refactored computer class to extract any language specific logic (Lua) from the main running logic. this makes it a little less massive and should make it easier to add other language implementations, such as a Java implementation of Lua, or even altogether different languages such as an assembly emulator, for example

This commit is contained in:
Florian Nücke 2014-01-15 19:30:24 +01:00
parent 775236dc9d
commit e560a9ee47
4 changed files with 996 additions and 776 deletions

View File

@ -1,16 +1,14 @@
package li.cil.oc.server.component
import com.naef.jnlua._
import java.io.{FileNotFoundException, IOException}
import java.util.logging.Level
import li.cil.oc.api
import li.cil.oc.api.network._
import li.cil.oc.common.tileentity
import li.cil.oc.server
import li.cil.oc.server.PacketSender
import li.cil.oc.util.ExtendedLuaState.extendLuaState
import li.cil.oc.server.component.machine.{ExecutionResult, LuaArchitecture}
import li.cil.oc.util.ExtendedNBT._
import li.cil.oc.util.{ThreadPoolFactory, GameTimeFormatter, LuaStateFactory}
import li.cil.oc.util.ThreadPoolFactory
import li.cil.oc.{OpenComputers, Settings}
import net.minecraft.entity.player.EntityPlayer
import net.minecraft.nbt._
@ -19,7 +17,6 @@ import net.minecraft.server.integrated.IntegratedServer
import net.minecraft.world.World
import scala.Array.canBuildFrom
import scala.Some
import scala.collection.convert.WrapAsScala._
import scala.collection.mutable
class Machine(val owner: Machine.Owner) extends ManagedComponent with Context with Runnable {
@ -36,13 +33,11 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
fromMemory(Settings.get.tmpSize * 1024), "tmpfs"))
} else None
private val state = mutable.Stack(Machine.State.Stopped)
private val architecture = new LuaArchitecture(this)
private var lua: LuaState = null
private[component] val state = mutable.Stack(Machine.State.Stopped)
private var kernelMemory = 0
private val components = mutable.Map.empty[String, String]
private[component] val components = mutable.Map.empty[String, String]
private val addedComponents = mutable.Set.empty[Component]
@ -52,17 +47,15 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
private val callCounts = mutable.Map.empty[String, mutable.Map[String, Int]]
private val ramScale = if (LuaStateFactory.is64Bit) Settings.get.ramScaleFor64Bit else 1.0
// ----------------------------------------------------------------------- //
private var timeStarted = 0L // Game-world time [ms] for os.uptime().
private[component] var timeStarted = 0L // Game-world time [ms] for os.uptime().
private var worldTime = 0L // Game-world time for os.time().
private[component] var worldTime = 0L // Game-world time for os.time().
private var cpuTime = 0L // Pseudo-real-world time [ns] for os.clock().
private[component] var cpuTime = 0L // Pseudo-real-world time [ns] for os.clock().
private var cpuStart = 0L // Pseudo-real-world time [ns] for os.clock().
private[component] var cpuStart = 0L // Pseudo-real-world time [ns] for os.clock().
private var remainIdle = 0 // Ticks left to sleep before resuming.
@ -70,19 +63,11 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
private var usersChanged = false // Send updated users list to clients?
private var message: Option[String] = None // For error messages.
private[component] var message: Option[String] = None // For error messages.
// ----------------------------------------------------------------------- //
def recomputeMemory() = Option(lua) match {
case Some(l) =>
l.setTotalMemory(Int.MaxValue)
l.gc(LuaState.GcAction.COLLECT, 0)
if (kernelMemory > 0) {
l.setTotalMemory(kernelMemory + math.ceil(owner.installedMemory * ramScale).toInt)
}
case _ =>
}
def recomputeMemory() = architecture.recomputeMemory()
def lastError = message
@ -202,6 +187,50 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
}
})
private[component] def popSignal(): Option[Machine.Signal] = signals.synchronized(if (signals.isEmpty) None else Some(signals.dequeue()))
private[component] def invoke(address: String, method: String, args: Seq[AnyRef]) =
Option(node.network.node(address)) match {
case Some(component: server.network.Component) if component.canBeSeenFrom(node) || component == node =>
val direct = component.isDirect(method)
if (direct) callCounts.synchronized {
val limit = component.limit(method)
val counts = callCounts.getOrElseUpdate(component.address, mutable.Map.empty[String, Int])
val count = counts.getOrElseUpdate(method, 0)
if (count >= limit) {
throw new Machine.LimitReachedException()
}
counts(method) += 1
}
component.invoke(method, this, args: _*)
case _ => throw new Exception("no such component")
}
private[component] def addUser(name: String) {
if (_users.size >= Settings.get.maxUsers)
throw new Exception("too many users")
if (_users.contains(name))
throw new Exception("user exists")
if (name.length > Settings.get.maxUsernameLength)
throw new Exception("username too long")
if (!MinecraftServer.getServer.getConfigurationManager.getAllUsernames.contains(name))
throw new Exception("player must be online")
_users.synchronized {
_users += name
usersChanged = true
}
}
private[component] def removeUser(name: String) = _users.synchronized {
val success = _users.remove(name)
if (success) {
usersChanged = true
}
success
}
// ----------------------------------------------------------------------- //
@LuaCallback("start")
@ -302,10 +331,6 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
}
// Perform a synchronized call (message sending).
case Machine.State.SynchronizedCall =>
// These three asserts are all guaranteed by run().
assert(lua.getTop == 2)
assert(lua.isThread(1))
assert(lua.isFunction(2))
// Clear direct call limits again, just to be on the safe side...
// Theoretically it'd be possible for the executor to do some direct
// calls between the clear and the state check, which could in turn
@ -315,11 +340,7 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
// were performed from our executor thread.
switchTo(Machine.State.Running)
try {
// Synchronized call protocol requires the called function to return
// a table, which holds the results of the call, to be passed back
// to the coroutine.yield() that triggered the call.
lua.call(0, 1)
lua.checkType(2, LuaType.TABLE)
architecture.runSynchronized()
// Check if the callback called pause() or stop().
state.top match {
case Machine.State.Running =>
@ -333,15 +354,10 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
case _ => throw new AssertionError()
}
} catch {
case _: LuaMemoryAllocationException =>
// This can happen if we run out of memory while converting a Java
// exception to a string (which we have to do to avoid keeping
// userdata on the stack, which cannot be persisted).
crash("not enough memory")
case e: java.lang.Error if e.getMessage == "not enough memory" =>
crash("not enough memory")
case e: Throwable =>
OpenComputers.log.log(Level.WARNING, "Faulty Lua implementation for synchronized calls.", e)
OpenComputers.log.log(Level.WARNING, "Faulty architecture implementation for synchronized calls.", e)
crash("protocol error")
}
case _ => // Nothing special to do, just avoid match errors.
@ -430,7 +446,7 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
components.synchronized(components += component.address -> component.name)
// Skip the signal if we're not initialized yet, since we'd generate a
// duplicate in the startup script otherwise.
if (kernelMemory > 0) {
if (architecture.isInitialized) {
signal("component_added", component.address, component.name)
}
}
@ -468,28 +484,7 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
nbt.getTagList("users").foreach[NBTTagString](u => _users += u.data)
if (state.size > 0 && state.top != Machine.State.Stopped && init()) {
// Unlimit memory use while unpersisting.
lua.setTotalMemory(Integer.MAX_VALUE)
try {
// Try unpersisting Lua, because that's what all of the rest depends
// on. First, clear the stack, meaning the current kernel.
lua.setTop(0)
unpersist(nbt.getByteArray("kernel"))
if (!lua.isThread(1)) {
// This shouldn't really happen, but there's a chance it does if
// the save was corrupt (maybe someone modified the Lua files).
throw new IllegalArgumentException("Invalid kernel.")
