Moved end generator back to 3d perlin noise (#5552)

* Moved end generator back to 3d perlin noise

* Replaced magic numbers where constants are available

* Use auto instead of NOISE_DATATYPE
Fixed redeclaration of distanceFromSpawn variable
Renamed EndGenIslandFlatness optoin to EndGenIslandThickness
This commit is contained in:
NiLSPACE 2024-04-09 15:11:26 +02:00 committed by GitHub
parent ed0b090383
commit cc6459bf0e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 147 additions and 96 deletions

View File

@ -87,6 +87,24 @@ public:
/** Sets the shape in a_Shape to match the heightmap stored currently in m_HeightMap. */
void GetShapeFromHeight(Shape & a_Shape) const;
/** Returns the index into the internal shape array for the specified coords */
inline static size_t MakeShapeIndex(int a_X, int a_Y, int a_Z)
{
return static_cast<size_t>(a_Y + a_X * cChunkDef::Height + a_Z * cChunkDef::Height * cChunkDef::Width);
}
inline static void SetShapeIsSolidAt(Shape & a_Shape, int a_X, int a_Y, int a_Z, bool a_IsSolid)
{
auto index = MakeShapeIndex(a_X, a_Y, a_Z);
a_Shape[index] = a_IsSolid ? 1 : 0;
}
inline static bool GetShapeIsSolidAt(const Shape & a_Shape, int a_X, int a_Y, int a_Z)
{
auto index = MakeShapeIndex(a_X, a_Y, a_Z);
return a_Shape[index];
}
// tolua_begin
// Default generation:

