/3d position to a index, make sure ur in the chunk! lol
assert(in_pos.x < _size_in_power && in_pos.y < _size_in_power);
LocalVoxel index;
index.pos = 0;
return index.AddPos(in_pos);
}
LocalVoxel& AddPos(geo::internal::BVec2<uint8_t> in_pos) {
this->pos += in_pos.x;
this->pos += in_pos.y * _size_in_power;
// if constexpr (_dim_length >= 3) // We gotta move these to a seperate class all-together... do this once the templates are split.
// index.pos += in_pos.z * (_size_in_power * _size_in_power);
return *this;
}
ChunkVecType ExtractVec() {
ChunkVecType ret_pos;
ret_pos.x = this->pos % _size_in_power;
ret_pos.y = (this->pos / _size_in_power) % _size_in_power;
// ret_pos.z = ((this->pos / _size_in_power) / _size_in_power) % _size_in_power;
return ret_pos;
}
// tmp, TODO replace/add with chunk pointer or chunk x and y... both??? oof if so
// need good way to keep the handle associated.
// Local HANDLES AND "standard voxel"/global voxel in other words one for chunk and one inheriting with the extra details? ah genious!
};
static LocalVoxel GetVoxelFromPosInChunk(geo::internal::BVec2<uint8_t> in_pos) {
return LocalVoxel::GetVoxelFromPosInChunk(in_pos);
}
BlockType GetVoxelType(LocalVoxel v) {
return raw_chunk_data[v.pos];
}
class AxisIterator {
public:
bool end_flagged = false;
ChunkVecType cur;
using VecMaskType = glm::bvec2;
const VecMaskType mask, reverse_mask; // stick it in reverse spongebob!
constexpr AxisIterator(const ChunkVecType& src, glm::bvec2 mask, glm::bvec2 reverse_mask = { false, false })
: cur(src)
, mask(mask)
, reverse_mask(reverse_mask) { }
AxisIterator& operator++(int) {
// new_iter.cur.AddPos(this->GetPosToAdd()); we cant do this cause we have to test it ;-;
this->cur += this->GetPosToAdd();
if (!IsPosValidWithinChunk(this->cur))
this->end_flagged = true;
return *this;
}
bool operator==(const AxisIterator& other) const {
if (other.end_flagged)
return this->end_flagged;
return other.cur == this->cur && other.mask == this->mask && other.reverse_mask == this->reverse_mask;
}
bool operator!=(const AxisIterator& other) const {
return !(*this == other);
}
static constexpr AxisIterator end() {
AxisIterator ret({}, {});
ret.end_flagged = true;
return ret;
}
ChunkVecType GetPosToAdd() const {
ChunkVecType pos_to_add = { 0, 0 };
if (mask.x)
pos_to_add.x = 1;
if (mask.y)
pos_to_add.y = 1;
if (reverse_mask.x && pos_to_add.x)
pos_to_add.x = -pos_to_add.x;
if (reverse_mask.y && pos_to_add.y)
pos_to_add.y = -pos_to_add.y;
return pos_to_add;
}
static constexpr auto CreateCardinalMask(const CardinalDirections dir) {
VecMaskType mask = { false, false }, reverse_mask = { false, false };
switch (dir) {
case CardinalDirections::kNorth:
reverse_mask.y = true;
case CardinalDirections::kSouth:
mask.y = true;
break;
case CardinalDirections::kWest:
reverse_mask.x = true;
case CardinalDirections::kEast:
mask.x = true;
break;
default:
throw std::logic_error("Trying to access a cardinal Direction that does not work!");
}
return std::make_pair(mask, reverse_mask);
}
};
enum MesherComplexity {
kPlain,
kNieve,
kGreedy, // Just expand same type faces
kIntrinsicGreedy, // Using bitwise operations :O
kGlobalLattice // literally Impossible to recreate, meshing everything INCLUDING air, and rendering it straight up in shader
};
static constexpr float box_size = 25.0f;
// glez::vertex not verbose enough for us sadly...
