cubiomes/biomenoise.c
Cubitect 89df24c3be Update spawn algorithm for 1.21.2 + cmake + more
* added basic support for cmake (#127)
* renamed Winter Drop version from MC_1_21_3 to MC_1_21_WD
* updated world spawn location for 1.21.2 (cubiomes-viewer #340)
* tweaked mc version to text conversion (#128)
* removed properties field in structure config and added dimension field instead
* moved biome tree selection back to biomenoise.c as it's slightly faster and avoids globals
2024-11-09 21:08:05 +01:00

1976 lines
67 KiB
C

#include "biomenoise.h"
#include "tables/btree18.h"
#include "tables/btree192.h"
#include "tables/btree19.h"
#include "tables/btree20.h"
#include "tables/btree21wd.h"
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <float.h>
//==============================================================================
// Noise
//==============================================================================
void initSurfaceNoise(SurfaceNoise *sn, int dim, uint64_t seed)
{
uint64_t s;
setSeed(&s, seed);
octaveInit(&sn->octmin, &s, sn->oct+0, -15, 16);
octaveInit(&sn->octmax, &s, sn->oct+16, -15, 16);
octaveInit(&sn->octmain, &s, sn->oct+32, -7, 8);
if (dim == DIM_END)
{
sn->xzScale = 2.0;
sn->yScale = 1.0;
sn->xzFactor = 80;
sn->yFactor = 160;
}
else // DIM_OVERWORLD
{
octaveInit(&sn->octsurf, &s, sn->oct+40, -3, 4);
skipNextN(&s, 262*10);
octaveInit(&sn->octdepth, &s, sn->oct+44, -15, 16);
sn->xzScale = 0.9999999814507745;
sn->yScale = 0.9999999814507745;
sn->xzFactor = 80;
sn->yFactor = 160;
}
}
void initSurfaceNoiseBeta(SurfaceNoiseBeta *snb, uint64_t seed)
{
uint64_t s;
setSeed(&s, seed);
octaveInitBeta(&snb->octmin, &s, snb->oct+0, 16, 684.412, 0.5, 1.0, 2.0);
octaveInitBeta(&snb->octmax, &s, snb->oct+16, 16, 684.412, 0.5, 1.0, 2.0);
octaveInitBeta(&snb->octmain, &s, snb->oct+32, 8, 684.412/80.0, 0.5, 1.0, 2.0);
skipNextN(&s, 262*8);
octaveInitBeta(&snb->octcontA, &s, snb->oct+40, 10, 1.121, 0.5, 1.0, 2.0);
octaveInitBeta(&snb->octcontB, &s, snb->oct+50, 16, 200.0, 0.5, 1.0, 2.0);
}
double sampleSurfaceNoiseBetween(const SurfaceNoise *sn, int x, int y, int z,
double noiseMin, double noiseMax)
{
double persist, amp;
double dx, dy, dz, sy;
int i;
double xzScale = 684.412 * sn->xzScale;
double yScale = 684.412 * sn->yScale;
double vmin = 0;
double vmax = 0;
persist = 1.0 / 32768.0;
amp = 64.0;
for (i = 15; i >= 0; i--)
{
dx = x * xzScale * persist;
dz = z * xzScale * persist;
sy = yScale * persist;
dy = y * sy;
vmin += samplePerlin(&sn->octmin.octaves[i], dx, dy, dz, sy, dy) * amp;
vmax += samplePerlin(&sn->octmax.octaves[i], dx, dy, dz, sy, dy) * amp;
if (vmin - amp > noiseMax && vmax - amp > noiseMax)
return noiseMax;
if (vmin + amp < noiseMin && vmax + amp < noiseMin)
return noiseMin;
amp *= 0.5;
persist *= 2.0;
}
double xzStep = xzScale / sn->xzFactor;
double yStep = yScale / sn->yFactor;
double vmain = 0.5;
persist = 1.0 / 128.0;
amp = 0.05 * 128.0;
for (i = 7; i >= 0; i--)
{
dx = x * xzStep * persist;
dz = z * xzStep * persist;
sy = yStep * persist;
dy = y * sy;
vmain += samplePerlin(&sn->octmain.octaves[i], dx, dy, dz, sy, dy) * amp;
if (vmain - amp > 1) return vmax;
if (vmain + amp < 0) return vmin;
amp *= 0.5;
persist *= 2.0;
}
return clampedLerp(vmain, vmin, vmax);
}
double sampleSurfaceNoise(const SurfaceNoise *sn, int x, int y, int z)
{
double xzScale = 684.412 * sn->xzScale;
double yScale = 684.412 * sn->yScale;
double xzStep = xzScale / sn->xzFactor;
double yStep = yScale / sn->yFactor;
double minNoise = 0;
double maxNoise = 0;
double mainNoise = 0;
double persist = 1.0;
double contrib = 1.0;
double dx, dy, dz, sy, ty;
int i;
for (i = 0; i < 16; i++)
{
dx = maintainPrecision(x * xzScale * persist);
dy = maintainPrecision(y * yScale * persist);
dz = maintainPrecision(z * xzScale * persist);
sy = yScale * persist;
ty = y * sy;
minNoise += samplePerlin(&sn->octmin.octaves[i], dx, dy, dz, sy, ty) * contrib;
maxNoise += samplePerlin(&sn->octmax.octaves[i], dx, dy, dz, sy, ty) * contrib;
if (i < 8)
{
dx = maintainPrecision(x * xzStep * persist);
dy = maintainPrecision(y * yStep * persist);
dz = maintainPrecision(z * xzStep * persist);
sy = yStep * persist;
ty = y * sy;
mainNoise += samplePerlin(&sn->octmain.octaves[i], dx, dy, dz, sy, ty) * contrib;
}
persist *= 0.5;
contrib *= 2.0;
}
return clampedLerp(0.5 + 0.05*mainNoise, minNoise/512.0, maxNoise/512.0);
}
//==============================================================================
// Nether (1.16+) and End (1.9+) Biome Generation
//==============================================================================
void setNetherSeed(NetherNoise *nn, uint64_t seed)
{
uint64_t s;
setSeed(&s, seed);
doublePerlinInit(&nn->temperature, &s, &nn->oct[0], &nn->oct[2], -7, 2);
setSeed(&s, seed+1);
doublePerlinInit(&nn->humidity, &s, &nn->oct[4], &nn->oct[6], -7, 2);
}
/* Gets the 3D nether biome at scale 1:4 (for 1.16+).