View File

@ -23,7 +23,7 @@ enum
DIM_X = 16 / INTERPOL_X + 1,
DIM_Y = 256 / INTERPOL_Y + 1,
DIM_Z = 16 / INTERPOL_Z + 1,
} ;
};
@ -34,26 +34,23 @@ enum
cEndGen::cEndGen(int a_Seed) :
m_Seed(a_Seed),
m_Perlin(a_Seed),
m_VoidOffsetNoise(a_Seed + 1000),
m_AirThresholdMainIsland(0.0f),
m_AirThresholdOtherIslands(0.5f),
m_MainIslandSize(450),
m_BaseHeight(64),
m_TerrainTopMultiplier(10),
m_TerrainBottomMultiplier(40),
m_VoidOffsetNoiseMultiplier(50),
m_FrequencyX(80),
m_FrequencyY(80),
m_FrequencyZ(80)
m_Perlin(m_Seed),
m_MainIslandSize(200),
m_IslandThickness(32),
m_IslandYOffset(30),
m_MainIslandFrequencyX(100),
m_MainIslandFrequencyY(80),
m_MainIslandFrequencyZ(100),
m_MainIslandMinThreshold(0.2f),
m_SmallIslandFrequencyX(50),
m_SmallIslandFrequencyY(80),
m_SmallIslandFrequencyZ(50),
m_SmallIslandMinThreshold(-0.5f),
m_LastChunkCoords(0x7fffffff, 0x7fffffff) // Use dummy coords that won't ever be used by real chunks
{
m_Perlin.AddOctave(1, 1);
m_Perlin.AddOctave(2, 0.5);
m_Perlin.AddOctave(4, 0.25);
m_VoidOffsetNoise.AddOctave(1, 1);
m_VoidOffsetNoise.AddOctave(2, 0.5);
m_VoidOffsetNoise.AddOctave(4, 0.25);
}
@ -62,17 +59,78 @@ cEndGen::cEndGen(int a_Seed) :
void cEndGen::InitializeShapeGen(cIniFile & a_IniFile)
{
m_AirThresholdMainIsland = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenAirThresholdMainIsland", m_AirThresholdMainIsland));
m_AirThresholdOtherIslands = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenAirThresholdOtherIslands", m_AirThresholdOtherIslands));
m_MainIslandSize = a_IniFile.GetValueSetI("Generator", "EndGenMainIslandSize", m_MainIslandSize);
m_BaseHeight = a_IniFile.GetValueSetI("Generator", "EndGenBaseHeight", m_BaseHeight);
m_TerrainTopMultiplier = a_IniFile.GetValueSetI("Generator", "EndGenTerrainTopMultiplier", m_TerrainTopMultiplier);
m_TerrainBottomMultiplier = a_IniFile.GetValueSetI("Generator", "EndGenTerrainBottomMultiplier", m_TerrainBottomMultiplier);
m_VoidOffsetNoiseMultiplier = a_IniFile.GetValueSetI("Generator", "EndGenVoidOffsetNoiseMultiplier", m_VoidOffsetNoiseMultiplier);
m_IslandThickness = a_IniFile.GetValueSetI("Generator", "EndGenIslandThickness", m_IslandThickness);
m_IslandYOffset = a_IniFile.GetValueSetI("Generator", "EndGenIslandYOffset", m_IslandYOffset);
m_FrequencyX = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenFrequencyX", m_FrequencyX));
m_FrequencyY = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenFrequencyY", m_FrequencyY));
m_FrequencyZ = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenFrequencyZ", m_FrequencyZ));
m_MainIslandFrequencyX = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenMainFrequencyX", m_MainIslandFrequencyX));
m_MainIslandFrequencyY = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenMainFrequencyY", m_MainIslandFrequencyY));
m_MainIslandFrequencyZ = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenMainFrequencyZ", m_MainIslandFrequencyZ));
m_MainIslandMinThreshold = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenMainMinThreshold", m_MainIslandMinThreshold));
m_SmallIslandFrequencyX = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenSmallFrequencyX", m_SmallIslandFrequencyX));
m_SmallIslandFrequencyY = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenSmallFrequencyY", m_SmallIslandFrequencyY));
m_SmallIslandFrequencyZ = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenSmallFrequencyZ", m_SmallIslandFrequencyZ));
m_SmallIslandMinThreshold = static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenSmallMinThreshold", m_SmallIslandMinThreshold));
}
void cEndGen::PrepareState(cChunkCoords a_ChunkCoords)
{
if (m_LastChunkCoords == a_ChunkCoords)
{
return;
}
m_LastChunkCoords = a_ChunkCoords;
GenerateNoiseArray();
}
void cEndGen::GenerateNoiseArray(void)
{
NOISE_DATATYPE NoiseData[DIM_X * DIM_Y * DIM_Z]; // [x + DIM_X * z + DIM_X * DIM_Z * y]
NOISE_DATATYPE Workspace[DIM_X * DIM_Y * DIM_Z]; // [x + DIM_X * z + DIM_X * DIM_Z * y]
// Choose the frequency to use depending on the distance from spawn.
auto distanceFromSpawn = cChunkDef::RelativeToAbsolute({ cChunkDef::Width / 2, 0, cChunkDef::Width / 2 }, m_LastChunkCoords).Length();
auto frequencyX = distanceFromSpawn > m_MainIslandSize * 2 ? m_SmallIslandFrequencyX : m_MainIslandFrequencyX;
auto frequencyY = distanceFromSpawn > m_MainIslandSize * 2 ? m_SmallIslandFrequencyY : m_MainIslandFrequencyY;
auto frequencyZ = distanceFromSpawn > m_MainIslandSize * 2 ? m_SmallIslandFrequencyZ : m_MainIslandFrequencyZ;
// Generate the downscaled noise:
auto StartX = static_cast<NOISE_DATATYPE>(m_LastChunkCoords.m_ChunkX * cChunkDef::Width) / frequencyX;
auto EndX = static_cast<NOISE_DATATYPE>((m_LastChunkCoords.m_ChunkX + 1) * cChunkDef::Width) / frequencyX;
auto StartZ = static_cast<NOISE_DATATYPE>(m_LastChunkCoords.m_ChunkZ * cChunkDef::Width) / frequencyZ;
auto EndZ = static_cast<NOISE_DATATYPE>((m_LastChunkCoords.m_ChunkZ + 1) * cChunkDef::Width) / frequencyZ;
auto StartY = 0.0f;
auto EndY = static_cast<NOISE_DATATYPE>(cChunkDef::Height) / frequencyY;
m_Perlin.Generate3D(NoiseData, DIM_X, DIM_Z, DIM_Y, StartX, EndX, StartZ, EndZ, StartY, EndY, Workspace);