struct ChunkMeshedQuad {
geo::Box<geo::Vec2> quad;
glez::rgba clr;
};
static constexpr glez::rgba chunk_textures[] = {
glez::rgba(0, 0, 0, 0),
glez::rgba(40, 40, 40),
glez::rgba(120, 40, 40),
glez::color::yellow,
glez::color::green
};
std::vector<ChunkMeshedQuad> MeshChunk(MesherComplexity cmplxity) {
std::vector<ChunkMeshedQuad> finished_quads;
std::cout << "Start Meshing: ";
auto start_time = std::chrono::high_resolution_clock::now();
switch (cmplxity) {
case MesherComplexity::kNieve: // I dont think this is possible in 2d for the time being...
case MesherComplexity::kPlain: {
std::cout << "Plain" << std::endl;
for (uint dim_x = 0; dim_x < _size_in_power; dim_x++) {
for (uint dim_y = 0; dim_y < _size_in_power; dim_y++) {
LocalVoxel cube = GetVoxelFromPosInChunk({ dim_x, dim_y });
auto type = this->GetVoxelType(cube);
if (type == VoxelTypes::kAir)
continue;
ChunkMeshedQuad new_face;
auto start = geo::Vec2(dim_x * box_size, dim_y * box_size);
// auto end = /*start +*/ geo::Vec2(box_size, box_size);
auto size = /*start +*/ geo::Vec2(box_size, box_size);
new_face.quad = geo::Box<geo::Vec2>(start, size);
new_face.clr = chunk_textures[type];
finished_quads.push_back(new_face);
std::cout << " *Added quad! : {" << start.x << ", " << start.y << "} with size {" << size.x << ", " << size.y << "}" << std::endl;
}
}
std::cout << "Plain ";
break;
}
/*case MesherComplexity::kNieve: {
} */
case MesherComplexity::kGreedy: {
std::cout << "Greedy" << std::endl;
std::bitset<_chunk_array_size> chunk_finished_checksum;
auto FindOpenSpace = [&]() -> std::pair<std::size_t, std::optional<decltype(chunk_finished_checksum)::reference>> {
for (std::size_t x = 0; x < _size_in_power; x++) {
for (std::size_t y = 0; y < _size_in_power; y++) {
auto vox = this->GetVoxelFromPosInChunk({ x, y });
if (!chunk_finished_checksum[vox.pos])
return { vox.pos, chunk_finished_checksum[vox.pos] };
}
}
return { std::size_t(-1), {} };
};
while (!chunk_finished_checksum.all()) {
auto unmeshed_face = FindOpenSpace();
if (!unmeshed_face.second.has_value())
throw std::logic_error("Greedy ChunkMesher checksum thinks there is a unmeshed chunk but unable to find it!");
LocalVoxel cube;
cube.pos = unmeshed_face.first;
auto type = this->GetVoxelType(cube);
if (type == VoxelTypes::kAir) {
chunk_finished_checksum[cube.pos] = true;
continue;
}
{
auto ext_cube = cube.ExtractVec();
std::cout << "Greedy found Seed block \"" << (int)type << "\": {" << (int)ext_cube.x << ", " << (int)ext_cube.y << "}" << std::endl;
}
ChunkVecType block_quad_size = { 1, 1 };
auto src_block_loc = cube.ExtractVec();
// Need a better "search line down" func... instead of one block we need to check multiple and return how many are the same.