}
if (state.contains(Machine.State.SynchronizedCall) || state.contains(Machine.State.SynchronizedReturn)) {
unpersist(nbt.getByteArray("stack"))
if (!(if (state.contains(Machine.State.SynchronizedCall)) lua.isFunction(2) else lua.isTable(2))) {
// Same as with the above, should not really happen normally, but
// could for the same reasons.
throw new IllegalArgumentException("Invalid stack.")
}
}
architecture.load(nbt)
components ++= nbt.getTagList("components").iterator[NBTTagCompound].map(c =>
c.getString("address") -> c.getString("name"))
@ -519,7 +514,6 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
rom.foreach(rom => rom.load(nbt.getCompoundTag("rom")))
tmp.foreach(tmp => tmp.load(nbt.getCompoundTag("tmp")))
kernelMemory = (nbt.getInteger("kernelMemory") * ramScale).toInt
timeStarted = nbt.getLong("timeStarted")
cpuTime = nbt.getLong("cpuTime")
remainingPause = nbt.getInteger("remainingPause")
@ -527,16 +521,8 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
message = Some(nbt.getString("message"))
}
// Limit memory again.
recomputeMemory()
// Delay execution for a second to allow the world around us to settle.
pause(Settings.get.startupDelay)
} catch {
case e: LuaRuntimeException =>
OpenComputers.log.warning("Could not unpersist computer.\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat "))
state.push(Machine.State.Stopping)
}
}
else close() // Clean up in case we got a weird state stack.
}
@ -556,20 +542,7 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
nbt.setNewTagList("users", _users)
if (state.top != Machine.State.Stopped) {
// Unlimit memory while persisting.
lua.setTotalMemory(Integer.MAX_VALUE)
try {
// Try persisting Lua, because that's what all of the rest depends on.
// Save the kernel state (which is always at stack index one).
assert(lua.isThread(1))
nbt.setByteArray("kernel", persist(1))
// While in a driver call we have one object on the global stack: either
// the function to call the driver with, or the result of the call.
if (state.contains(Machine.State.SynchronizedCall) || state.contains(Machine.State.SynchronizedReturn)) {
assert(if (state.contains(Machine.State.SynchronizedCall)) lua.isFunction(2) else lua.isTable(2))
nbt.setByteArray("stack", persist(2))
}
architecture.save(nbt)
val componentsNbt = new NBTTagList()
for ((address, name) <- components) {
@ -609,59 +582,11 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
rom.foreach(rom => nbt.setNewCompoundTag("rom", rom.save))
tmp.foreach(tmp => nbt.setNewCompoundTag("tmp", tmp.save))
nbt.setInteger("kernelMemory", math.ceil(kernelMemory / ramScale).toInt)
nbt.setLong("timeStarted", timeStarted)
nbt.setLong("cpuTime", cpuTime)
nbt.setInteger("remainingPause", remainingPause)
message.foreach(nbt.setString("message", _))
} catch {
case e: LuaRuntimeException =>
OpenComputers.log.warning("Could not persist computer.\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat "))
nbt.removeTag("state")
}
// Limit memory again.
recomputeMemory()
}
}
private def persist(index: Int): Array[Byte] = {
lua.getGlobal("eris") /* ... eris */
lua.getField(-1, "persist") /* ... eris persist */
if (lua.isFunction(-1)) {
lua.getField(LuaState.REGISTRYINDEX, "perms") /* ... eris persist perms */
lua.pushValue(index) // ... eris persist perms obj
try {
lua.call(2, 1) // ... eris str?
} catch {
case e: Throwable =>
lua.pop(1)
throw e
}
if (lua.isString(-1)) {
// ... eris str
val result = lua.toByteArray(-1)
lua.pop(2) // ...
return result
} // ... eris :(
} // ... eris :(
lua.pop(2) // ...
Array[Byte]()
}
private def unpersist(value: Array[Byte]): Boolean = {
lua.getGlobal("eris") // ... eris
lua.getField(-1, "unpersist") // ... eris unpersist
if (lua.isFunction(-1)) {
lua.getField(LuaState.REGISTRYINDEX, "uperms") /* ... eris persist uperms */
lua.pushByteArray(value) // ... eris unpersist uperms str
lua.call(2, 1) // ... eris obj
lua.insert(-2) // ... obj eris
lua.pop(1)
return true
} // ... :(
lua.pop(1)
false
}
// ----------------------------------------------------------------------- //
@ -670,16 +595,8 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
// Reset error state.
message = None
// Creates a new state with all base libraries and the persistence library
// loaded into it. This means the state has much more power than it
// rightfully should have, so we sandbox it a bit in the following.
LuaStateFactory.createState() match {
case None =>
lua = null
message = Some("native libraries not available")
return false
case Some(value) => lua = value
}
// Clear any left-over signals from a previous run.
signals.clear()
// Connect the ROM and `/tmp` node to our owner. We're not in a network in
// case we're loading, which is why we have to check it here.
@ -689,393 +606,7 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
}
try {
// Push a couple of functions that override original Lua API functions or
// that add new functionality to it.
lua.getGlobal("os")
// Custom os.clock() implementation returning the time the computer has
// been actively running, instead of the native library...
lua.pushScalaFunction(lua => {
lua.pushNumber((cpuTime + (System.nanoTime() - cpuStart)) * 10e-10)
1
})
lua.setField(-2, "clock")
// Date formatting function.
lua.pushScalaFunction(lua => {
val format =
if (lua.getTop > 0 && lua.isString(1)) lua.toString(1)
else "%d/%m/%y %H:%M:%S"
val time =
if (lua.getTop > 1 && lua.isNumber(2)) lua.toNumber(2) * 1000 / 60 / 60
else worldTime + 6000
val dt = GameTimeFormatter.parse(time)
def fmt(format: String) {
if (format == "*t") {
lua.newTable(0, 8)
lua.pushInteger(dt.year)
lua.setField(-2, "year")
lua.pushInteger(dt.month)
lua.setField(-2, "month")
lua.pushInteger(dt.day)
lua.setField(-2, "day")
lua.pushInteger(dt.hour)
lua.setField(-2, "hour")
lua.pushInteger(dt.minute)
lua.setField(-2, "min")
lua.pushInteger(dt.second)
lua.setField(-2, "sec")
lua.pushInteger(dt.weekDay)
lua.setField(-2, "wday")
lua.pushInteger(dt.yearDay)
lua.setField(-2, "yday")
}
else {
lua.pushString(GameTimeFormatter.format(format, dt))
}
}
// Just ignore the allowed leading '!', Minecraft has no time zones...
if (format.startsWith("!"))
fmt(format.substring(1))
else
fmt(format)
1
})
lua.setField(-2, "date")
// Return ingame time for os.time().
lua.pushScalaFunction(lua => {
// Game time is in ticks, so that each day has 24000 ticks, meaning
// one hour is game time divided by one thousand. Also, Minecraft
// starts days at 6 o'clock, so we add those six hours. Thus:
// timestamp = (time + 6000) * 60[kh] * 60[km] / 1000[s]
lua.pushNumber((worldTime + 6000) * 60 * 60 / 1000)
1
})
lua.setField(-2, "time")
// Pop the os table.
lua.pop(1)
// Computer API, stuff that kinda belongs to os, but we don't want to
// clutter it.
lua.newTable()
// Allow getting the real world time for timeouts.
lua.pushScalaFunction(lua => {
lua.pushNumber(System.currentTimeMillis() / 1000.0)
1
})
lua.setField(-2, "realTime")
// The time the computer has been running, as opposed to the CPU time.