*/
int getNetherBiome(const NetherNoise *nn, int x, int y, int z, float *ndel)
{
const float npoints[5][4] = {
{ 0, 0, 0, nether_wastes },
{ 0, -0.5, 0, soul_sand_valley },
{ 0.4, 0, 0, crimson_forest },
{ 0, 0.5, 0.375*0.375, warped_forest },
{-0.5, 0, 0.175*0.175, basalt_deltas },
};
y = 0;
float temp = sampleDoublePerlin(&nn->temperature, x, y, z);
float humidity = sampleDoublePerlin(&nn->humidity, x, y, z);
int i, id = 0;
float dmin = FLT_MAX;
float dmin2 = FLT_MAX;
for (i = 0; i < 5; i++)
{
float dx = npoints[i][0] - temp;
float dy = npoints[i][1] - humidity;
float dsq = dx*dx + dy*dy + npoints[i][2];
if (dsq < dmin)
{
dmin2 = dmin;
dmin = dsq;
id = i;
}
else if (dsq < dmin2)
dmin2 = dsq;
}
if (ndel)
*ndel = sqrtf(dmin2) - sqrtf(dmin);
id = (int) npoints[id][3];
return id;
}
static void fillRad3D(int *out, int x, int y, int z, int sx, int sy, int sz,
int id, float rad)
{
int r, rsq;
int i, j, k;
r = (int) (rad);
if (r <= 0)
return;
rsq = (int) floor(rad * rad);
for (k = -r; k <= r; k++)
{
int ak = y+k;
if (ak < 0 || ak >= sy)
continue;
int ksq = k*k;
int *yout = &out[(int64_t)ak*sx*sz];
for (j = -r; j <= r; j++)
{
int aj = z+j;
if (aj < 0 || aj >= sz)
continue;
int jksq = j*j + ksq;
for (i = -r; i <= r; i++)
{
int ai = x+i;
if (ai < 0 || ai >= sx)
continue;
int ijksq = i*i + jksq;
if (ijksq > rsq)
continue;
yout[(int64_t)aj*sx+ai] = id;
}
}
}
}
int mapNether3D(const NetherNoise *nn, int *out, Range r, float confidence)
{
int64_t i, j, k;
if (r.sy <= 0)
r.sy = 1;
if (r.scale <= 3)
{
printf("mapNether3D() invalid scale for this function\n");
return 1;
}
int scale = r.scale / 4;
memset(out, 0, sizeof(int) * r.sx*r.sy*r.sz);
// The noisedelta is the distance between the first and second closest
// biomes within the noise space. Dividing this by the greatest possible
// gradient (~0.05) gives a minimum diameter of voxels around the sample
// cell that will have the same biome.
float invgrad = 1.0 / (confidence * 0.05 * 2) / scale;
for (k = 0; k < r.sy; k++)
{
int *yout = &out[k*r.sx*r.sz];
for (j = 0; j < r.sz; j++)
{
for (i = 0; i < r.sx; i++)
{
if (yout[j*r.sx+i])
continue;
//yout[j*w+i] = getNetherBiome(nn, x+i, y+k, z+j, NULL);
//continue;
float noisedelta;
int xi = (r.x+i)*scale;
int yk = (r.y+k);
int zj = (r.z+j)*scale;
int v = getNetherBiome(nn, xi, yk, zj, &noisedelta);
yout[j*r.sx+i] = v;
float cellrad = noisedelta * invgrad;
fillRad3D(out, i, j, k, r.sx, r.sy, r.sz, v, cellrad);
}
}
}
return 0;
}
int mapNether2D(const NetherNoise *nn, int *out, int x, int z, int w, int h)
{
Range r = {4, x, z, w, h, 0, 1};
return mapNether3D(nn, out, r, 1.0);
}
int genNetherScaled(const NetherNoise *nn, int *out, Range r, int mc, uint64_t sha)
{
if (r.scale <= 0) r.scale = 4;
if (r.sy == 0) r.sy = 1;
uint64_t siz = (uint64_t)r.sx*r.sy*r.sz;
if (mc <= MC_1_15)
{
uint64_t i;
for (i = 0; i < siz; i++)
out[i] = nether_wastes;
return 0;
}
if (r.scale == 1)
{
Range s = getVoronoiSrcRange(r);
int *src;
if (siz > 1)
{ // the source range is large enough that we can try optimizing
src = out + siz;
int err = mapNether3D(nn, src, s, 1.0);
if (err)
return err;
}
else
{
src = NULL;
}
int i, j, k;
int *p = out;
for (k = 0; k < r.sy; k++)
{
for (j = 0; j < r.sz; j++)
{
for (i = 0; i < r.sx; i++)
{
int x4, z4, y4;
voronoiAccess3D(sha, r.x+i, r.y+k, r.z+j, &x4, &y4, &z4);
if (src)
{
x4 -= s.x; y4 -= s.y; z4 -= s.z;
*p = src[(int64_t)y4*s.sx*s.sz + (int64_t)z4*s.sx + x4];
}
else
{
*p = getNetherBiome(nn, x4, y4, z4, NULL);
}
p++;
}
}
}
return 0;
}
else
{
return mapNether3D(nn, out, r, 1.0);
}
}
void setEndSeed(EndNoise *en, int mc, uint64_t seed)
{
uint64_t s;
setSeed(&s, seed);
skipNextN(&s, 17292);
perlinInit(&en->perlin, &s);
en->mc = mc;
}
static int getEndBiome(int hx, int hz, const uint16_t *hmap, int hw)
{
int i, j;
const uint16_t ds[26] = { // (25-2*i)*(25-2*i)
// 0 1 2 3 4 5 6 7 8 9 10 11 12
625, 529, 441, 361, 289, 225, 169, 121, 81, 49, 25, 9, 1,
// 13 14 15 16 17 18 19 20 21 22 23 24, 25
1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625,
};
const uint16_t *p_dsi = ds + (hx < 0);
const uint16_t *p_dsj = ds + (hz < 0);
const uint16_t *p_elev = hmap;
uint32_t h;
if (abs(hx) <= 15 && abs(hz) <= 15)
h = 64 * (hx*hx + hz*hz);
else
h = 14401;
for (j = 0; j < 25; j++)
{
uint16_t dsj = p_dsj[j];
uint16_t e;
uint32_t u;
// force unroll for(i=0;i<25;i++) in a cross compatible way
#define x5(i,x) { x; i++; x; i++; x; i++; x; i++; x; i++; }
#define for25(i,x) { i = 0; x5(i,x) x5(i,x) x5(i,x) x5(i,x) x5(i,x) }
for25(i,
if unlikely(e = p_elev[i])
{
if ((u = (p_dsi[i] + (uint32_t)dsj) * e) < h)
h = u;
}
);
#undef for25
#undef x5
p_elev += hw;
}
if (h < 3600)
return end_highlands;
else if (h <= 10000)
return end_midlands;
else if (h <= 14400)
return end_barrens;
return small_end_islands;
}
int mapEndBiome(const EndNoise *en, int *out, int x, int z, int w, int h)
{
int64_t i, j;
int64_t hw = w + 26;
int64_t hh = h + 26;
uint16_t *hmap = (uint16_t*) malloc(sizeof(*hmap) * hw * hh);
for (j = 0; j < hh; j++)
{
for (i = 0; i < hw; i++)
{
int64_t rx = x + i - 12;
int64_t rz = z + j - 12;
uint64_t rsq = rx * rx + rz * rz;
uint16_t v = 0;
if (rsq > 4096 && sampleSimplex2D(&en->perlin, rx, rz) < -0.9f)
{
//v = (llabs(rx) * 3439 + llabs(rz) * 147) % 13 + 9;
v = (unsigned int)(
fabsf((float)rx) * 3439.0f + fabsf((float)rz) * 147.0f
) % 13 + 9;
v *= v;
}
hmap[(int64_t)j*hw+i] = v;
}
}
for (j = 0; j < h; j++)
{
for (i = 0; i < w; i++)
{
int64_t hx = (i+x);
int64_t hz = (j+z);
uint64_t rsq = hx * hx + hz * hz;
if (rsq <= 4096L)
out[j*w+i] = the_end;
else
{
hx = 2*hx + 1;
hz = 2*hz + 1;
if (en->mc > MC_1_13)
{ // add outer end rings
rsq = hx * hx + hz * hz;
if ((int)rsq < 0)
{
out[j*w+i] = end_barrens;
continue;
}
}
uint16_t *p_elev = &hmap[(hz/2-z)*hw + (hx/2-x)];
out[j*w+i] = getEndBiome(hx, hz, p_elev, hw);
}
}
}
free(hmap);
return 0;
}
int mapEnd(const EndNoise *en, int *out, int x, int z, int w, int h)
{
int cx = x >> 2;
int cz = z >> 2;
int64_t cw = ((x+w) >> 2) + 1 - cx;
int64_t ch = ((z+h) >> 2) + 1 - cz;
int *buf = (int*) malloc(sizeof(int) * cw * ch);
mapEndBiome(en, buf, cx, cz, cw, ch);
int i, j;
for (j = 0; j < h; j++)
{
int cj = ((z+j) >> 2) - cz;
for (i = 0; i < w; i++)
{
int ci = ((x+i) >> 2) - cx;
int v = buf[cj*cw+ci];
out[j*w+i] = v;
}
}
free(buf);
return 0;
}
/* Samples the End height. The coordinates used here represent eight blocks per
* cell. By default a range of 12 cells is sampled, which can be overriden for
* optimization purposes.