constexpr auto south_dir_mask = AxisIterator::CreateCardinalMask(CardinalDirections::kSouth);
auto SearchLineSouthForSameTypes = [&](ChunkVecType src_line, std::uint8_t max_size = _size_in_power) -> std::uint8_t {
std::size_t alike_counter = 0;
const auto end = AxisIterator::end();
for (auto axis_crawl = AxisIterator(src_line, south_dir_mask.first, south_dir_mask.second); axis_crawl != end; axis_crawl++) {
LocalVoxel block_to_check = GetVoxelFromPosInChunk(axis_crawl.cur);
auto below_block_type = this->GetVoxelType(block_to_check);
if (below_block_type != type)
break;
if (chunk_finished_checksum[block_to_check.pos])
break;
alike_counter++;
if (alike_counter >= max_size)
break;
}
return alike_counter;
};
auto same_blocks_south_count = SearchLineSouthForSameTypes(src_block_loc);
assert(same_blocks_south_count);
block_quad_size.y = same_blocks_south_count;
std::cout << " Found blocks going south: " << (int)block_quad_size.y << std::endl;
auto SearchLineEastForSameTypes = [&]() -> std::uint8_t {
std::size_t alike_counter = 1;
const auto end = AxisIterator::end();
constexpr auto east_dir_mask = AxisIterator::CreateCardinalMask(CardinalDirections::kEast);
auto side_axis_crawl = AxisIterator(src_block_loc, east_dir_mask.first, east_dir_mask.second);
side_axis_crawl++; // starting one ahead
// if (side_axis_crawl != end) {
std::cout << " Searching More East!!" << std::endl;
for (; side_axis_crawl != end; side_axis_crawl++) {
LocalVoxel side_block_to_check = GetVoxelFromPosInChunk(side_axis_crawl.cur);
auto below_block_type = this->GetVoxelType(side_block_to_check);
if (below_block_type != type)
break;
// here we go again, dip down to this max length
auto additional_same_blocks_south_count = SearchLineSouthForSameTypes(side_axis_crawl.cur, same_blocks_south_count);
assert(additional_same_blocks_south_count <= same_blocks_south_count);
if (additional_same_blocks_south_count < same_blocks_south_count)
break;
alike_counter++;
}
//}
return alike_counter;
};
if (src_block_loc.x + 1 < _size_in_power) { // only if we have room to check!
auto same_blocks_east_count = SearchLineEastForSameTypes();
block_quad_size.x = same_blocks_east_count;
std::cout << " Found blocks going east: " << (int)block_quad_size.x << std::endl;
}
ChunkMeshedQuad new_face;
auto start = geo::Vec2(src_block_loc.x * box_size, src_block_loc.y * box_size);
auto size = geo::Vec2(block_quad_size.x * box_size, block_quad_size.y * box_size);
new_face.quad = geo::Box<geo::Vec2>(start, size);
new_face.clr = chunk_textures[type];
std::cout << " *Added quad! : {" << start.x << ", " << start.y << "} with size {" << size.x << ", " << size.y << "}" << std::endl;
finished_quads.push_back(new_face);
auto MarkAreaFinished = [&](ChunkVecType origin, ChunkVecType size) {
assert(size.x && size.y);
for (std::size_t x = 0; x < size.x; x++) {
for (std::size_t y = 0; y < size.y; y++) {
auto block_to_clear = origin + ChunkVecType(x, y);
std::cout << " ------Marking Block Finished: {" << (int)block_to_clear.x << ", " << (int)block_to_clear.y << "}" << std::endl;
chunk_finished_checksum[this->GetVoxelFromPosInChunk(block_to_clear).pos] = true;
}
}
};
MarkAreaFinished(src_block_loc, block_quad_size);
// mark it off of the chunk_finished_checksum by setting the chunk_finished_checksum[i] to 1
}
std::cout << "Greedy ";
break;
}
default:
// Do nothing, no fail just no-op any mesher un-implimented.