lua.pushScalaFunction(lua => {
// World time is in ticks, and each second has 20 ticks. Since we
// want uptime() to return real seconds, though, we'll divide it
// accordingly.
lua.pushNumber((worldTime - timeStarted) / 20.0)
1
})
lua.setField(-2, "uptime")
// Allow the computer to figure out its own id in the component network.
lua.pushScalaFunction(lua => {
Option(node.address) match {
case None => lua.pushNil()
case Some(address) => lua.pushString(address)
}
1
})
lua.setField(-2, "address")
// Are we a robot? (No this is not a CAPTCHA.)
lua.pushScalaFunction(lua => {
lua.pushBoolean(isRobot)
1
})
lua.setField(-2, "isRobot")
lua.pushScalaFunction(lua => {
// This is *very* unlikely, but still: avoid this getting larger than
// what we report as the total memory.
lua.pushInteger(((lua.getFreeMemory min (lua.getTotalMemory - kernelMemory)) / ramScale).toInt)
1
})
lua.setField(-2, "freeMemory")
// Allow the system to read how much memory it uses and has available.
lua.pushScalaFunction(lua => {
lua.pushInteger(((lua.getTotalMemory - kernelMemory) / ramScale).toInt)
1
})
lua.setField(-2, "totalMemory")
lua.pushScalaFunction(lua => {
lua.pushBoolean(signal(lua.checkString(1), lua.toSimpleJavaObjects(2): _*))
1
})
lua.setField(-2, "pushSignal")
// And its ROM address.
lua.pushScalaFunction(lua => {
rom.foreach(rom => Option(rom.node.address) match {
case None => lua.pushNil()
case Some(address) => lua.pushString(address)
})
1
})
lua.setField(-2, "romAddress")
// And it's /tmp address...
lua.pushScalaFunction(lua => {
tmp.foreach(tmp => Option(tmp.node.address) match {
case None => lua.pushNil()
case Some(address) => lua.pushString(address)
})
1
})
lua.setField(-2, "tmpAddress")
// User management.
lua.pushScalaFunction(lua => {
_users.foreach(lua.pushString)
_users.size
})
lua.setField(-2, "users")
lua.pushScalaFunction(lua => try {
if (_users.size >= Settings.get.maxUsers)
throw new Exception("too many users")
val name = lua.checkString(1)
if (_users.contains(name))
throw new Exception("user exists")
if (name.length > Settings.get.maxUsernameLength)
throw new Exception("username too long")
if (!MinecraftServer.getServer.getConfigurationManager.getAllUsernames.contains(name))
throw new Exception("player must be online")
_users.synchronized {
_users += name
usersChanged = true
}
lua.pushBoolean(true)
1
} catch {
case e: Throwable =>
lua.pushNil()
lua.pushString(Option(e.getMessage).getOrElse(e.toString))
2
})
lua.setField(-2, "addUser")
lua.pushScalaFunction(lua => {
val name = lua.checkString(1)
_users.synchronized {
val success = _users.remove(name)
if (success) {
usersChanged = true
}
lua.pushBoolean(success)
}
1
})
lua.setField(-2, "removeUser")
lua.pushScalaFunction(lua => {
lua.pushNumber(node.globalBuffer)
1
})
lua.setField(-2, "energy")
lua.pushScalaFunction(lua => {
lua.pushNumber(node.globalBufferSize)
1
})
lua.setField(-2, "maxEnergy")
// Set the computer table.
lua.setGlobal("computer")
// Until we get to ingame screens we log to Java's stdout.
lua.pushScalaFunction(lua => {
println((1 to lua.getTop).map(i => lua.`type`(i) match {
case LuaType.NIL => "nil"
case LuaType.BOOLEAN => lua.toBoolean(i)
case LuaType.NUMBER => lua.toNumber(i)
case LuaType.STRING => lua.toString(i)
case LuaType.TABLE => "table"
case LuaType.FUNCTION => "function"
case LuaType.THREAD => "thread"
case LuaType.LIGHTUSERDATA | LuaType.USERDATA => "userdata"
}).mkString(" "))
0
})
lua.setGlobal("print")
// Whether bytecode may be loaded directly.
lua.pushScalaFunction(lua => {
lua.pushBoolean(Settings.get.allowBytecode)
1
})
lua.setGlobal("allowBytecode")
// How long programs may run without yielding before we stop them.
lua.pushNumber(Settings.get.timeout)
lua.setGlobal("timeout")
// Component interaction stuff.
lua.newTable()
lua.pushScalaFunction(lua => components.synchronized {
val filter = if (lua.isString(1)) Option(lua.toString(1)) else None
lua.newTable(0, components.size)
for ((address, name) <- components) {
if (filter.isEmpty || name.contains(filter.get)) {
lua.pushString(address)
lua.pushString(name)
lua.rawSet(-3)
}
}
1
})
lua.setField(-2, "list")
lua.pushScalaFunction(lua => components.synchronized {
components.get(lua.checkString(1)) match {
case Some(name: String) =>
lua.pushString(name)
1
case _ =>
lua.pushNil()
lua.pushString("no such component")
2
}
})
lua.setField(-2, "type")
lua.pushScalaFunction(lua => {
Option(node.network.node(lua.checkString(1))) match {
case Some(component: server.network.Component) if component.canBeSeenFrom(node) || component == node =>
lua.newTable()
for (method <- component.methods()) {
lua.pushString(method)
lua.pushBoolean(component.isDirect(method))
lua.rawSet(-3)
}
1
case _ =>
lua.pushNil()
lua.pushString("no such component")
2
}
})
lua.setField(-2, "methods")
class LimitReachedException extends Exception
lua.pushScalaFunction(lua => {
val address = lua.checkString(1)
val method = lua.checkString(2)
val args = lua.toSimpleJavaObjects(3)
try {
(Option(node.network.node(address)) match {
case Some(component: server.network.Component) if component.canBeSeenFrom(node) || component == node =>
val direct = component.isDirect(method)
if (direct) callCounts.synchronized {
val limit = component.limit(method)
val counts = callCounts.getOrElseUpdate(component.address, mutable.Map.empty[String, Int])
val count = counts.getOrElseUpdate(method, 0)
if (count >= limit) {
throw new LimitReachedException()
}
counts(method) += 1
}
component.invoke(method, this, args: _*)
case _ => throw new Exception("no such component")
}) match {
case results: Array[_] =>
lua.pushBoolean(true)
results.foreach(result => lua.pushValue(result))
1 + results.length
case _ =>
lua.pushBoolean(true)
1
}
}
catch {
case e: Throwable =>
if (Settings.get.logLuaCallbackErrors && !e.isInstanceOf[LimitReachedException]) {
OpenComputers.log.log(Level.WARNING, "Exception in Lua callback.", e)
}
e match {
case _: LimitReachedException =>
0
case e: IllegalArgumentException if e.getMessage != null =>
lua.pushBoolean(false)
lua.pushString(e.getMessage)
2
case e: Throwable if e.getMessage != null =>
lua.pushBoolean(true)
lua.pushNil()
lua.pushString(e.getMessage)
if (Settings.get.logLuaCallbackErrors) {
lua.pushString(e.getStackTraceString.replace("\r\n", "\n"))
4
}
else 3
case _: IndexOutOfBoundsException =>
lua.pushBoolean(false)
lua.pushString("index out of bounds")
2
case _: IllegalArgumentException =>
lua.pushBoolean(false)
lua.pushString("bad argument")
2
case _: NoSuchMethodException =>
lua.pushBoolean(false)
lua.pushString("no such method")
2
case _: FileNotFoundException =>
lua.pushBoolean(true)
lua.pushNil()
lua.pushString("file not found")
3
case _: SecurityException =>
lua.pushBoolean(true)
lua.pushNil()
lua.pushString("access denied")
3
case _: IOException =>
lua.pushBoolean(true)
lua.pushNil()
lua.pushString("i/o error")
3
case e: Throwable =>
OpenComputers.log.log(Level.WARNING, "Unexpected error in Lua callback.", e)
lua.pushBoolean(true)
lua.pushNil()
lua.pushString("unknown error")
3
}
}
})
lua.setField(-2, "invoke")
lua.setGlobal("component")
initPerms()
lua.load(classOf[Machine].getResourceAsStream(Settings.scriptPath + "kernel.lua"), "=kernel", "t")
lua.newThread() // Left as the first value on the stack.