*/
float getEndHeightNoise(const EndNoise *en, int x, int z, int range)
{
int hx = x / 2;
int hz = z / 2;
int oddx = x % 2;
int oddz = z % 2;
int i, j;
int64_t h = 64 * (x*(int64_t)x + z*(int64_t)z);
if (range == 0)
range = 12;
for (j = -range; j <= range; j++)
{
for (i = -range; i <= range; i++)
{
int64_t rx = hx + i;
int64_t rz = hz + j;
uint64_t rsq = rx*rx + rz*rz;
uint16_t v = 0;
if (rsq > 4096 && sampleSimplex2D(&en->perlin, rx, rz) < -0.9f)
{
//v = (llabs(rx) * 3439 + llabs(rz) * 147) % 13 + 9;
v = (unsigned int)(
fabsf((float)rx) * 3439.0f + fabsf((float)rz) * 147.0f
) % 13 + 9;
rx = (oddx - i * 2);
rz = (oddz - j * 2);
rsq = rx*rx + rz*rz;
int64_t noise = rsq * v*v;
if (noise < h)
h = noise;
}
}
}
float ret = 100 - sqrtf((float) h);
if (ret < -100) ret = -100;
if (ret > 80) ret = 80;
return ret;
}
void sampleNoiseColumnEnd(double column[],
const SurfaceNoise *sn, const EndNoise *en, int x, int z,
int colymin, int colymax)
{
// clamped (32 + 46 - y) / 64.0
static const double upper_drop[] = {
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 0-7
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 63./64, // 8-15
62./64, 61./64, 60./64, 59./64, 58./64, 57./64, 56./64, 55./64, // 16-23
54./64, 53./64, 52./64, 51./64, 50./64, 49./64, 48./64, 47./64, // 24-31
46./64 // 32
};
// clamped (y - 1) / 7.0
static const double lower_drop[] = {
0.0, 0.0, 1./7, 2./7, 3./7, 4./7, 5./7, 6./7, // 0-7
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 8-15
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 16-23
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, // 24-31
1.0, // 32
};
int y;
if (en->mc > MC_1_13)
{ // add outer end rings
uint64_t rsq = (uint64_t) x * x + (uint64_t) z * z;
if ((int)rsq < 0)
{
for (y = colymin; y <= colymax; y++)
column[y - colymin] = nan("");
return;
}
}
// depth is between [-108, +72]
// noise is between [-128, +128]
// for a sold block we need the upper drop as:
// (72 + 128) * u - 3000 * (1-u) > 0 => upper_drop = u < 15/16
// which occurs at y = 18 for the highest relevant noise cell
// for the lower drop we need:
// (72 + 128) * l - 30 * (1-l) > 0 => lower_drop = l > 3/23
// which occurs at y = 3 for the lowest relevant noise cell
double depth = getEndHeightNoise(en, x, z, 0) - 8.0f;
for (y = colymin; y <= colymax; y++)
{
if (lower_drop[y] == 0.0) {
column[y - colymin] = -30;
continue;
}
double noise = sampleSurfaceNoiseBetween(sn, x, y, z, -128, +128);
double clamped = noise + depth;
clamped = lerp(upper_drop[y], -3000, clamped);
clamped = lerp(lower_drop[y], -30, clamped);
column[y - colymin] = clamped;
}
}
/* Given bordering noise columns and a fractional position between those,
* determine the surface block height (i.e. where the interpolated noise > 0).
* Note that the noise columns should be of size: ncolxz[ colymax-colymin+1 ]
*/
int getSurfaceHeight(
const double ncol00[], const double ncol01[],
const double ncol10[], const double ncol11[],
int colymin, int colymax, int blockspercell, double dx, double dz)
{
int y, celly;
for (celly = colymax-1; celly >= colymin; celly--)
{
int idx = celly - colymin;
double v000 = ncol00[idx];
double v001 = ncol01[idx];
double v100 = ncol10[idx];
double v101 = ncol11[idx];
double v010 = ncol00[idx+1];
double v011 = ncol01[idx+1];
double v110 = ncol10[idx+1];
double v111 = ncol11[idx+1];
for (y = blockspercell - 1; y >= 0; y--)
{
double dy = y / (double) blockspercell;
double noise = lerp3(dy, dx, dz, // Note: not x, y, z
v000, v010, v100, v110,
v001, v011, v101, v111);
if (noise > 0)
return celly * blockspercell + y;
}
}
return 0;
}
int getEndSurfaceHeight(int mc, uint64_t seed, int x, int z)
{
EndNoise en;
setEndSeed(&en, mc, seed);
SurfaceNoise sn;
initSurfaceNoise(&sn, DIM_END, seed);
// end noise columns vary on a grid of cell size = eight
int cellx = (x >> 3);
int cellz = (z >> 3);
double dx = (x & 7) / 8.0;
double dz = (z & 7) / 8.0;
// abusing enum for local compile time constants rather than enumeration
enum { y0 = 0, y1 = 32, yn = y1-y0+1 };
double ncol00[yn];
double ncol01[yn];
double ncol10[yn];
double ncol11[yn];
sampleNoiseColumnEnd(ncol00, &sn, &en, cellx, cellz, y0, y1);
sampleNoiseColumnEnd(ncol01, &sn, &en, cellx, cellz+1, y0, y1);
sampleNoiseColumnEnd(ncol10, &sn, &en, cellx+1, cellz, y0, y1);
sampleNoiseColumnEnd(ncol11, &sn, &en, cellx+1, cellz+1, y0, y1);
return getSurfaceHeight(ncol00, ncol01, ncol10, ncol11, y0, y1, 4, dx, dz);
}
int mapEndSurfaceHeight(float *y, const EndNoise *en, const SurfaceNoise *sn,
int x, int z, int w, int h, int scale, int ymin)
{
if (scale != 1 && scale != 2 && scale != 4 && scale != 8)
return 1;
int y0 = ymin >> 2;
if (y0 < 2) y0 = 2;
if (y0 > 17) y0 = 17;
int y1 = 18;
int yn = y1 - y0 + 1;
double cellmid = scale > 1 ? scale / 16.0 : 0;
int cellsiz = 8 / scale;
int cx = floordiv(x, cellsiz);
int cz = floordiv(z, cellsiz);
int cw = floordiv(x + w - 1, cellsiz) - cx + 2;
int i, j;
double *buf = malloc(sizeof(double) * yn * cw * 2);
double *ncol[2];
ncol[0] = buf;
ncol[1] = buf + yn * cw;
for (i = 0; i < cw; i++)
sampleNoiseColumnEnd(ncol[1]+i*yn, sn, en, cx+i, cz+0, y0, y1);
for (j = 0; j < h; j++)
{
int cj = floordiv(z + j, cellsiz);
int dj = z + j - cj * cellsiz;
if (j == 0 || dj == 0)
{
double *tmp = ncol[0];
ncol[0] = ncol[1];
ncol[1] = tmp;
for (i = 0; i < cw; i++)
sampleNoiseColumnEnd(ncol[1]+i*yn, sn, en, cx+i, cj+1, y0, y1);
}
for (i = 0; i < w; i++)
{
int ci = floordiv(x + i, cellsiz);
int di = x + i - ci * cellsiz;
double dx = di / (double) cellsiz + cellmid;
double dz = dj / (double) cellsiz + cellmid;
double *ncol0 = ncol[0] + (ci - cx) * yn;
double *ncol1 = ncol[1] + (ci - cx) * yn;
y[j*w+i] = getSurfaceHeight(ncol0, ncol1, ncol0+yn, ncol1+yn,
y0, y1, 4, dx, dz);
}
}
free(buf);
return 0;
}