break;
};
auto end_time = std::chrono::high_resolution_clock::now(); // Calculate duration and convert to milliseconds
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
std::cout << "Meshing Finished!!! QuadCount: " << (int)finished_quads.size() << ", Within: " << duration << " microseconds" << std::endl;
return finished_quads;
}
static bool IsPosValidWithinChunk(ChunkVecType voxel_loc) {
if (voxel_loc.x >= _size_in_power)
return false;
if (voxel_loc.y >= _size_in_power)
return false;
return true;
}
};
} // namespace qubel
class QubelMeshingTestWindow : public CBaseWindow {
public:
CCheckbox* activate;
CCheckbox* wireframe;
CDropdown* dropdown;
QubelMeshingTestWindow(IWidget* parent)
: CBaseWindow(parent, "qubelmesh_test_settings") {
this->always_visible = false;
this->hover = false;
this->SetMaxSize(1270, 1000);
this->SetPositionMode(PositionMode::FLOATING);
this->Add<CTitleBar>("~SimpleQubelMeshingTester~");
this->Add<CTextLabel>("activate_label", "Activate Viewing:");
activate = this->Add<CCheckbox>("activate", false);
this->Add<CTextLabel>("spread_label", "VoxelSpread:");
this->Add<CSlider>("spread")->SetStep(0.1f);
this->Add<CTextLabel>("wireframe_label", "Wireframe Mesh:");
wireframe = this->Add<CCheckbox>("wireframe", true);
this->Add<CTextLabel>("wanted_mesher_label", "Meshing Algorithm:");
dropdown = this->Add<CDropdown>("wanted_mesher");
dropdown->AddValue("NoFaceOcclusion, Plain");
dropdown->AddValue("Nieve");
dropdown->AddValue("Greedy"); // Just expand same type faces
dropdown->AddValue("Intrinsic Greedy"); // Using bitwise operations :O
dropdown->AddValue("Global Lattice"); // literally Impossible to recreate, meshing everything INCLUDING air, and rendering it straight up in shader
dropdown->SetSize(150, 16);
dropdown->SetValue(2);
this->Add<CTextLabel>("binary_meshing_label", "Binary Meshing(ignore types):");
this->Add<CCheckbox>("binary_meshing", false);
}
};
using namespace qubel;
class QubelMeshingTestRenderingWindow : public CBaseWindow {
public:
const CTitleBar* titlebar;
const QubelMeshingTestWindow* settings;
Chunk world_slice;
class ChunkRenderer : public CBaseWidget {
public:
Chunk* world_slice;
QubelMeshingTestWindow* settings;
ChunkRenderer(IWidget* parent, QubelMeshingTestWindow* settings, Chunk* world_slice)
: CBaseWidget("qubelmesh_test_renderer_sceneoutput", parent)
, settings(settings)
, world_slice(world_slice) {
assert(settings && world_slice);
settings->dropdown->SetCallback([&](CDropdown*, int value) {
current_render_quads.clear();
});
}
std::vector<Chunk::ChunkMeshedQuad> current_render_quads;
virtual void Draw(ICanvas* the_drawing_machine) override {
this->CBaseWidget::Draw(the_drawing_machine);
const auto ConvertGLMVecToSTDPairVec = [](const geo::Vec2& vec_in) -> std::pair<int, int> {
return std::pair<int, int>(vec_in.x, vec_in.y);
};
const auto ConvertGLMQuadToSTDPairQuad = [&](const geo::Box<geo::Vec2>& box_in) -> Canvas::TranslationMatrix {
return Canvas::TranslationMatrix(ConvertGLMVecToSTDPairVec(box_in.origin), ConvertGLMVecToSTDPairVec(box_in.GetSize()));
};
for (const Chunk::ChunkMeshedQuad& kinda_a_vert : current_render_quads)
the_drawing_machine->Rect(ConvertGLMQuadToSTDPairQuad(kinda_a_vert.quad), kinda_a_vert.clr);
if (this->settings->wireframe->Value()) {
for (const Chunk::ChunkMeshedQuad& kinda_a_vert : current_render_quads) {
the_drawing_machine->Rect({ ConvertGLMQuadToSTDPairQuad(kinda_a_vert.quad) }, glez::color::black, Canvas::RectType::Outline);
the_drawing_machine->Line({ ConvertGLMQuadToSTDPairQuad(kinda_a_vert.quad) }, glez::color::black);
}
}
}
virtual void Update() override {
this->CBaseWidget::Update();
if (current_render_quads.empty()) {