// Add distance:
for (int y = 0; y < DIM_Y; y++)
{
auto ValY = static_cast<NOISE_DATATYPE>(2 * INTERPOL_Y * y - m_IslandThickness) / m_IslandThickness;
ValY = static_cast<NOISE_DATATYPE>(std::pow(ValY, 6));
for (int z = 0; z < DIM_Z; z++)
{
for (int x = 0; x < DIM_X; x++)
{
NoiseData[x + DIM_X * z + DIM_X * DIM_Z * y] += ValY;
} // for x
} // for z
} // for y
// Upscale into real chunk size:
LinearUpscale3DArray(NoiseData, DIM_X, DIM_Z, DIM_Y, m_NoiseArray, INTERPOL_X, INTERPOL_Z, INTERPOL_Y);
}
@ -81,76 +139,38 @@ void cEndGen::InitializeShapeGen(cIniFile & a_IniFile)
void cEndGen::GenShape(cChunkCoords a_ChunkCoords, cChunkDesc::Shape & a_Shape)
{
for (size_t i = 0; i < ARRAYCOUNT(a_Shape); i++)
{
a_Shape[i] = 0;
}
PrepareState(a_ChunkCoords);
NOISE_DATATYPE NoiseData[cChunkDef::Width * cChunkDef::Width];
NOISE_DATATYPE VoidOffsetData[cChunkDef::Width * cChunkDef::Width];
NOISE_DATATYPE Workspace[cChunkDef::Width * cChunkDef::Width];
NOISE_DATATYPE StartX = static_cast<NOISE_DATATYPE>(a_ChunkCoords.m_ChunkX * cChunkDef::Width) / m_FrequencyX;
NOISE_DATATYPE EndX = static_cast<NOISE_DATATYPE>((a_ChunkCoords.m_ChunkX + 1) * cChunkDef::Width) / m_FrequencyX;
NOISE_DATATYPE StartZ = static_cast<NOISE_DATATYPE>(a_ChunkCoords.m_ChunkZ * cChunkDef::Width) / m_FrequencyZ;
NOISE_DATATYPE EndZ = static_cast<NOISE_DATATYPE>((a_ChunkCoords.m_ChunkZ + 1) * cChunkDef::Width) / m_FrequencyZ;
m_Perlin.Generate2D(NoiseData, cChunkDef::Width, cChunkDef::Width, StartX, EndX, StartZ, EndZ, Workspace);
m_VoidOffsetNoise.Generate2D(VoidOffsetData, cChunkDef::Width, cChunkDef::Width, StartX, EndX, StartZ, EndZ, Workspace);
int MaxY = std::min(static_cast<int>(1.75 * m_IslandThickness + m_IslandYOffset), cChunkDef::Height - 1);
// Choose which threshold to use depending on the distance from spawn.
double chunkDistanceFromSpawn = cChunkDef::RelativeToAbsolute({ cChunkDef::Width / 2, 0, cChunkDef::Width / 2 }, a_ChunkCoords).Length();
double minThreshold = chunkDistanceFromSpawn > m_MainIslandSize * 2 ? m_SmallIslandMinThreshold : m_MainIslandMinThreshold;
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
NOISE_DATATYPE noise = NoiseData[z * cChunkDef::Width + x];
// The distance from spawn is used to create the void between the main island and the other islands.
// Calculate the required treshold based on the distance from spawn.
// This way a void can be generated between the main island and the other islands.
double distanceFromSpawn = cChunkDef::RelativeToAbsolute({ x, 0, z }, a_ChunkCoords).Length();
double pow = std::pow((distanceFromSpawn - m_MainIslandSize) / m_MainIslandSize / 2, 3);
double mult = 3 * ((distanceFromSpawn - m_MainIslandSize) / m_MainIslandSize);
double threshold = std::min(pow - mult, minThreshold);
// The main island can get a different airthreshold. This way the other island can be more sparse while the main island
// is one big island.
if (distanceFromSpawn > m_MainIslandSize)
for (int y = 0; y < m_IslandYOffset; y++)
{
if (noise <= m_AirThresholdOtherIslands)
{
continue;
}
noise -= m_AirThresholdOtherIslands;
cChunkDesc::SetShapeIsSolidAt(a_Shape, x, y, z, false);
}
else
for (int y = m_IslandYOffset; y < MaxY; y++)
{
if (noise <= m_AirThresholdMainIsland)
{
continue;
}
noise -= m_AirThresholdMainIsland;
cChunkDesc::SetShapeIsSolidAt(a_Shape, x, y, z, m_NoiseArray[(y - m_IslandYOffset) * 17 * 17 + z * 17 + x] <= threshold);
}
NOISE_DATATYPE voidOffset = VoidOffsetData[z * cChunkDef::Width + x];
double maxHeightLimit;
if (distanceFromSpawn > m_MainIslandSize * 3)
for (int y = MaxY; y < cChunkDef::Height; y++)
{
// The distance from spawn is so big we don't need to calculate the max height anymore.
// In fact, if we don't cut it off somewhere there is a chance the maxheight gets too big which
// can cause corrupted looking terrain.
maxHeightLimit = static_cast<float>(cChunkDef::Height);
cChunkDesc::SetShapeIsSolidAt(a_Shape, x, y, z, false);
}
else
{
// Create a void between the main island and the other island using the formula 'x^3 - 3 * x' where x is distance from spawn.
double pow = std::pow((distanceFromSpawn - m_MainIslandSize) / m_MainIslandSize, 3);
double mult = 3 * ((distanceFromSpawn - m_MainIslandSize) / m_MainIslandSize);
maxHeightLimit = Clamp((pow - mult) * 100 + static_cast<double>(voidOffset) * m_VoidOffsetNoiseMultiplier, 0.0, static_cast<double>(cChunkDef::Height));
}
int maxHeight = static_cast<int>(Clamp(m_BaseHeight + static_cast<double>(noise) * m_TerrainTopMultiplier, 0.0, maxHeightLimit));
int minHeight = static_cast<int>(Clamp(m_BaseHeight - static_cast<double>(noise) * m_TerrainBottomMultiplier, 0.0, static_cast<double>(cChunkDef::Height)));
for (int y = minHeight; y < maxHeight; y++)
{
a_Shape[y + x * 256 + z * 256 * 16] = 1;
}
}
}
} // for x
} // for z
}
@ -166,7 +186,7 @@ void cEndGen::ComposeTerrain(cChunkDesc & a_ChunkDesc, const cChunkDesc::Shape &
{
for (int y = 0; y < cChunkDef::Height; y++)
{
if (a_Shape[(x + 16 * z) * 256 + y] != 0)
if (cChunkDesc::GetShapeIsSolidAt(a_Shape, x, y, z))
{
a_ChunkDesc.SetBlockType(x, y, z, E_BLOCK_END_STONE);
}