int genEndScaled(const EndNoise *en, int *out, Range r, int mc, uint64_t sha)
{
if (mc < MC_1_0)
return 1;
if (r.sy == 0)
r.sy = 1;
if (mc <= MC_1_8)
{
uint64_t i, siz = (uint64_t)r.sx*r.sy*r.sz;
for (i = 0; i < siz; i++)
out[i] = the_end;
return 0;
}
int err, iy;
if (r.scale == 1)
{
Range s = getVoronoiSrcRange(r);
err = mapEnd(en, out, s.x, s.z, s.sx, s.sz);
if (err) return err;
if (mc <= MC_1_14)
{ // up to 1.14 voronoi noise is planar
Layer lvoronoi;
memset(&lvoronoi, 0, sizeof(Layer));
lvoronoi.startSalt = getLayerSalt(10);
err = mapVoronoi114(&lvoronoi, out, r.x, r.z, r.sx, r.sz);
if (err) return err;
}
else
{ // in 1.15 voronoi noise varies vertically in the End
int *src = out + (int64_t)r.sx*r.sy*r.sz;
memmove(src, out, sizeof(int)*s.sx*s.sz);
for (iy = 0; iy < r.sy; iy++)
{
mapVoronoiPlane(
sha, out+r.sx*r.sz*iy, src,
r.x,r.z,r.sx,r.sz, r.y+iy,
s.x,s.z,s.sx,s.sz);
}
return 0; // 3D expansion is done => return
}
}
else if (r.scale == 4)
{
err = mapEnd(en, out, r.x, r.z, r.sx, r.sz);
if (err) return err;
}
else if (r.scale == 16)
{
err = mapEndBiome(en, out, r.x, r.z, r.sx, r.sz);
if (err) return err;
}
else
{
float d = r.scale / 8.0;
int i, j;
for (j = 0; j < r.sz; j++)
{
for (i = 0; i < r.sx; i++)
{
int64_t hx = (int64_t)((i+r.x) * d);
int64_t hz = (int64_t)((j+r.z) * d);
uint64_t rsq = hx*hx + hz*hz;
if (rsq <= 16384L)
{
out[j*r.sx+i] = the_end;
continue;
}
else if (mc > MC_1_13 && (int)(rsq) < 0)
{
out[j*r.sx+i] = end_barrens;
continue;
}
float h = getEndHeightNoise(en, hx, hz, 4);
if (h > 40)
out[j*r.sx+i] = end_highlands;
else if (h >= 0)
out[j*r.sx+i] = end_midlands;
else if (h >= -20)
out[j*r.sx+i] = end_barrens;
else
out[j*r.sx+i] = small_end_islands;
}
}
}
// expanding 2D into 3D
for (iy = 1; iy < r.sy; iy++)
{
int64_t i, siz = (int64_t)r.sx*r.sz;
for (i = 0; i < siz; i++)
out[iy*siz + i] = out[i];
}
return 0;
}
//==============================================================================
// Overworld and Nether Biome Generation 1.18
//==============================================================================
static int init_climate_seed(
DoublePerlinNoise *dpn, PerlinNoise *oct,
uint64_t xlo, uint64_t xhi, int large, int nptype, int nmax
)
{
Xoroshiro pxr;
int n = 0;
switch (nptype)
{
case NP_SHIFT: {
static const double amp[] = {1, 1, 1, 0};
// md5 "minecraft:offset"
pxr.lo = xlo ^ 0x080518cf6af25384;
pxr.hi = xhi ^ 0x3f3dfb40a54febd5;
n += xDoublePerlinInit(dpn, &pxr, oct, amp, -3, 4, nmax);
} break;
case NP_TEMPERATURE: {
static const double amp[] = {1.5, 0, 1, 0, 0, 0};
// md5 "minecraft:temperature" or "minecraft:temperature_large"
pxr.lo = xlo ^ (large ? 0x944b0073edf549db : 0x5c7e6b29735f0d7f);
pxr.hi = xhi ^ (large ? 0x4ff44347e9d22b96 : 0xf7d86f1bbc734988);
n += xDoublePerlinInit(dpn, &pxr, oct, amp, large ? -12 : -10, 6, nmax);
} break;
case NP_HUMIDITY: {
static const double amp[] = {1, 1, 0, 0, 0, 0};
// md5 "minecraft:vegetation" or "minecraft:vegetation_large"
pxr.lo = xlo ^ (large ? 0x71b8ab943dbd5301 : 0x81bb4d22e8dc168e);
pxr.hi = xhi ^ (large ? 0xbb63ddcf39ff7a2b : 0xf1c8b4bea16303cd);
n += xDoublePerlinInit(dpn, &pxr, oct, amp, large ? -10 : -8, 6, nmax);
} break;
case NP_CONTINENTALNESS: {
static const double amp[] = {1, 1, 2, 2, 2, 1, 1, 1, 1};
// md5 "minecraft:continentalness" or "minecraft:continentalness_large"
pxr.lo = xlo ^ (large ? 0x9a3f51a113fce8dc : 0x83886c9d0ae3a662);
pxr.hi = xhi ^ (large ? 0xee2dbd157e5dcdad : 0xafa638a61b42e8ad);
n += xDoublePerlinInit(dpn, &pxr, oct, amp, large ? -11 : -9, 9, nmax);
} break;
case NP_EROSION: {
static const double amp[] = {1, 1, 0, 1, 1};
// md5 "minecraft:erosion" or "minecraft:erosion_large"
pxr.lo = xlo ^ (large ? 0x8c984b1f8702a951 : 0xd02491e6058f6fd8);
pxr.hi = xhi ^ (large ? 0xead7b1f92bae535f : 0x4792512c94c17a80);
n += xDoublePerlinInit(dpn, &pxr, oct, amp, large ? -11 : -9, 5, nmax);
} break;
case NP_WEIRDNESS: {
static const double amp[] = {1, 2, 1, 0, 0, 0};
// md5 "minecraft:ridge"
pxr.lo = xlo ^ 0xefc8ef4d36102b34;
pxr.hi = xhi ^ 0x1beeeb324a0f24ea;
n += xDoublePerlinInit(dpn, &pxr, oct, amp, -7, 6, nmax);
} break;
default:
printf("unsupported climate parameter %d\n", nptype);
exit(1);
}
return n;
}
void setBiomeSeed(BiomeNoise *bn, uint64_t seed, int large)
{
Xoroshiro pxr;
xSetSeed(&pxr, seed);
uint64_t xlo = xNextLong(&pxr);
uint64_t xhi = xNextLong(&pxr);
int n = 0, i = 0;
for (; i < NP_MAX; i++)
n += init_climate_seed(&bn->climate[i], bn->oct+n, xlo, xhi, large, i, -1);
if ((size_t)n > sizeof(bn->oct) / sizeof(*bn->oct))
{
printf("setBiomeSeed(): BiomeNoise is malformed, buffer too small\n");
exit(1);
}
bn->nptype = -1;
}
void setBetaBiomeSeed(BiomeNoiseBeta *bnb, uint64_t seed)
{
uint64_t seedScratch;
setSeed(&seedScratch, seed*9871);
octaveInitBeta(bnb->climate, &seedScratch, bnb->oct,
4, 0.025/1.5, 0.25, 0.55, 2.0);
setSeed(&seedScratch, seed*39811);
octaveInitBeta(bnb->climate+1, &seedScratch, bnb->oct+4,
4, 0.05/1.5, 1./3, 0.55, 2.0);
setSeed(&seedScratch, seed*0x84a59L);
octaveInitBeta(bnb->climate+2, &seedScratch, bnb->oct+8,
2, 0.25/1.5, 10./17, 0.55, 2.0);
bnb->nptype = -1;
}
enum { SP_CONTINENTALNESS, SP_EROSION, SP_RIDGES, SP_WEIRDNESS };
static void addSplineVal(Spline *rsp, float loc, Spline *val, float der)
{
rsp->loc[rsp->len] = loc;
rsp->val[rsp->len] = val;
rsp->der[rsp->len] = der;
rsp->len++;
//if (rsp->len > 12) {
// printf("addSplineVal(): too many spline points\n");
// exit(1);
//}
}
static Spline *createFixSpline(SplineStack *ss, float val)
{
FixSpline *sp = &ss->fstack[ss->flen++];
sp->len = 1;
sp->val = val;
return (Spline*)sp;
}
static float getOffsetValue(float weirdness, float continentalness)
{
float f0 = 1.0F - (1.0F - continentalness) * 0.5F;
float f1 = 0.5F * (1.0F - continentalness);