current_render_quads = world_slice->MeshChunk(Chunk::MesherComplexity(settings->dropdown->Value()));
std::pair<int, int> found_size;
for (const Chunk::ChunkMeshedQuad& kinda_a_vert : current_render_quads) {
auto max_coord = kinda_a_vert.quad.GetMax();
if (max_coord.x > found_size.first)
found_size.first = max_coord.x;
if (max_coord.y > found_size.second)
found_size.second = max_coord.y;
}
std::cout << "Created mesh with pixel size: " << found_size.first << ", " << found_size.second << std::endl;
this->SetSize(found_size.first, found_size.second);
}
}
};
ChunkRenderer* render_scene;
public:
QubelMeshingTestRenderingWindow(IWidget* parent, QubelMeshingTestWindow* settings)
: CBaseWindow(parent, "qubelmesh_test_renderer_frame")
, settings(settings) {
assert(settings);
this->always_visible = false;
this->hover = false;
this->SetPositionMode(PositionMode::FLOATING);
this->SetMaxSize(1270, 1000);
this->zindex = -999;
titlebar = this->Add<CTitleBar>("QubelWorld Mesh Test uwu~");
render_scene = this->Add<ChunkRenderer>(settings, &world_slice);
}
~QubelMeshingTestRenderingWindow() { }
virtual bool AlwaysVisible() const override {
return this->settings->activate->Value();
}
virtual bool IsVisible() const override {
return this->settings->activate->Value() && this->CBaseWindow::IsVisible();
}
public:
// std::chrono::time_point<std::chrono::system_clock> last_update;
};
int start_nyqubel_client() {
hydride_init();
glez::init(hydride_library.width, hydride_library.height);
Canvas* canvas;
x11::X11Poller x11_poller(hydride_library.display, hydride_library.window);
{
input::RefreshInput();
hydride_draw_begin();
glez::begin();
canvas = new Canvas();
canvas->Setup();
glez::end();
hydride_draw_end();
}
canvas->Add<ncc::Logo>()->SetOffset(500, 525);
auto mesh_test_settings_window = canvas->Add<QubelMeshingTestWindow>();
auto mesh_test_rendering_window = canvas->Add<QubelMeshingTestRenderingWindow>(mesh_test_settings_window);
mesh_test_settings_window->SetOffset(2000, 400);
mesh_test_rendering_window->SetOffset(3000, 800);
bool client_exiting = false;
mesh_test_settings_window->Add<CBaseButton>("exit_button", "Press to Quit-rite", [&](CBaseButton*) {
client_exiting = true;
std::cout << "User Requested Client quit." << std::endl;
});
// Need a 856/480 size window.
hydride_show();
while (1) {
input::RefreshInput();
// Must be called in that order.
hydride_draw_begin();
glez::begin();
{
x11_poller.UpdateKeys();
x11_poller.UpdateMouse();
canvas->Update();
}
glez::end();
hydride_draw_end();
if (client_exiting)
break;
}
std::cout << "Client is Exiting!!!" << std::endl;
return 0;
}

View File

@ -0,0 +1,4 @@
#pragma once
int start_nyqubel_client();

View File

@ -0,0 +1,88 @@
/*
* Nekohook: Free, fast and modular cheat software
* Copyright (C) 2018 Rebekah Rowe
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <cstdlib> // rand()
#include "geometry.hpp"
namespace qubel::geo::internal {
Angle2& Angle2::Clamp() {
while (this->x > 89.0f) this->x -= 180.0f;
while (this->x < -89.0f) this->x += 180.0f;
while (this->y > 180.0f) this->y -= 360.0f;
while (this->y < -180.0f) this->y += 360.0f;
return *this;
}
// Returns angles to a point in space
AngleBase<2> AngleBase<2>::PointTo(const Vec3& src_point, const Vec3& dest_point) {
Vec3 aim_point = dest_point - src_point;
Angle2 out;
out.y = atan2(aim_point.y, aim_point.x) * 180.0f / F_PI;
out.x = atan2(0, sqrt(aim_point.x * aim_point.x + aim_point.y * aim_point.y)) * 180.0f / F_PI;
return out.Clamp();
}
// A function to get the difference from angles, Please make sure inputs are
// clamped
AngleBase<2> AngleBase<2>::GetDelta(const AngleBase<2>& dest_angles) const {