// Clear any left-over signals from a previous run.
signals.clear()
return true
return architecture.init()
}
catch {
case ex: Throwable =>
@ -1085,85 +616,11 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
false
}
private def initPerms() {
// These tables must contain all java callbacks (i.e. C functions, since
// they are wrapped on the native side using a C function, of course).
// They are used when persisting/unpersisting the state so that the
// persistence library knows which values it doesn't have to serialize
// (since it cannot persist C functions).
lua.newTable() /* ... perms */
lua.newTable() /* ... uperms */
val perms = lua.getTop - 1
val uperms = lua.getTop
def flattenAndStore() {
/* ... k v */
// We only care for tables and functions, any value types are safe.
if (lua.isFunction(-1) || lua.isTable(-1)) {
lua.pushValue(-2) /* ... k v k */
lua.getTable(uperms) /* ... k v uperms[k] */
assert(lua.isNil(-1), "duplicate permanent value named " + lua.toString(-3))
lua.pop(1) /* ... k v */
// If we have aliases its enough to store the value once.
lua.pushValue(-1) /* ... k v v */
lua.getTable(perms) /* ... k v perms[v] */
val isNew = lua.isNil(-1)
lua.pop(1) /* ... k v */
if (isNew) {
lua.pushValue(-1) /* ... k v v */
lua.pushValue(-3) /* ... k v v k */
lua.rawSet(perms) /* ... k v ; perms[v] = k */
lua.pushValue(-2) /* ... k v k */
lua.pushValue(-2) /* ... k v k v */
lua.rawSet(uperms) /* ... k v ; uperms[k] = v */
// Recurse into tables.
if (lua.isTable(-1)) {
// Enforce a deterministic order when determining the keys, to ensure
// the keys are the same when unpersisting again.
val key = lua.toString(-2)
val childKeys = mutable.ArrayBuffer.empty[String]
lua.pushNil() /* ... k v nil */
while (lua.next(-2)) {
/* ... k v ck cv */
lua.pop(1) /* ... k v ck */
childKeys += lua.toString(-1)
}
/* ... k v */
childKeys.sortWith((a, b) => a.compareTo(b) < 0)
for (childKey <- childKeys) {
lua.pushString(key + "." + childKey) /* ... k v ck */
lua.getField(-2, childKey) /* ... k v ck cv */
flattenAndStore() /* ... k v */
}
/* ... k v */
}
/* ... k v */
}
/* ... k v */
}
lua.pop(2) /* ... */
}
// Mark everything that's globally reachable at this point as permanent.
lua.pushString("_G") /* ... perms uperms k */
lua.getGlobal("_G") /* ... perms uperms k v */
flattenAndStore() /* ... perms uperms */
lua.setField(LuaState.REGISTRYINDEX, "uperms") /* ... perms */
lua.setField(LuaState.REGISTRYINDEX, "perms") /* ... */
}
private def close() = state.synchronized(
if (state.size == 0 || state.top != Machine.State.Stopped) {
state.clear()
state.push(Machine.State.Stopped)
if (lua != null) {
lua.setTotalMemory(Integer.MAX_VALUE)
lua.close()
}
lua = null
kernelMemory = 0
architecture.close()
signals.clear()
timeStarted = 0
cpuTime = 0
@ -1211,99 +668,36 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
switchTo(Machine.State.Running)
}
try {
// The kernel thread will always be at stack index one.
assert(lua.isThread(1))
if (Settings.get.activeGC) {
// Help out the GC a little. The emergency GC has a few limitations
// that will make it free less memory than doing a full step manually.
lua.gc(LuaState.GcAction.COLLECT, 0)
}
// Resume the Lua state and remember the number of results we get.
cpuStart = System.nanoTime()
val (results, runtime) = enterState match {
case Machine.State.SynchronizedReturn =>
// If we were doing a synchronized call, continue where we left off.
assert(lua.getTop == 2)
assert(lua.isTable(2))
(lua.resume(1, 1), System.nanoTime() - cpuStart)
case Machine.State.Yielded =>
if (kernelMemory == 0) {
// We're doing the initialization run.
if (lua.resume(1, 0) > 0) {
// We expect to get nothing here, if we do we had an error.
(0, 0L)
}
else {
// Run the garbage collector to get rid of stuff left behind after
// the initialization phase to get a good estimate of the base
// memory usage the kernel has (including libraries). We remember
// that size to grant user-space programs a fixed base amount of
// memory, regardless of the memory need of the underlying system
// (which may change across releases).
lua.gc(LuaState.GcAction.COLLECT, 0)
kernelMemory = math.max(lua.getTotalMemory - lua.getFreeMemory, 1)
recomputeMemory()
// Fake zero sleep to avoid stopping if there are no signals.
lua.pushInteger(0)
(1, 0L)
}
}
else (signals.synchronized(if (signals.isEmpty) None else Some(signals.dequeue())) match {
case Some(signal) =>
lua.pushString(signal.name)
signal.args.foreach(arg => lua.pushValue(arg))
lua.resume(1, 1 + signal.args.length)
case _ =>
lua.resume(1, 0)
}, System.nanoTime() - cpuStart)
case s => throw new AssertionError("Running computer from invalid state " + s.toString)
}
try {
val result = architecture.runThreaded(enterState)
// Keep track of time spent executing the computer.
cpuTime += runtime
// Check if the kernel is still alive.
state.synchronized(if (lua.status(1) == LuaState.YIELD) {
// Check if someone called pause() or stop() in the meantime.
state.top match {
state.synchronized(state.top match {
case Machine.State.Running =>
// If we get one function it must be a wrapper for a synchronized
// call. The protocol is that a closure is pushed that is then called
// from the main server thread, and returns a table, which is in turn
// passed to the originating coroutine.yield().
if (results == 1 && lua.isFunction(2)) {
switchTo(Machine.State.SynchronizedCall)
}
// Check if we are shutting down, and if so if we're rebooting. This
// is signalled by boolean values, where `false` means shut down,
// `true` means reboot (i.e shutdown then start again).
else if (results == 1 && lua.isBoolean(2)) {
if (lua.toBoolean(2)) switchTo(Machine.State.Restarting)
else switchTo(Machine.State.Stopping)
}
else {
// If we have a single number, that's how long we may wait before
// resuming the state again. Note that the sleep may be interrupted
// early if a signal arrives in the meantime. If we have something
// else we just process the next signal or wait for one.
val sleep =
if (results == 1 && lua.isNumber(2)) (lua.toNumber(2) * 20).toInt
else Int.MaxValue
lua.pop(results)
result match {
case result: ExecutionResult.Sleep =>
signals.synchronized {
// Immediately check for signals to allow processing more than one
// signal per game tick.
if (signals.isEmpty && sleep > 0) {
if (signals.isEmpty && result.ticks > 0) {
switchTo(Machine.State.Sleeping)
remainIdle = sleep
remainIdle = result.ticks
} else {
switchTo(Machine.State.Yielded)
}
}
case result: ExecutionResult.SynchronizedCall =>
switchTo(Machine.State.SynchronizedCall)
case result: ExecutionResult.Shutdown =>
if (result.reboot) {
switchTo(Machine.State.Restarting)
}
else {
switchTo(Machine.State.Stopping)
}
case result: ExecutionResult.Error =>
}
case Machine.State.Paused =>
state.pop() // Paused
@ -1313,53 +707,23 @@ class Machine(val owner: Machine.Owner) extends ManagedComponent with Context wi
case Machine.State.Stopping => // Nothing to do, we'll die anyway.
case _ => throw new AssertionError(
"Invalid state in executor post-processing.")