float f2 = (weirdness + 1.17F) * 0.46082947F;
float off = f2 * f0 - f1;
if (weirdness < -0.7F)
return off > -0.2222F ? off : -0.2222F;
else
return off > 0 ? off : 0;
}
static Spline *createSpline_38219(SplineStack *ss, float f, int bl)
{
Spline *sp = &ss->stack[ss->len++];
sp->typ = SP_RIDGES;
float i = getOffsetValue(-1.0F, f);
float k = getOffsetValue( 1.0F, f);
float l = 1.0F - (1.0F - f) * 0.5F;
float u = 0.5F * (1.0F - f);
l = u / (0.46082947F * l) - 1.17F;
if (-0.65F < l && l < 1.0F)
{
float p, q, r, s;
u = getOffsetValue(-0.65F, f);
p = getOffsetValue(-0.75F, f);
q = (p - i) * 4.0F;
r = getOffsetValue(l, f);
s = (k - r) / (1.0F - l);
addSplineVal(sp, -1.0F, createFixSpline(ss, i), q);
addSplineVal(sp, -0.75F, createFixSpline(ss, p), 0);
addSplineVal(sp, -0.65F, createFixSpline(ss, u), 0);
addSplineVal(sp, l-0.01F, createFixSpline(ss, r), 0);
addSplineVal(sp, l, createFixSpline(ss, r), s);
addSplineVal(sp, 1.0F, createFixSpline(ss, k), s);
}
else
{
u = (k - i) * 0.5F;
if (bl) {
addSplineVal(sp, -1.0F, createFixSpline(ss, i > 0.2 ? i : 0.2), 0);
addSplineVal(sp, 0.0F, createFixSpline(ss, lerp(0.5F, i, k)), u);
} else {
addSplineVal(sp, -1.0F, createFixSpline(ss, i), u);
}
addSplineVal(sp, 1.0F, createFixSpline(ss, k), u);
}
return sp;
}
static Spline *createFlatOffsetSpline(
SplineStack *ss, float f, float g, float h, float i, float j, float k)
{
Spline *sp = &ss->stack[ss->len++];
sp->typ = SP_RIDGES;
float l = 0.5F * (g - f); if (l < k) l = k;
float m = 5.0F * (h - g);
addSplineVal(sp, -1.0F, createFixSpline(ss, f), l);
addSplineVal(sp, -0.4F, createFixSpline(ss, g), l < m ? l : m);
addSplineVal(sp, 0.0F, createFixSpline(ss, h), m);
addSplineVal(sp, 0.4F, createFixSpline(ss, i), 2.0F*(i-h));
addSplineVal(sp, 1.0F, createFixSpline(ss, j), 0.7F*(j-i));
return sp;
}
static Spline *createLandSpline(
SplineStack *ss, float f, float g, float h, float i, float j, float k, int bl)
{
Spline *sp1 = createSpline_38219(ss, lerp(i, 0.6F, 1.5F), bl);
Spline *sp2 = createSpline_38219(ss, lerp(i, 0.6F, 1.0F), bl);
Spline *sp3 = createSpline_38219(ss, i, bl);
const float ih = 0.5F * i;
Spline *sp4 = createFlatOffsetSpline(ss, f-0.15F, ih, ih, ih, i*0.6F, 0.5F);
Spline *sp5 = createFlatOffsetSpline(ss, f, j*i, g*i, ih, i*0.6F, 0.5F);
Spline *sp6 = createFlatOffsetSpline(ss, f, j, j, g, h, 0.5F);
Spline *sp7 = createFlatOffsetSpline(ss, f, j, j, g, h, 0.5F);
Spline *sp8 = &ss->stack[ss->len++];
sp8->typ = SP_RIDGES;
addSplineVal(sp8, -1.0F, createFixSpline(ss, f), 0.0F);
addSplineVal(sp8, -0.4F, sp6, 0.0F);
addSplineVal(sp8, 0.0F, createFixSpline(ss, h + 0.07F), 0.0F);
Spline *sp9 = createFlatOffsetSpline(ss, -0.02F, k, k, g, h, 0.0F);
Spline *sp = &ss->stack[ss->len++];
sp->typ = SP_EROSION;
addSplineVal(sp, -0.85F, sp1, 0.0F);
addSplineVal(sp, -0.7F, sp2, 0.0F);
addSplineVal(sp, -0.4F, sp3, 0.0F);
addSplineVal(sp, -0.35F, sp4, 0.0F);
addSplineVal(sp, -0.1F, sp5, 0.0F);
addSplineVal(sp, 0.2F, sp6, 0.0F);
if (bl) {
addSplineVal(sp, 0.4F, sp7, 0.0F);
addSplineVal(sp, 0.45F, sp8, 0.0F);
addSplineVal(sp, 0.55F, sp8, 0.0F);
addSplineVal(sp, 0.58F, sp7, 0.0F);
}
addSplineVal(sp, 0.7F, sp9, 0.0F);
return sp;
}
float getSpline(const Spline *sp, const float *vals)
{
if (!sp || sp->len <= 0 || sp->len >= 12)
{
printf("getSpline(): bad parameters\n");
exit(1);
}
if (sp->len == 1)
return ((FixSpline*)sp)->val;
float f = vals[sp->typ];
int i;
for (i = 0; i < sp->len; i++)
if (sp->loc[i] >= f)
break;
if (i == 0 || i == sp->len)
{
if (i) i--;
float v = getSpline(sp->val[i], vals);
return v + sp->der[i] * (f - sp->loc[i]);
}
const Spline *sp1 = sp->val[i-1];
const Spline *sp2 = sp->val[i];
float g = sp->loc[i-1];
float h = sp->loc[i];
float k = (f - g) / (h - g);
float l = sp->der[i-1];
float m = sp->der[i];
float n = getSpline(sp1, vals);
float o = getSpline(sp2, vals);
float p = l * (h - g) - (o - n);
float q = -m * (h - g) + (o - n);
float r = lerp(k, n, o) + k * (1.0F - k) * lerp(k, p, q);
return r;
}
void initBiomeNoise(BiomeNoise *bn, int mc)
{
SplineStack *ss = &bn->ss;
memset(ss, 0, sizeof(*ss));
Spline *sp = &ss->stack[ss->len++];
sp->typ = SP_CONTINENTALNESS;
Spline *sp1 = createLandSpline(ss, -0.15F, 0.00F, 0.0F, 0.1F, 0.00F, -0.03F, 0);
Spline *sp2 = createLandSpline(ss, -0.10F, 0.03F, 0.1F, 0.1F, 0.01F, -0.03F, 0);
Spline *sp3 = createLandSpline(ss, -0.10F, 0.03F, 0.1F, 0.7F, 0.01F, -0.03F, 1);
Spline *sp4 = createLandSpline(ss, -0.05F, 0.03F, 0.1F, 1.0F, 0.01F, 0.01F, 1);
addSplineVal(sp, -1.10F, createFixSpline(ss, 0.044F), 0.0F);
addSplineVal(sp, -1.02F, createFixSpline(ss, -0.2222F), 0.0F);
addSplineVal(sp, -0.51F, createFixSpline(ss, -0.2222F), 0.0F);
addSplineVal(sp, -0.44F, createFixSpline(ss, -0.12F), 0.0F);
addSplineVal(sp, -0.18F, createFixSpline(ss, -0.12F), 0.0F);
addSplineVal(sp, -0.16F, sp1, 0.0F);
addSplineVal(sp, -0.15F, sp1, 0.0F);
addSplineVal(sp, -0.10F, sp2, 0.0F);
addSplineVal(sp, 0.25F, sp3, 0.0F);
addSplineVal(sp, 1.00F, sp4, 0.0F);
bn->sp = sp;
bn->mc = mc;
}
/// Biome sampler for MC 1.18
int sampleBiomeNoise(const BiomeNoise *bn, int64_t *np, int x, int y, int z,
uint64_t *dat, uint32_t sample_flags)
{
if (bn->nptype >= 0)
{ // initialized for a specific climate parameter
if (np)
memset(np, 0, NP_MAX*sizeof(*np));
int64_t id = (int64_t) (10000.0 * sampleClimatePara(bn, np, x, z));
return (int) id;
}
float t = 0, h = 0, c = 0, e = 0, d = 0, w = 0;
double px = x, pz = z;
if (!(sample_flags & SAMPLE_NO_SHIFT))
{
px += sampleDoublePerlin(&bn->climate[NP_SHIFT], x, 0, z) * 4.0;
pz += sampleDoublePerlin(&bn->climate[NP_SHIFT], z, x, 0) * 4.0;
}
c = sampleDoublePerlin(&bn->climate[NP_CONTINENTALNESS], px, 0, pz);
e = sampleDoublePerlin(&bn->climate[NP_EROSION], px, 0, pz);
w = sampleDoublePerlin(&bn->climate[NP_WEIRDNESS], px, 0, pz);