// Our output difference
Angle2 diff;
// Yaw
if (this->y != dest_angles.y) {
// Check if yaw is on opposing poles
if (this->y < -90 && dest_angles.y > 90)
diff.y = this->y + 360 - dest_angles.y;
else if (this->y > 90 && dest_angles.y < -90)
diff.y = dest_angles.y + 360 - this->y;
else
diff.y = std::abs(this->y - dest_angles.y);
}
// Pitch
if (this->x != dest_angles.x) diff.x = std::abs(this->x - dest_angles.x);
return diff;
}
// Use input angles and our eye position to get fov to a destination point
float AngleBase<2>::GetFov(const Vec3& src, const Vec3& dest) const {
return this->GetFov(PointTo(src, dest));
}
float AngleBase<2>::GetFov(const AngleBase<2>& pointed_angle) const {
Angle2 delta = this->GetDelta(pointed_angle);
return std::max<float>(delta.x, delta.y);
}
Vec3 DirectionalMove(const Vec3& src, const AngleBase<2>& dir, float amt) {
// Math I dont understand
float sp = sinf(dir.x * F_PI / 180.f);
float cp = cosf(dir.x * F_PI / 180.f);
float sy = sinf(dir.y * F_PI / 180.f);
float cy = cosf(dir.y * F_PI / 180.f);
return Vec3(cp * cy, cp * sy, -sp) * amt + src;
}
} // namespace neko::math

View File

@ -0,0 +1,475 @@
/*
* Nekohook: Free, fast and modular cheat software
* Copyright (C) 2018 Rebekah Rowe
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#pragma once
#include <array>
#include <algorithm>
#include <glm/detail/qualifier.hpp>
#include <glm/fwd.hpp>
#include <stdexcept>
#include <glm/glm.hpp>
#include <glm/gtc/constants.hpp>
#include <glm/geometric.hpp>
namespace qubel::geo {
namespace internal {
#if true // NEKOHOOK_GFX == opengl
template <int _dim_length, typename T>
using BVec = glm::vec<_dim_length, T>;
template <typename T>
using BVec2 = glm::vec<2, T>;
template <typename T>
using BVec3 = glm::vec<3, T>;
using Vec2 = glm::vec2;
using Vec3 = glm::vec3;
using DVec3 = glm::dvec3;
using IVec2 = glm::ivec2;
using UVec2 = glm::uvec2;
constexpr float F_PI = glm::pi<float>();
template <class... T>
auto Distance(T... in) { return glm::distance(in...); }
template <typename T>
auto GetMaskOfVec2(const T& src, glm::bvec2 mask) {
T ret = { 0, 0 };
if (mask.x)
ret.x = src.x;
if (mask.y)
ret.y = src.y;
return ret;
}
#endif
template <typename T, int _length>
class BoxBase;
template <typename T>
class BoxBase<T, 2> {
static_assert(T::length() == 2);
protected:
BoxBase() { }
BoxBase(T _first, T _second)
: first(_first)
, second(_second) { }
public:
// TODO, rotation around origin?
// Data
union {
T first, origin;
};
union {
T second, size;
};
T GetMax() const { return this->origin + this->size; }
T GetSize() const { return this->size; }
T GetPoint(int idx) const {
switch (idx) {
case 0:
return this->origin;
case 1:
return { this->origin.x + this->size.x, this->origin.y };
case 2:
return { this->origin.x, this->origin.y + this->size.y };
case 3:
return this->origin + this->size;
default:
throw std::logic_error("Unknown point idx: " + std::to_string(idx));
}
}
std::array<T, 4> GetPoints() const {
T max = this->GetMax();
return {
this->origin,
{ max.x, this->origin.y },
{ this->origin.x, max.y },
max
};
}
bool Contains(T in) const {
if (in.x > this->origin.x && in.y > this->origin.y) {
T max = this->GetMax();
return (in.x < max.x && in.x < max.y);
}
return false;
}
bool SegmentIntersects(T src, T dest) const {
if ((dest.x > this->min.x && src.x > this->min.x) && (dest.y > this->min.y && src.y > this->min.y)) {
T max = this->GetMax();
return (dest.x < max.x && src.x < max.x) || (dest.y < max.y && src.y < max.y);
}
return false;
}
enum class Direction {
kUp,
kDown,
kLeft,
kRight,
kPosX = kRight,
kPosY = kDown,
kNegX = kLeft,
kNegY = kUp
};
void Expand(Direction dir, int amt) { // TODO: Bitmongering(nopey)