}
}
// The kernel thread returned. If it threw we'd be in the catch below.
else {
assert(lua.isThread(1))
// We're expecting the result of a pcall, if anything, so boolean + (result | string).
if (!lua.isBoolean(2) || !(lua.isString(3) || lua.isNil(3))) {
OpenComputers.log.warning("Kernel returned unexpected results.")
}
// The pcall *should* never return normally... but check for it nonetheless.
if (lua.toBoolean(2)) {
OpenComputers.log.warning("Kernel stopped unexpectedly.")
stop()
}
else {
lua.setTotalMemory(Int.MaxValue)
val error = lua.toString(3)
if (error != null) crash(error)
else crash("unknown error")
}
})
}
catch {
case e: LuaRuntimeException =>
OpenComputers.log.warning("Kernel crashed. This is a bug!\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat "))
crash("kernel panic: this is a bug, check your log file and report it")
case e: LuaGcMetamethodException =>
if (e.getMessage != null) crash("kernel panic:\n" + e.getMessage)
else crash("kernel panic:\nerror in garbage collection metamethod")
case e: LuaMemoryAllocationException =>
crash("not enough memory")
case e: java.lang.Error if e.getMessage == "not enough memory" =>
crash("not enough memory")
case e: Throwable =>
OpenComputers.log.log(Level.WARNING, "Unexpected error in kernel. This is a bug!\n", e)
crash("kernel panic: this is a bug, check your log file and report it")
case e: Throwable => OpenComputers.log.log(Level.WARNING, "Architecture's runThreaded threw an error. This should never happen!", e)
}
// Keep track of time spent executing the computer.
cpuTime += System.nanoTime() - cpuStart
}
}
object Machine {
/** Signals are messages sent to the Lua state from Java asynchronously. */
private class Signal(val name: String, val args: Array[Any])
private[component] class LimitReachedException extends Exception
/** Possible states of the computer, and in particular its executor. */
private object State extends Enumeration {
private[component] object State extends Enumeration {
/** The computer is not running right now and there is no Lua state. */
val Stopped = Value("Stopped")
@ -1391,7 +755,10 @@ object Machine {
val Running = Value("Running")
}
private val threadPool = ThreadPoolFactory.create("Lua", Settings.get.threads)
/** Signals are messages sent to the Lua state from Java asynchronously. */
private[component] class Signal(val name: String, val args: Array[Any])
private val threadPool = ThreadPoolFactory.create("Computer", Settings.get.threads)
trait Owner {
def installedMemory: Int

View File

@ -0,0 +1,93 @@
package li.cil.oc.server.component.machine
import li.cil.oc.server.component.Machine
import net.minecraft.nbt.NBTTagCompound
/**
* This trait abstracts away any language specific details for the Machine.
*
* At some point in the future this may allow us to introduce other languages,
* e.g. computers that run assembly or non-persistent computers that use a pure
* Java implementation of Lua.
*/
trait Architecture {
/**
* Used to check if the machine is fully initialized. If this is false no
* signals for detected components will be generated. Avoids duplicate signals
* if component_added signals are generated in the language's startup script,
* for already present components (see Lua's init.lua script).
*
* @return whether the machine is fully initialized.
*/
def isInitialized: Boolean
/**
* This is called when the amount of memory in the computer may have changed.
* It is triggered by the tile entity's onInventoryChanged.
*/
def recomputeMemory()
/**
* Performs a synchronized call initialized in a previous call to runThreaded.
*/
def runSynchronized()
/**
* Continues execution of the machine. The first call may be used to
* initialize the machine (e.g. for Lua we load the libraries in the first
* call so that the computers boot faster).
*
* The resumed state is either Machine.State.SynchronizedReturn, when a
* synchronized call has been completed (via runSynchronized), or
* Machine.State.Yielded in all other cases (sleep, interrupt, boot, ...).
*
* This is expected to return within a very short time, usually. For example,
* in Lua this returns as soon as the state yields, and returns at the latest
* when the Settings.timeout is reached (in which case it forces the state
* to crash).
*
* This is expected to consume a single signal if one is present and return.
* If returning from a synchronized call this should consume no signal.
*
* @param enterState the state that is being resumed.
* @return the result of the execution. Used to determine the new state.
*/
def runThreaded(enterState: Machine.State.Value): ExecutionResult
/**
* Called when a computer starts up. Used to (re-)initialize the underlying
* architecture logic. For example, for Lua the creates a new Lua state.
*
* This also sets up any built-in APIs for the underlying language, such as
* querying available memory, listing and interacting with components and so
* on. If this returns false the computer fails to start.
*
* @return whether the architecture was initialized successfully.
*/
def init(): Boolean
/**
* Called when a computer stopped. Used to clean up any handles, memory and
* so on. For example, for Lua this destroys the Lua state.
*/
def close()
/**
* Restores the state of this architecture as previously saved in save().
*
* @param nbt the tag compound to save to.
*/
def load(nbt: NBTTagCompound)
/**
* Saves the architecture for later restoration, e.g. across games or chunk
* unloads. Used to persist a computer's executions state. For native Lua this
* uses the Eris library to persist the main coroutine.
*
* Note that the tag compound is shared with the Machine, so collisions have
* to be avoided (see Machine.save for used keys).
*
* @param nbt the tag compound to save to.
*/
def save(nbt: NBTTagCompound)
}

View File

@ -0,0 +1,45 @@
package li.cil.oc.server.component.machine
/**
* Used by the Machine to determine the result of a call to runThreaded.
*
* Do not implement this interface, only use the predefined classes below.
*/
trait ExecutionResult
object ExecutionResult {
/**
* Indicates the machine may sleep for the specified number of ticks. This is
* merely considered a suggestion. If signals are in the queue or are pushed
* to the queue while sleeping, the sleep will be interrupted and runThreaded
* will be called so that the next signal is pushed.
*
* @param ticks the number of ticks to sleep.
*/
class Sleep(val ticks: Int) extends ExecutionResult
/**
* Indicates tha the computer should shutdown or reboot.
*
* @param reboot whether to reboot. If false the computer will stop.
*/
class Shutdown(val reboot: Boolean) extends ExecutionResult
/**
* Indicates that a synchronized call should be performed. The architecture
* is expected to be in a state that allows the next call to be to
* runSynchronized instead of runThreaded. This is used to perform calls from
* the server's main thread, to avoid threading issues when interacting with
* other objects in the world.
*/
class SynchronizedCall extends ExecutionResult
/**
* Indicates that an error occurred and the computer should crash.
*
* @param message the error message.
