Simplify seed to SHA-256 and remove external sha256 lib

This commit is contained in:
Cubitect 2021-03-19 21:31:21 +01:00
parent 1b2999230f
commit a9ef050076
5 changed files with 79 additions and 213 deletions

View File

@ -154,7 +154,7 @@ void setLayerSeed(Layer *layer, int64_t worldSeed)
}
else if (ls == -1) // Post 1.14 VoronoiZoom uses SHA256 for initialization
{
layer->startSalt = getVoroniSHA(worldSeed);
layer->startSalt = getVoronoiSHA(worldSeed);
layer->startSeed = 0;
}
else
@ -2469,23 +2469,85 @@ int mapVoronoiZoom114(const Layer * l, int * out, int x, int z, int w, int h)
}
int64_t getVoroniSHA(int64_t worldSeed)
inline static __attribute__((always_inline,const))
uint32_t rotr(uint32_t a, int b) { return (a >> b) | (a << (32-b)); }
int64_t getVoronoiSHA(int64_t seed)
{
int i;
BYTE data[8];
for (i = 0; i < 8; i++)
data[i] = (BYTE) (worldSeed >> i*8);
SHA256_CTX ctx;
BYTE hash[SHA256_BLOCK_SIZE];
static const uint32_t K[64] = {
0x428a2f98,0x71374491, 0xb5c0fbcf,0xe9b5dba5,
0x3956c25b,0x59f111f1, 0x923f82a4,0xab1c5ed5,
0xd807aa98,0x12835b01, 0x243185be,0x550c7dc3,
0x72be5d74,0x80deb1fe, 0x9bdc06a7,0xc19bf174,
0xe49b69c1,0xefbe4786, 0x0fc19dc6,0x240ca1cc,
0x2de92c6f,0x4a7484aa, 0x5cb0a9dc,0x76f988da,
0x983e5152,0xa831c66d, 0xb00327c8,0xbf597fc7,
0xc6e00bf3,0xd5a79147, 0x06ca6351,0x14292967,
0x27b70a85,0x2e1b2138, 0x4d2c6dfc,0x53380d13,
0x650a7354,0x766a0abb, 0x81c2c92e,0x92722c85,
0xa2bfe8a1,0xa81a664b, 0xc24b8b70,0xc76c51a3,
0xd192e819,0xd6990624, 0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08, 0x2748774c,0x34b0bcb5,
0x391c0cb3,0x4ed8aa4a, 0x5b9cca4f,0x682e6ff3,
0x748f82ee,0x78a5636f, 0x84c87814,0x8cc70208,
0x90befffa,0xa4506ceb, 0xbef9a3f7,0xc67178f2,
};
static const uint32_t B[8] = {
0x6a09e667,0xbb67ae85, 0x3c6ef372,0xa54ff53a,
0x510e527f,0x9b05688c, 0x1f83d9ab,0x5be0cd19,
};
sha256_init(&ctx);
sha256_update(&ctx, data, 8);
sha256_final(&ctx, hash);
uint32_t m[64];
uint32_t a0,a1,a2,a3,a4,a5,a6,a7;
uint32_t i, x, y;
m[0] = __builtin_bswap32((uint32_t)(seed));
m[1] = __builtin_bswap32((uint32_t)(seed >> 32));
m[2] = 0x80000000;
for (i = 3; i < 15; i++)
m[i] = 0;
m[15] = 0x00000040;
int64_t sha = 0;
for (i = 0; i < 8; i++)
sha |= ((uint64_t)hash[i] << i*8);
return sha;
for (i = 16; i < 64; ++i)
{
m[i] = m[i - 7] + m[i - 16];
x = m[i - 15];
m[i] += rotr(x,7) ^ rotr(x,18) ^ (x >> 3);
x = m[i - 2];
m[i] += rotr(x,17) ^ rotr(x,19) ^ (x >> 10);
}
a0 = B[0];
a1 = B[1];
a2 = B[2];
a3 = B[3];
a4 = B[4];
a5 = B[5];
a6 = B[6];
a7 = B[7];
for (i = 0; i < 64; i++)
{
x = a7 + K[i] + m[i];
x += rotr(a4,6) ^ rotr(a4,11) ^ rotr(a4,25);
x += (a4 & a5) ^ (~a4 & a6);
y = rotr(a0,2) ^ rotr(a0,13) ^ rotr(a0,22);
y += (a0 & a1) ^ (a0 & a2) ^ (a1 & a2);
a7 = a6;
a6 = a5;
a5 = a4;
a4 = a3 + x;
a3 = a2;
a2 = a1;
a1 = a0;
a0 = x + y;
}
a0 += B[0];
a1 += B[1];
return __builtin_bswap32(a0) | ((int64_t)__builtin_bswap32(a1) << 32);
}
void voronoiAccess3D(int64_t sha, int x, int y, int z, int *x4, int *y4, int *z4)