switch (dir) {
case Direction::kUp:
this->origin.y -= amt;
case Direction::kDown:
this->size.y += amt;
break;
case Direction::kLeft:
this->origin.x -= amt;
case Direction::kRight:
this->size.x += amt;
break;
default:
assert(false);
}
}
void ExpandTo(T v) {
if (this->origin.x > v.x)
this->Expand(Direction::kNegX, this->origin.x - v.x);
if (this->origin.y > v.y)
this->Expand(Direction::kNegY, this->origin.y - v.y);
T t_max = this->GetMax();
if (t_max.x < v.x)
this->Expand(Direction::kPosX, v.x - this->origin.x);
if (t_max.y < v.y)
this->Expand(Direction::kPosY, v.y - this->origin.y);
}
// TODO: Center around
};
template <typename T>
class BoxBase<T, 3> {
static_assert(T::length() == 3);
protected:
BoxBase() { }
BoxBase(T _first, T _second)
: first(_first)
, second(_second) { }
public:
// Data
union {
T first, min;
};
union {
T second, max;
};
auto operator[](const int idx) const {
return this->data.at(idx);
}
// Utility functions
T GetSize() const { return this->max - this->min; }
T& GetMax() const { return this->max; }
T GetPoint(int idx) const {
switch (idx) {
case 0:
return this->min;
case 1:
return { this->max.x, this->min.y, this->min.z };
case 2:
return { this->max.x, this->max.y, this->min.z };
case 3:
return { this->min.x, this->max.y, this->max.z };
case 4:
return { this->min.x, this->min.y, this->max.z };
case 5:
return { this->max.x, this->min.y, this->max.z };
case 6:
return { this->min.x, this->max.y, this->min.z };
case 7:
return this->max;
default:
throw std::logic_error("GetPoint() is only available for 2 and 3 axis vectors");
}
}
std::array<T, 8> GetPoints() const {
return {
this->min,
{ this->max.x, this->min.y, this->min.z },
{ this->max.x, this->max.y, this->min.z },
{ this->min.x, this->max.y, this->max.z },
{ this->min.x, this->min.y, this->max.z },
{ this->max.x, this->min.y, this->max.z },
{ this->min.x, this->max.y, this->min.z },
this->max
};
}
bool Contains(T i) const {
if (i.x > this->min.x || i.y > this->min.y || i.z > this->min.z)
if (i.x < this->max.x || i.y < this->max.y || i.z < this->max.z)
return false;
return true;
}
// Credits to cathook
bool LineIntersects(T src, T dst) const {
if (dst.x < this->min.x && src.x < this->min.x)
return false;
if (dst.y < this->min.y && src.y < this->min.y)
return false;
if (dst.z < this->min.z && src.z < this->min.z)
return false;
if (dst.x > this->max.x && src.x > this->max.x)
return false;
if (dst.y > this->max.y && src.y > this->max.y)
return false;
if (dst.z > this->max.z && src.z > this->max.z)
return false;
return true;
}
enum Direction {
kUp,
kDown,
kLeft,
kRight,
kForward,
kBackward,
kPosX = kUp,
kPosY = kLeft,
kPosZ = kForward,
kNegX = kDown,
kNegY = kRight,
kNegZ = kBackward
};
void Expand(Direction dir, int amt) {
switch (dir) {
case Direction::kUp:
this->max.y += amt;
break;
case Direction::kDown:
this->min.y -= amt;
break;
case Direction::kLeft:
this->min.x += amt;
break;
case Direction::kRight:
this->min.x -= amt;
break;
case Direction::kForward:
this->min.z += amt;
break;
case Direction::kBackward:
this->max.z -= amt;
break;
default:
assert(false);
}
}
};
template <typename T>
class Box : public BoxBase<T, T::length()> {
using Parent = BoxBase<T, T::length()>;
public:
using Direction = typename Parent::Direction;
Box() { }
Box(T _first, T _second)
: Parent(_first, _second) { }
Box(std::pair<T, T> v)
: Box(v.first, v.second) { }
template <typename TT>
Box(TT v)
: Box(v.first, v.second) {
static_assert(!std::is_same_v<std::pair<T, T>, TT>);
}
template <typename TT>
Box<T>& operator=(TT v) { *this = Box<T>(v.first, v.second); }
// Unary arithmetic operators
bool operator==(T v) const {