*/
class Error(val message: String) extends ExecutionResult
}

View File

@ -0,0 +1,715 @@
package li.cil.oc.server.component.machine
import com.naef.jnlua._
import java.io.{IOException, FileNotFoundException}
import java.util.logging.Level
import li.cil.oc.server.component.Machine
import li.cil.oc.util.ExtendedLuaState.extendLuaState
import li.cil.oc.util.{GameTimeFormatter, LuaStateFactory}
import li.cil.oc.{OpenComputers, server, Settings}
import net.minecraft.nbt.NBTTagCompound
import scala.Some
import scala.collection.convert.WrapAsScala._
import scala.collection.mutable
class LuaArchitecture(val machine: Machine) extends Architecture {
private var lua: LuaState = null
private var kernelMemory = 0
private val ramScale = if (LuaStateFactory.is64Bit) Settings.get.ramScaleFor64Bit else 1.0
private def node = machine.node
private def state = machine.state
private def components = machine.components
def isInitialized = kernelMemory > 0
def recomputeMemory() = Option(lua) match {
case Some(l) =>
l.setTotalMemory(Int.MaxValue)
l.gc(LuaState.GcAction.COLLECT, 0)
if (kernelMemory > 0) {
l.setTotalMemory(kernelMemory + math.ceil(machine.owner.installedMemory * ramScale).toInt)
}
case _ =>
}
def runSynchronized() {
// These three asserts are all guaranteed by run().
assert(lua.getTop == 2)
assert(lua.isThread(1))
assert(lua.isFunction(2))
try {
// Synchronized call protocol requires the called function to return
// a table, which holds the results of the call, to be passed back
// to the coroutine.yield() that triggered the call.
lua.call(0, 1)
lua.checkType(2, LuaType.TABLE)
}
catch {
case _: LuaMemoryAllocationException =>
// This can happen if we run out of memory while converting a Java
// exception to a string (which we have to do to avoid keeping
// userdata on the stack, which cannot be persisted).
throw new java.lang.OutOfMemoryError("not enough memory")
}
}
def runThreaded(enterState: Machine.State.Value): ExecutionResult = {
try {
// The kernel thread will always be at stack index one.
assert(lua.isThread(1))
if (Settings.get.activeGC) {
// Help out the GC a little. The emergency GC has a few limitations
// that will make it free less memory than doing a full step manually.
lua.gc(LuaState.GcAction.COLLECT, 0)
}
// Resume the Lua state and remember the number of results we get.
val results = enterState match {
case Machine.State.SynchronizedReturn =>
// If we were doing a synchronized call, continue where we left off.
assert(lua.getTop == 2)
assert(lua.isTable(2))
lua.resume(1, 1)
case Machine.State.Yielded =>
if (kernelMemory == 0) {
// We're doing the initialization run.
if (lua.resume(1, 0) > 0) {
// We expect to get nothing here, if we do we had an error.
0
}
else {
// Run the garbage collector to get rid of stuff left behind after
// the initialization phase to get a good estimate of the base
// memory usage the kernel has (including libraries). We remember
// that size to grant user-space programs a fixed base amount of
// memory, regardless of the memory need of the underlying system
// (which may change across releases).
lua.gc(LuaState.GcAction.COLLECT, 0)
kernelMemory = math.max(lua.getTotalMemory - lua.getFreeMemory, 1)
recomputeMemory()
// Fake zero sleep to avoid stopping if there are no signals.
lua.pushInteger(0)
1
}
}
else machine.popSignal() match {
case Some(signal) =>
lua.pushString(signal.name)
signal.args.foreach(arg => lua.pushValue(arg))
lua.resume(1, 1 + signal.args.length)
case _ =>
lua.resume(1, 0)
}
case s => throw new AssertionError("Running computer from invalid state " + s.toString)
}
// Check if the kernel is still alive.
if (lua.status(1) == LuaState.YIELD) {
// If we get one function it must be a wrapper for a synchronized
// call. The protocol is that a closure is pushed that is then called
// from the main server thread, and returns a table, which is in turn
// passed to the originating coroutine.yield().
if (results == 1 && lua.isFunction(2)) {
new ExecutionResult.SynchronizedCall()
}
// Check if we are shutting down, and if so if we're rebooting. This
// is signalled by boolean values, where `false` means shut down,
// `true` means reboot (i.e shutdown then start again).
else if (results == 1 && lua.isBoolean(2)) {
new ExecutionResult.Shutdown(lua.toBoolean(2))
}
else {
// If we have a single number, that's how long we may wait before
// resuming the state again. Note that the sleep may be interrupted
// early if a signal arrives in the meantime. If we have something
// else we just process the next signal or wait for one.
val ticks = if (results == 1 && lua.isNumber(2)) (lua.toNumber(2) * 20).toInt else Int.MaxValue
lua.pop(results)
new ExecutionResult.Sleep(ticks)
}
}
// The kernel thread returned. If it threw we'd be in the catch below.
else {
assert(lua.isThread(1))
// We're expecting the result of a pcall, if anything, so boolean + (result | string).
if (!lua.isBoolean(2) || !(lua.isString(3) || lua.isNil(3))) {
OpenComputers.log.warning("Kernel returned unexpected results.")
}
// The pcall *should* never return normally... but check for it nonetheless.
if (lua.toBoolean(2)) {
OpenComputers.log.warning("Kernel stopped unexpectedly.")
new ExecutionResult.Shutdown(false)
}
else {
lua.setTotalMemory(Int.MaxValue)
val error = lua.toString(3)
if (error != null) new ExecutionResult.Error(error)
else new ExecutionResult.Error("unknown error")
}
}
}
catch {
case e: LuaRuntimeException =>
OpenComputers.log.warning("Kernel crashed. This is a bug!\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat "))
new ExecutionResult.Error("kernel panic: this is a bug, check your log file and report it")
case e: LuaGcMetamethodException =>
if (e.getMessage != null) new ExecutionResult.Error("kernel panic:\n" + e.getMessage)
else new ExecutionResult.Error("kernel panic:\nerror in garbage collection metamethod")
case e: LuaMemoryAllocationException =>
new ExecutionResult.Error("not enough memory")
case e: java.lang.Error if e.getMessage == "not enough memory" =>
new ExecutionResult.Error("not enough memory")
case e: Throwable =>
OpenComputers.log.log(Level.WARNING, "Unexpected error in kernel. This is a bug!\n", e)
new ExecutionResult.Error("kernel panic: this is a bug, check your log file and report it")
}
}
def init(): Boolean = {
// Creates a new state with all base libraries and the persistence library
// loaded into it. This means the state has much more power than it
// rightfully should have, so we sandbox it a bit in the following.
LuaStateFactory.createState() match {
case None =>
lua = null
machine.message = Some("native libraries not available")
return false
case Some(value) => lua = value
}
// Push a couple of functions that override original Lua API functions or
// that add new functionality to it.
lua.getGlobal("os")
// Custom os.clock() implementation returning the time the computer has
// been actively running, instead of the native library...
lua.pushScalaFunction(lua => {
lua.pushNumber((machine.cpuTime + (System.nanoTime() - machine.cpuStart)) * 10e-10)
1
})
lua.setField(-2, "clock")
// Date formatting function.
lua.pushScalaFunction(lua => {
val format =
if (lua.getTop > 0 && lua.isString(1)) lua.toString(1)
else "%d/%m/%y %H:%M:%S"
val time =
if (lua.getTop > 1 && lua.isNumber(2)) lua.toNumber(2) * 1000 / 60 / 60
else machine.worldTime + 6000
val dt = GameTimeFormatter.parse(time)
def fmt(format: String) {
if (format == "*t") {
lua.newTable(0, 8)
lua.pushInteger(dt.year)
lua.setField(-2, "year")
lua.pushInteger(dt.month)
lua.setField(-2, "month")
lua.pushInteger(dt.day)
lua.setField(-2, "day")
lua.pushInteger(dt.hour)
lua.setField(-2, "hour")
lua.pushInteger(dt.minute)
lua.setField(-2, "min")
lua.pushInteger(dt.second)
lua.setField(-2, "sec")
lua.pushInteger(dt.weekDay)
lua.setField(-2, "wday")
lua.pushInteger(dt.yearDay)
lua.setField(-2, "yday")
}
else {
lua.pushString(GameTimeFormatter.format(format, dt))
}
}
// Just ignore the allowed leading '!', Minecraft has no time zones...