if (!(sample_flags & SAMPLE_NO_DEPTH))
{
float np_param[] = {
c, e, -3.0F * ( fabsf( fabsf(w) - 0.6666667F ) - 0.33333334F ), w,
};
double off = getSpline(bn->sp, np_param) + 0.015F;
//double py = y + sampleDoublePerlin(&bn->shift, y, z, x) * 4.0;
d = 1.0 - (y * 4) / 128.0 - 83.0/160.0 + off;
}
t = sampleDoublePerlin(&bn->climate[NP_TEMPERATURE], px, 0, pz);
h = sampleDoublePerlin(&bn->climate[NP_HUMIDITY], px, 0, pz);
int64_t l_np[6];
int64_t *p_np = np ? np : l_np;
p_np[0] = (int64_t)(10000.0F*t);
p_np[1] = (int64_t)(10000.0F*h);
p_np[2] = (int64_t)(10000.0F*c);
p_np[3] = (int64_t)(10000.0F*e);
p_np[4] = (int64_t)(10000.0F*d);
p_np[5] = (int64_t)(10000.0F*w);
int id = none;
if (!(sample_flags & SAMPLE_NO_BIOME))
id = climateToBiome(bn->mc, (const uint64_t*)p_np, dat);
return id;
}
// Note: Climate noise is sampled at a 1:1 scale.
int sampleBiomeNoiseBeta(const BiomeNoiseBeta *bnb, int64_t *np, double *nv,
int x, int z)
{
if (bnb->nptype >= 0 && np)
memset(np, 0, 2*sizeof(*np));
double t, h, f;
f = sampleOctaveBeta17Biome(&bnb->climate[2], x, z) * 1.1 + 0.5;
t = (sampleOctaveBeta17Biome(&bnb->climate[0], x, z) *
0.15 + 0.7) * 0.99 + f * 0.01;
t = 1 - (1 - t) * (1 - t);
t = (t < 0) ? 0 : t;
t = (t > 1) ? 1 : t;
if (bnb->nptype == NP_TEMPERATURE)
return (int64_t) (10000.0F * t);
h = (sampleOctaveBeta17Biome(&bnb->climate[1], x, z) *
0.15 + 0.5) * 0.998 + f * 0.002;
h = (h < 0) ? 0 : h;
h = (h > 1) ? 1 : h;
if (bnb->nptype == NP_HUMIDITY)
return (int64_t) (10000.0F * h * t);
if (nv)
{
nv[0] = t;
nv[1] = h;
}
return getOldBetaBiome((float) t, (float) h);
}
int getOldBetaBiome(float t, float h)
{
static const uint8_t biome_table_beta_1_7[64*64] =
{
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,1,1,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,1,1,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,1,1,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,1,1,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,1,1,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,1,1,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,1,1,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,1,1,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,1,1,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,1,1,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,1,1,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,1,1,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,1,1,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,1,1,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,9,9,9,9,9,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,9,9,9,9,9,9,9,9,9,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,9,9,9,9,9,9,9,9,9,9,9,9,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,2,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,2,2,2,2,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,2,2,2,2,2,2,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,2,2,2,2,2,2,2,2,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,2,2,2,2,2,2,2,2,2,2,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,2,2,2,2,2,2,2,2,2,2,2,2,0,0,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,
9,9,9,9,9,9,9,9,9,9,9,9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,
9,9,9,9,9,9,9,9,9,9,9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,
9,9,9,9,9,9,9,9,9,9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,
9,9,9,9,9,9,9,9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,
9,9,9,9,9,9,9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,
9,9,9,9,9,9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,
9,9,9,9,9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,
9,9,9,9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,
9,9,9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,
9,9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,
9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,
9,9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,
9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,2,2,2,2,2,2,2,2,2,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,2,2,2,2,2,2,2,2,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,2,2,2,2,2,2,2,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,2,2,2,2,2,2,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,2,2,2,2,2,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,2,2,2,2,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,2,2,2,2,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,2,2,2,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,2,2,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,2,2,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,2,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,4,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,8,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,2,4,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,8,8,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,8,8,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,2,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,8,8,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,4,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,8,8,
5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
2,4,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,8,8,
5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,8,8,
};
static const int bmap[] = {
plains, desert, forest, taiga, swamp, snowy_tundra, savanna,
seasonal_forest, rainforest, shrubland
};
int idx = (int)(t * 63) + (int)(h * 63) * 64;
return bmap[ biome_table_beta_1_7[idx] ];
}
static
uint64_t get_np_dist(const uint64_t np[6], const BiomeTree *bt, int idx)
{
uint64_t ds = 0, node = bt->nodes[idx];
uint64_t a, b, d;
uint32_t i;
for (i = 0; i < 6; i++)