View File

@ -30,28 +30,41 @@ protected:
/** The Perlin noise used for generating */
cPerlinNoise m_Perlin;
cPerlinNoise m_VoidOffsetNoise;
NOISE_DATATYPE m_AirThresholdMainIsland;
NOISE_DATATYPE m_AirThresholdOtherIslands;
// XYZ size of the "island", in blocks:
int m_MainIslandSize;
int m_BaseHeight;
int m_TerrainTopMultiplier;
int m_TerrainBottomMultiplier;
int m_VoidOffsetNoiseMultiplier;
int m_IslandThickness;
int m_IslandYOffset;
// XYZ Frequencies of the noise functions:
NOISE_DATATYPE m_FrequencyX;
NOISE_DATATYPE m_FrequencyY;
NOISE_DATATYPE m_FrequencyZ;
NOISE_DATATYPE m_MainIslandFrequencyX;
NOISE_DATATYPE m_MainIslandFrequencyY;
NOISE_DATATYPE m_MainIslandFrequencyZ;
NOISE_DATATYPE m_MainIslandMinThreshold;
// XYZ Frequencies of the noise functions on the smaller islands:
NOISE_DATATYPE m_SmallIslandFrequencyX;
NOISE_DATATYPE m_SmallIslandFrequencyY;
NOISE_DATATYPE m_SmallIslandFrequencyZ;
NOISE_DATATYPE m_SmallIslandMinThreshold;
// Noise array for the last chunk (in the noise range)
cChunkCoords m_LastChunkCoords;
NOISE_DATATYPE m_NoiseArray[17 * 17 * 257]; // x + 17 * z + 17 * 17 * y
/** Unless the LastChunk coords are equal to coords given, prepares the internal state (noise array) */
void PrepareState(cChunkCoords a_ChunkCoords);
/** Generates the m_NoiseArray array for the current chunk */
void GenerateNoiseArray(void);
// cTerrainShapeGen overrides:
virtual void GenShape(cChunkCoords a_ChunkCoords, cChunkDesc::Shape & a_Shape) override;
virtual void InitializeShapeGen(cIniFile & a_IniFile) override;
// cTerrainCompositionGen overrides:
virtual void ComposeTerrain(cChunkDesc & a_ChunkDesc, const cChunkDesc::Shape & a_Shape) override;
// cTerrainShapeGen overrides:
virtual void InitializeShapeGen(cIniFile & a_IniFile) override;
} ;