if (format.startsWith("!"))
fmt(format.substring(1))
else
fmt(format)
1
})
lua.setField(-2, "date")
// Return ingame time for os.time().
lua.pushScalaFunction(lua => {
// Game time is in ticks, so that each day has 24000 ticks, meaning
// one hour is game time divided by one thousand. Also, Minecraft
// starts days at 6 o'clock, so we add those six hours. Thus:
// timestamp = (time + 6000) * 60[kh] * 60[km] / 1000[s]
lua.pushNumber((machine.worldTime + 6000) * 60 * 60 / 1000)
1
})
lua.setField(-2, "time")
// Pop the os table.
lua.pop(1)
// Computer API, stuff that kinda belongs to os, but we don't want to
// clutter it.
lua.newTable()
// Allow getting the real world time for timeouts.
lua.pushScalaFunction(lua => {
lua.pushNumber(System.currentTimeMillis() / 1000.0)
1
})
lua.setField(-2, "realTime")
// The time the computer has been running, as opposed to the CPU time.
lua.pushScalaFunction(lua => {
// World time is in ticks, and each second has 20 ticks. Since we
// want uptime() to return real seconds, though, we'll divide it
// accordingly.
lua.pushNumber((machine.worldTime - machine.timeStarted) / 20.0)
1
})
lua.setField(-2, "uptime")
// Allow the computer to figure out its own id in the component network.
lua.pushScalaFunction(lua => {
Option(node.address) match {
case None => lua.pushNil()
case Some(address) => lua.pushString(address)
}
1
})
lua.setField(-2, "address")
// Are we a robot? (No this is not a CAPTCHA.)
lua.pushScalaFunction(lua => {
lua.pushBoolean(machine.isRobot)
1
})
lua.setField(-2, "isRobot")
lua.pushScalaFunction(lua => {
// This is *very* unlikely, but still: avoid this getting larger than
// what we report as the total memory.
lua.pushInteger(((lua.getFreeMemory min (lua.getTotalMemory - kernelMemory)) / ramScale).toInt)
1
})
lua.setField(-2, "freeMemory")
// Allow the system to read how much memory it uses and has available.
lua.pushScalaFunction(lua => {
lua.pushInteger(((lua.getTotalMemory - kernelMemory) / ramScale).toInt)
1
})
lua.setField(-2, "totalMemory")
lua.pushScalaFunction(lua => {
lua.pushBoolean(machine.signal(lua.checkString(1), lua.toSimpleJavaObjects(2): _*))
1
})
lua.setField(-2, "pushSignal")
// And its ROM address.
lua.pushScalaFunction(lua => {
machine.rom.foreach(rom => Option(rom.node.address) match {
case None => lua.pushNil()
case Some(address) => lua.pushString(address)
})
1
})
lua.setField(-2, "romAddress")
// And it's /tmp address...
lua.pushScalaFunction(lua => {
machine.tmp.foreach(tmp => Option(tmp.node.address) match {
case None => lua.pushNil()
case Some(address) => lua.pushString(address)
})
1
})
lua.setField(-2, "tmpAddress")
// User management.
lua.pushScalaFunction(lua => {
val users = machine.users
users.foreach(lua.pushString)
users.length
})
lua.setField(-2, "users")
lua.pushScalaFunction(lua => try {
machine.addUser(lua.checkString(1))
lua.pushBoolean(true)
1
} catch {
case e: Throwable =>
lua.pushNil()
lua.pushString(Option(e.getMessage).getOrElse(e.toString))
2
})
lua.setField(-2, "addUser")
lua.pushScalaFunction(lua => {
lua.pushBoolean(machine.removeUser(lua.checkString(1)))
1
})
lua.setField(-2, "removeUser")
lua.pushScalaFunction(lua => {
lua.pushNumber(node.globalBuffer)
1
})
lua.setField(-2, "energy")
lua.pushScalaFunction(lua => {
lua.pushNumber(node.globalBufferSize)
1
})
lua.setField(-2, "maxEnergy")
// Set the computer table.
lua.setGlobal("computer")
// Until we get to ingame screens we log to Java's stdout.
lua.pushScalaFunction(lua => {
println((1 to lua.getTop).map(i => lua.`type`(i) match {
case LuaType.NIL => "nil"
case LuaType.BOOLEAN => lua.toBoolean(i)
case LuaType.NUMBER => lua.toNumber(i)
case LuaType.STRING => lua.toString(i)
case LuaType.TABLE => "table"
case LuaType.FUNCTION => "function"
case LuaType.THREAD => "thread"
case LuaType.LIGHTUSERDATA | LuaType.USERDATA => "userdata"
}).mkString(" "))
0
})
lua.setGlobal("print")
// Whether bytecode may be loaded directly.
lua.pushScalaFunction(lua => {
lua.pushBoolean(Settings.get.allowBytecode)
1
})
lua.setGlobal("allowBytecode")
// How long programs may run without yielding before we stop them.
lua.pushNumber(Settings.get.timeout)
lua.setGlobal("timeout")
// Component interaction stuff.
lua.newTable()
lua.pushScalaFunction(lua => components.synchronized {
val filter = if (lua.isString(1)) Option(lua.toString(1)) else None
lua.newTable(0, components.size)
for ((address, name) <- components) {
if (filter.isEmpty || name.contains(filter.get)) {
lua.pushString(address)
lua.pushString(name)
lua.rawSet(-3)
}
}
1
})
lua.setField(-2, "list")
lua.pushScalaFunction(lua => components.synchronized {
components.get(lua.checkString(1)) match {
case Some(name: String) =>
lua.pushString(name)
1
case _ =>
lua.pushNil()
lua.pushString("no such component")
2
}
})
lua.setField(-2, "type")
lua.pushScalaFunction(lua => {
Option(node.network.node(lua.checkString(1))) match {
case Some(component: server.network.Component) if component.canBeSeenFrom(node) || component == node =>
lua.newTable()
for (method <- component.methods()) {
lua.pushString(method)
lua.pushBoolean(component.isDirect(method))
lua.rawSet(-3)
}
1
case _ =>
lua.pushNil()
lua.pushString("no such component")
2
}
})
lua.setField(-2, "methods")
lua.pushScalaFunction(lua => {
val address = lua.checkString(1)
val method = lua.checkString(2)
val args = lua.toSimpleJavaObjects(3)
try {
machine.invoke(address, method, args) match {
case results: Array[_] =>
lua.pushBoolean(true)
results.foreach(result => lua.pushValue(result))
1 + results.length
case _ =>
lua.pushBoolean(true)
1
}
}
catch {
case e: Throwable =>
if (Settings.get.logLuaCallbackErrors && !e.isInstanceOf[Machine.LimitReachedException]) {
OpenComputers.log.log(Level.WARNING, "Exception in Lua callback.", e)
}
e match {
case _: Machine.LimitReachedException =>
0
case e: IllegalArgumentException if e.getMessage != null =>
lua.pushBoolean(false)
lua.pushString(e.getMessage)
2
case e: Throwable if e.getMessage != null =>
lua.pushBoolean(true)
lua.pushNil()
lua.pushString(e.getMessage)
if (Settings.get.logLuaCallbackErrors) {
lua.pushString(e.getStackTraceString.replace("\r\n", "\n"))
4
}
else 3
case _: IndexOutOfBoundsException =>
lua.pushBoolean(false)
lua.pushString("index out of bounds")
2
case _: IllegalArgumentException =>
lua.pushBoolean(false)
lua.pushString("bad argument")
2
case _: NoSuchMethodException =>
lua.pushBoolean(false)
lua.pushString("no such method")
2
case _: FileNotFoundException =>
lua.pushBoolean(true)
lua.pushNil()
lua.pushString("file not found")
3
case _: SecurityException =>
lua.pushBoolean(true)
lua.pushNil()
lua.pushString("access denied")
3
case _: IOException =>
lua.pushBoolean(true)
lua.pushNil()
lua.pushString("i/o error")
3
case e: Throwable =>
OpenComputers.log.log(Level.WARNING, "Unexpected error in Lua callback.", e)
lua.pushBoolean(true)
lua.pushNil()
lua.pushString("unknown error")
3
}
}
})
lua.setField(-2, "invoke")
lua.setGlobal("component")
initPerms()
lua.load(classOf[Machine].getResourceAsStream(Settings.scriptPath + "kernel.lua"), "=kernel", "t")
lua.newThread() // Left as the first value on the stack.