{
idx = (node >> 8*i) & 0xFF;
a = np[i] - bt->param[2*idx + 1];
b = bt->param[2*idx + 0] - np[i];
d = (int64_t)a > 0 ? a : (int64_t)b > 0 ? b : 0;
d = d * d;
ds += d;
}
return ds;
}
static
int get_resulting_node(const uint64_t np[6], const BiomeTree *bt, int idx,
int alt, uint64_t ds, int depth)
{
if (bt->steps[depth] == 0)
return idx;
uint32_t step;
do
{
step = bt->steps[depth];
depth++;
}
while (idx+step >= bt->len);
uint64_t node = bt->nodes[idx];
uint16_t inner = node >> 48;
int leaf = alt;
uint32_t i, n;
for (i = 0, n = bt->order; i < n; i++)
{
uint64_t ds_inner = get_np_dist(np, bt, inner);
if (ds_inner < ds)
{
int leaf2 = get_resulting_node(np, bt, inner, leaf, ds, depth);
uint64_t ds_leaf2;
if (inner == leaf2)
ds_leaf2 = ds_inner;
else
ds_leaf2 = get_np_dist(np, bt, leaf2);
if (ds_leaf2 < ds)
{
ds = ds_leaf2;
leaf = leaf2;
}
}
inner += step;
if (inner >= bt->len)
break;
}
return leaf;
}
ATTR(hot, flatten)
int climateToBiome(int mc, const uint64_t np[6], uint64_t *dat)
{
static const BiomeTree btree18 = {
btree18_steps, &btree18_param[0][0], btree18_nodes, btree18_order,
sizeof(btree18_nodes) / sizeof(uint64_t)
};
static const BiomeTree btree192 = {
btree192_steps, &btree192_param[0][0], btree192_nodes, btree192_order,
sizeof(btree192_nodes) / sizeof(uint64_t)
};
static const BiomeTree btree19 = {
btree19_steps, &btree19_param[0][0], btree19_nodes, btree19_order,
sizeof(btree19_nodes) / sizeof(uint64_t)
};
static const BiomeTree btree20 = {
btree20_steps, &btree20_param[0][0], btree20_nodes, btree20_order,
sizeof(btree20_nodes) / sizeof(uint64_t)
};
static const BiomeTree btree21wd = {
btree21wd_steps, &btree21wd_param[0][0], btree21wd_nodes, btree21wd_order,
sizeof(btree21wd_nodes) / sizeof(uint64_t)
};
const BiomeTree *bt;
int idx;
if (mc >= MC_1_21_WD)
bt = &btree21wd;
else if (mc >= MC_1_20_6)
bt = &btree20;
else if (mc >= MC_1_19_4)
bt = &btree19;
else if (mc >= MC_1_19_2)
bt = &btree192;
else
bt = &btree18;
if (dat)
{
int alt = (int) *dat;
uint64_t ds = get_np_dist(np, bt, alt);
idx = get_resulting_node(np, bt, 0, alt, ds, 0);
*dat = (uint64_t) idx;
}
else
{
idx = get_resulting_node(np, bt, 0, 0, -1, 0);
}
return (bt->nodes[idx] >> 48) & 0xFF;
}
void setClimateParaSeed(BiomeNoise *bn, uint64_t seed, int large, int nptype, int nmax)
{
Xoroshiro pxr;
xSetSeed(&pxr, seed);
uint64_t xlo = xNextLong(&pxr);
uint64_t xhi = xNextLong(&pxr);
if (nptype == NP_DEPTH)
{
int n = 0;
n += init_climate_seed(bn->climate + NP_CONTINENTALNESS,
bn->oct + n, xlo, xhi, large, NP_CONTINENTALNESS, nmax);
n += init_climate_seed(bn->climate + NP_EROSION,
bn->oct + n, xlo, xhi, large, NP_EROSION, nmax);
n += init_climate_seed(bn->climate + NP_WEIRDNESS,
bn->oct + n, xlo, xhi, large, NP_WEIRDNESS, nmax);
}
else
{
init_climate_seed(bn->climate + nptype, bn->oct, xlo, xhi, large, nptype, nmax);
}
bn->nptype = nptype;
}
double sampleClimatePara(const BiomeNoise *bn, int64_t *np, double x, double z)
{
if (bn->nptype == NP_DEPTH)
{
float c, e, w;
c = sampleDoublePerlin(bn->climate + NP_CONTINENTALNESS, x, 0, z);
e = sampleDoublePerlin(bn->climate + NP_EROSION, x, 0, z);
w = sampleDoublePerlin(bn->climate + NP_WEIRDNESS, x, 0, z);
float np_param[] = {
c, e, -3.0F * ( fabsf( fabsf(w) - 0.6666667F ) - 0.33333334F ), w,
};
double off = getSpline(bn->sp, np_param) + 0.015F;
int y = 0;
float d = 1.0 - (y * 4) / 128.0 - 83.0/160.0 + off;
if (np)
{
np[2] = (int64_t)(10000.0F*c);
np[3] = (int64_t)(10000.0F*e);
np[4] = (int64_t)(10000.0F*d);
np[5] = (int64_t)(10000.0F*w);
}
return d;
}
double p = sampleDoublePerlin(bn->climate + bn->nptype, x, 0, z);
if (np)
np[bn->nptype] = (int64_t)(10000.0F*p);
return p;
}
void genBiomeNoiseChunkSection(const BiomeNoise *bn, int out[4][4][4],
int cx, int cy, int cz, uint64_t *dat)
{
uint64_t buf = 0;
int i, j, k;
int x4 = cx * 4, y4 = cy * 4, z4 = cz * 4;
if (dat == NULL)
dat = &buf;
if (*dat == 0)
{ // try to determine the ending point of the last chunk section
sampleBiomeNoise(bn, NULL, x4+3, y4-1, z4+3, dat, 0);
}
// iteration order is important
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
for (k = 0; k < 4; ++k) {
out[i][j][k] = sampleBiomeNoise(bn, NULL, x4+i, y4+j, z4+k, dat, 0);
}
}
}
}
static void genBiomeNoise3D(const BiomeNoise *bn, int *out, Range r, int opt)
{
uint64_t dat = 0;
uint64_t *p_dat = opt ? &dat : NULL;
uint32_t flags = opt ? SAMPLE_NO_SHIFT : 0;
int i, j, k;
int *p = out;
int scale = r.scale > 4 ? r.scale / 4 : 1;
int mid = scale / 2;
for (k = 0; k < r.sy; k++)
{
int yk = (r.y+k);
for (j = 0; j < r.sz; j++)
{
int zj = (r.z+j)*scale + mid;
for (i = 0; i < r.sx; i++)
{
int xi = (r.x+i)*scale + mid;
*p = sampleBiomeNoise(bn, NULL, xi, yk, zj, p_dat, flags);
p++;
}
}
}
}
int genBiomeNoiseScaled(const BiomeNoise *bn, int *out, Range r, uint64_t sha)
{
if (r.sy == 0)
r.sy = 1;
uint64_t siz = (uint64_t)r.sx*r.sy*r.sz;
int i, j, k;
if (r.scale == 1)
{
Range s = getVoronoiSrcRange(r);
int *src;
if (siz > 1)
{ // the source range is large enough that we can try optimizing
src = out + siz;
genBiomeNoise3D(bn, src, s, 0);
}
else
{
src = NULL;
}
int *p = out;
for (k = 0; k < r.sy; k++)
{
for (j = 0; j < r.sz; j++)
{
for (i = 0; i < r.sx; i++)
{
int x4, z4, y4;
voronoiAccess3D(sha, r.x+i, r.y+k, r.z+j, &x4, &y4, &z4);
if (src)
{
x4 -= s.x; y4 -= s.y; z4 -= s.z;
*p = src[(int64_t)y4*s.sx*s.sz + (int64_t)z4*s.sx + x4];
}
else
{
*p = sampleBiomeNoise(bn, 0, x4, y4, z4, 0, 0);
}
p++;
}
}
}
}
else
{
// There is (was?) an optimization that causes MC-241546, and should
// not be enabled for accurate results. However, if the scale is higher
// than 1:4, the accuracy becomes questionable anyway. Furthermore
// situations that want to use a higher scale are usually better off
// with a faster, if imperfect, result.