return this->first == v.first && this->second == v.second;
}
bool operator!=(T v) const {
return !(*this == v);
}
Box<T> operator+(T v) const {
return { this->min + v, this->max + v };
}
Box<T> operator-(T v) const {
return { this->min - v, this->max - v };
}
Box<T> operator*(typename T::value_type v) const {
T center = this->GetCenter();
T size = (this->GetSize() * v) / typename T::value_type(2);
return { center - size, center + size };
}
Box<T> operator/(typename T::value_type v) const {
T center = this->GetCenter();
T delta = (this->GetSize() / v) / typename T::value_type(2);
return { center - delta, center + delta };
}
Box<T>& operator/=(typename T::value_type v) {
return *this = *this / v;
}
// Utility functions
T GetCenter() const { return (this->first + this->second) / typename T::value_type(2); }
void Expand(std::initializer_list<Direction> dirs, int amt) {
auto end = dirs.end();
for (auto i = dirs.begin(); i != end; i++)
this->Expand(*i, amt);
}
void Shrink(Direction dir, int amt) { this->Expand(dir, -amt); }
};
template <int T_length>
class AngleBase;
template <>
class AngleBase<1> {
float data;
protected:
template <typename... T>
AngleBase(T... args)
: data(args...) { }
public:
operator float() const {
return this->data;
}
operator float&() {
return this->data;
}
};
template <>
class AngleBase<2> : public Vec2 {
using Vec2::Vec2;
using Parent = Vec2;
protected:
template <typename... T>
AngleBase(T... args)
: Vec2(args...) {
static_assert(!(std::is_same_v<Vec2, T> || ...));
}
public:
using Vec2::operator=;
template <class T>
AngleBase operator-(T in) { return *this - Vec2(in); }
template <class T>
AngleBase operator+(T in) { return *this + Vec2(in); }
AngleBase<2>& Clamp();
AngleBase<2> Clamp() const;
AngleBase<2> GetDelta(const AngleBase<2>& other_angles) const;
float GetFov(const Vec3& view_src, const Vec3& dest_point) const;
float GetFov(const AngleBase<2>& pointed_angle) const;
static AngleBase<2> PointTo(const Vec3& src_point, const Vec3& dest_point);
};
template <int T_Length>
using Angle = AngleBase<T_Length>;
using Angle1 = Angle<1>;
using Angle2 = Angle<2>;
template <typename T_Origin, typename T_Angle>
class Ray {
private:
const T_Origin origin;
const T_Angle angle;
public:
Ray(T_Origin origin, T_Angle angle)
: origin(origin)
, angle(angle) { }
std::pair<T_Origin, T_Origin> Cast(float dist);
};
template <typename T>
class Segment : public std::pair<T, T> {
public:
using Parent = std::pair<T, T>;
using Parent::Parent;
using Parent::operator=;
template <typename TT>
Segment(Ray<T, TT> r, float dist = 8192.0f)
: Parent(r.Cast(dist)) { }
Segment(const std::pair<T, T>& p)
: Parent(p) { }
Segment(std::pair<T, T>&& p)
: Parent(std::move(p)) { }
Segment(std::pair<T, T> p)
: Parent(std::move(p)) { }
};
} // namespace internal
using Vec3 = internal::Vec3;
using Vec2 = internal::Vec2;
// idk if these should be in here, but its too useful not to...
using DVec3 = internal::DVec3;
using IVec2 = internal::IVec2;
using UVec2 = internal::UVec2;
///
template <class... T>
auto Distance(T... in) { return internal::Distance(in...); }
template <class T>
auto GetMaskOfVec2(const T& src, glm::bvec2 mask) { return internal::GetMaskOfVec2(src, mask); }
template <class T>
using Box = internal::Box<T>;
template <int T>
using Angle = internal::AngleBase<T>;
template <typename T_Origin, typename T_Angle>
using Ray = internal::Ray<T_Origin, T_Angle>;
template <typename T>
using Segment = internal::Segment<T>;
using Segment2 = internal::Segment<Vec2>;
using Segment3 = internal::Segment<Vec3>;
template <class T_Vec, class T_Float>
using Sphereoid = std::pair<T_Vec, T_Float>;
} // namespace qubel::geo