View File

@ -2,7 +2,6 @@
#define LAYER_H_
#include "javarnd.h"
#include "sha256.h"
#define __STDC_FORMAT_MACROS 1
@ -439,7 +438,7 @@ int mapVoronoiZoom114 (const Layer *, int *, int, int, int, int);
// Biome generation now stops at scale 1:4 OceanMix and voronoi is just an
// access algorithm, mapping the 1:1 scale onto its 1:4 correspondent.
// It is seeded by the first 8-bytes of the SHA-256 hash of the world seed.
int64_t getVoroniSHA(int64_t worldSeed);
int64_t getVoronoiSHA(int64_t worldSeed) __attribute__((const));
void voronoiAccess3D(int64_t sha, int x, int y, int z, int *x4, int *y4, int *z4);

View File

@ -27,7 +27,7 @@ ifeq ($(OS),Windows_NT)
else
libcubiomes: CFLAGS += -fPIC
endif
libcubiomes: sha256.o layers.o generator.o finders.o util.o
libcubiomes: layers.o generator.o finders.o util.o
$(AR) $(ARFLAGS) libcubiomes.a $^
@ -40,9 +40,6 @@ generator.o: generator.c generator.h
layers.o: layers.c layers.h
$(CC) -c $(CFLAGS) $<
sha256.o: sha256.c sha256.h
$(CC) -c $(CFLAGS) $<
util.o: util.c util.h
$(CC) -c $(CFLAGS) $<

158
sha256.c
View File

@ -1,158 +0,0 @@
/*********************************************************************
* Filename: sha256.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the SHA-256 hashing algorithm.
SHA-256 is one of the three algorithms in the SHA2
specification. The others, SHA-384 and SHA-512, are not
offered in this implementation.
Algorithm specification can be found here:
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
This implementation uses little endian byte order.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <memory.h>
#include "sha256.h"
/****************************** MACROS ******************************/
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
/**************************** VARIABLES *****************************/
static const WORD k[64] = {
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};
/*********************** FUNCTION DEFINITIONS ***********************/
void sha256_transform(SHA256_CTX *ctx, const BYTE data[])
{
WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
for ( ; i < 64; ++i)
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
void sha256_init(SHA256_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len)
{
WORD i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
sha256_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
void sha256_final(SHA256_CTX *ctx, BYTE hash[])
{
WORD i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
sha256_transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
sha256_transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}
}

View File

@ -1,34 +0,0 @@
/*********************************************************************
* Filename: sha256.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding SHA1 implementation.
*********************************************************************/
#ifndef SHA256_H
#define SHA256_H
/*************************** HEADER FILES ***************************/
#include <stddef.h>
/****************************** MACROS ******************************/
#define SHA256_BLOCK_SIZE 32 // SHA256 outputs a 32 byte digest
/**************************** DATA TYPES ****************************/
typedef unsigned char BYTE; // 8-bit byte
typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
typedef struct {
BYTE data[64];
WORD datalen;
unsigned long long bitlen;
WORD state[8];
} SHA256_CTX;
/*********************** FUNCTION DECLARATIONS **********************/
void sha256_init(SHA256_CTX *ctx);
void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len);
void sha256_final(SHA256_CTX *ctx, BYTE hash[]);
#endif // SHA256_H