true
}
def close() {
if (lua != null) {
lua.setTotalMemory(Integer.MAX_VALUE)
lua.close()
}
lua = null
kernelMemory = 0
}
def load(nbt: NBTTagCompound) {
// Unlimit memory use while unpersisting.
lua.setTotalMemory(Integer.MAX_VALUE)
try {
// Try unpersisting Lua, because that's what all of the rest depends
// on. First, clear the stack, meaning the current kernel.
lua.setTop(0)
unpersist(nbt.getByteArray("kernel"))
if (!lua.isThread(1)) {
// This shouldn't really happen, but there's a chance it does if
// the save was corrupt (maybe someone modified the Lua files).
throw new IllegalArgumentException("Invalid kernel.")
}
if (state.contains(Machine.State.SynchronizedCall) || state.contains(Machine.State.SynchronizedReturn)) {
unpersist(nbt.getByteArray("stack"))
if (!(if (state.contains(Machine.State.SynchronizedCall)) lua.isFunction(2) else lua.isTable(2))) {
// Same as with the above, should not really happen normally, but
// could for the same reasons.
throw new IllegalArgumentException("Invalid stack.")
}
}
kernelMemory = (nbt.getInteger("kernelMemory") * ramScale).toInt
} catch {
case e: LuaRuntimeException =>
OpenComputers.log.warning("Could not unpersist computer.\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat "))
state.push(Machine.State.Stopping)
}
// Limit memory again.
recomputeMemory()
}
def save(nbt: NBTTagCompound) {
// Unlimit memory while persisting.
lua.setTotalMemory(Integer.MAX_VALUE)
try {
// Try persisting Lua, because that's what all of the rest depends on.
// Save the kernel state (which is always at stack index one).
assert(lua.isThread(1))
nbt.setByteArray("kernel", persist(1))
// While in a driver call we have one object on the global stack: either
// the function to call the driver with, or the result of the call.
if (state.contains(Machine.State.SynchronizedCall) || state.contains(Machine.State.SynchronizedReturn)) {
assert(if (state.contains(Machine.State.SynchronizedCall)) lua.isFunction(2) else lua.isTable(2))
nbt.setByteArray("stack", persist(2))
}
nbt.setInteger("kernelMemory", math.ceil(kernelMemory / ramScale).toInt)
} catch {
case e: LuaRuntimeException =>
OpenComputers.log.warning("Could not persist computer.\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat "))
nbt.removeTag("state")
}
// Limit memory again.
recomputeMemory()
}
private def initPerms() {
// These tables must contain all java callbacks (i.e. C functions, since
// they are wrapped on the native side using a C function, of course).
// They are used when persisting/unpersisting the state so that the
// persistence library knows which values it doesn't have to serialize
// (since it cannot persist C functions).
lua.newTable() /* ... perms */
lua.newTable() /* ... uperms */
val perms = lua.getTop - 1
val uperms = lua.getTop
def flattenAndStore() {
/* ... k v */
// We only care for tables and functions, any value types are safe.
if (lua.isFunction(-1) || lua.isTable(-1)) {
lua.pushValue(-2) /* ... k v k */
lua.getTable(uperms) /* ... k v uperms[k] */
assert(lua.isNil(-1), "duplicate permanent value named " + lua.toString(-3))
lua.pop(1) /* ... k v */
// If we have aliases its enough to store the value once.
lua.pushValue(-1) /* ... k v v */
lua.getTable(perms) /* ... k v perms[v] */
val isNew = lua.isNil(-1)
lua.pop(1) /* ... k v */
if (isNew) {
lua.pushValue(-1) /* ... k v v */
lua.pushValue(-3) /* ... k v v k */
lua.rawSet(perms) /* ... k v ; perms[v] = k */
lua.pushValue(-2) /* ... k v k */
lua.pushValue(-2) /* ... k v k v */
lua.rawSet(uperms) /* ... k v ; uperms[k] = v */
// Recurse into tables.
if (lua.isTable(-1)) {
// Enforce a deterministic order when determining the keys, to ensure
// the keys are the same when unpersisting again.
val key = lua.toString(-2)
val childKeys = mutable.ArrayBuffer.empty[String]
lua.pushNil() /* ... k v nil */
while (lua.next(-2)) {
/* ... k v ck cv */
lua.pop(1) /* ... k v ck */
childKeys += lua.toString(-1)
}
/* ... k v */
childKeys.sortWith((a, b) => a.compareTo(b) < 0)
for (childKey <- childKeys) {
lua.pushString(key + "." + childKey) /* ... k v ck */
lua.getField(-2, childKey) /* ... k v ck cv */
flattenAndStore() /* ... k v */
}
/* ... k v */
}
/* ... k v */
}
/* ... k v */
}
lua.pop(2) /* ... */
}
// Mark everything that's globally reachable at this point as permanent.
lua.pushString("_G") /* ... perms uperms k */
lua.getGlobal("_G") /* ... perms uperms k v */
flattenAndStore() /* ... perms uperms */
lua.setField(LuaState.REGISTRYINDEX, "uperms") /* ... perms */
lua.setField(LuaState.REGISTRYINDEX, "perms") /* ... */
}
private def persist(index: Int): Array[Byte] = {
lua.getGlobal("eris") /* ... eris */
lua.getField(-1, "persist") /* ... eris persist */
if (lua.isFunction(-1)) {
lua.getField(LuaState.REGISTRYINDEX, "perms") /* ... eris persist perms */
lua.pushValue(index) // ... eris persist perms obj
try {
lua.call(2, 1) // ... eris str?
} catch {
case e: Throwable =>
lua.pop(1)
throw e
}
if (lua.isString(-1)) {
// ... eris str
val result = lua.toByteArray(-1)
lua.pop(2) // ...
return result
} // ... eris :(
} // ... eris :(
lua.pop(2) // ...
Array[Byte]()
}
private def unpersist(value: Array[Byte]): Boolean = {
lua.getGlobal("eris") // ... eris
lua.getField(-1, "unpersist") // ... eris unpersist
if (lua.isFunction(-1)) {
lua.getField(LuaState.REGISTRYINDEX, "uperms") /* ... eris persist uperms */
lua.pushByteArray(value) // ... eris unpersist uperms str
lua.call(2, 1) // ... eris obj
lua.insert(-2) // ... obj eris
lua.pop(1)
return true
} // ... :(
lua.pop(1)
false
}
}