genBiomeNoise3D(bn, out, r, r.scale > 4);
}
return 0;
}
static void genColumnNoise(const SurfaceNoiseBeta *snb, SeaLevelColumnNoiseBeta *dest,
double cx, double cz, double lacmin)
{
dest->contASample = sampleOctaveAmp(&snb->octcontA, cx, 0, cz, 0, 0, 1);
dest->contBSample = sampleOctaveAmp(&snb->octcontB, cx, 0, cz, 0, 0, 1);
sampleOctaveBeta17Terrain(&snb->octmin, dest->minSample, cx, cz, 0, lacmin);
sampleOctaveBeta17Terrain(&snb->octmax, dest->maxSample, cx, cz, 0, lacmin);
sampleOctaveBeta17Terrain(&snb->octmain, dest->mainSample, cx, cz, 1, lacmin);
}
static void processColumnNoise(double *out, const SeaLevelColumnNoiseBeta *src,
const double climate[2])
{
double humi = 1 - climate[0] * climate[1];
humi *= humi;
humi *= humi;
humi = 1 - humi;
double contA = (src->contASample + 256) / 512 * humi;
contA = (contA > 1) ? 1.0 : contA;
double contB = src->contBSample / 8000;
if (contB < 0)
contB = -contB * 0.3;
contB = contB*3-2;
if (contB < 0)
{
contB /= 2;
contB = (contB < -1) ? -1.0 / 1.4 / 2 : contB / 1.4 / 2;
contA = 0;
}
else
{
contB = (contB > 1) ? 1.0/8 : contB/8;
}
contA = (contA < 0) ? 0.5 : contA+0.5;
contB = (contB * 17.0) / 16;
contB = 17.0 / 2 + contB * 4;
const double *low = src->minSample;
const double *high = src->maxSample;
const double *selector = src->mainSample;
int i;
for (i = 0; i <= 1; i++)
{
double chooseLHS;
double procCont = ((i + 7 - contB) * 12) / contA;
procCont = (procCont < 0) ? procCont*4 : procCont;
double lSample = low[i] / 512;
double hSample = high[i] / 512;
double sSample = (selector[i] / 10 + 1) / 2;
chooseLHS = (sSample < 0.0) ? lSample : (sSample > 1) ? hSample :
lSample + (hSample - lSample) * sSample;
chooseLHS -= procCont;
out[i] = chooseLHS;
}
}
static double lerp4(
const double a[2], const double b[2], const double c[2], const double d[2],
double dy, double dx, double dz)
{
double b00 = a[0] + (a[1] - a[0]) * dy;
double b01 = b[0] + (b[1] - b[0]) * dy;
double b10 = c[0] + (c[1] - c[0]) * dy;
double b11 = d[0] + (d[1] - d[0]) * dy;
double b0 = b00 + (b10 - b00) * dz;
double b1 = b01 + (b11 - b01) * dz;
return b0 + (b1 - b0) * dx;
}
double approxSurfaceBeta(const BiomeNoiseBeta *bnb, const SurfaceNoiseBeta *snb,
int x, int z)
{
// TODO: sample vertically to get a more accurate height value
double climate[2];
sampleBiomeNoiseBeta(bnb, NULL, climate, x, z);
double cols[2];
SeaLevelColumnNoiseBeta colNoise;
genColumnNoise(snb, &colNoise, x*0.25, z*0.25, 0);
processColumnNoise(cols, &colNoise, climate);
return 63 + (cols[0]*0.125 + cols[1]*0.875) * 0.5;
}
int genBiomeNoiseBetaScaled(const BiomeNoiseBeta *bnb,
const SurfaceNoiseBeta *snb, int *out, Range r)
{
if (!snb || r.scale >= 4)
{
int i, j;
int mid = r.scale >> 1;
for (j = 0; j < r.sz; j++)
{
int z = (r.z+j)*r.scale + mid;
for (i = 0; i < r.sx; i++)
{
double climate[2];
int x = (r.x+i)*r.scale + mid;
int id = sampleBiomeNoiseBeta(bnb, NULL, climate, x, z);
if (snb)
{
double cols[2];
SeaLevelColumnNoiseBeta colNoise;
genColumnNoise(snb, &colNoise, x*0.25, z*0.25, 4.0/r.scale);
processColumnNoise(cols, &colNoise, climate);
if (cols[0]*0.125 + cols[1]*0.875 <= 0)
id = (climate[0] < 0.5) ? frozen_ocean : ocean;
}
out[(int64_t)j*r.sx + i] = id;
}
}
return 0;
}
int cellwidth = r.scale >> 1;
int cx1 = r.x >> (2 >> cellwidth);
int cz1 = r.z >> (2 >> cellwidth);
int cx2 = cx1 + (r.sx >> (2 >> cellwidth)) + 1;
int cz2 = cz1 + (r.sz >> (2 >> cellwidth)) + 1;
int steps = 4 >> cellwidth;
int minDim, maxDim;
if (cx2-cx1 > cz2-cz1) {
maxDim = cx2-cx1;
minDim = cz2-cz1;
} else {
maxDim = cz2-cz1;
minDim = cx2-cx1;
}
int bufLen = minDim * 2 + 1;
int i, j, x, z, cx, cz;
int xStart = cx1;
int zStart = cz1;
int idx = 0;
SeaLevelColumnNoiseBeta *buf = (SeaLevelColumnNoiseBeta*) (out + (int64_t)r.sx * r.sz);
SeaLevelColumnNoiseBeta *colNoise;
double cols[8];
double climate[2];
static const int off[] = { 1, 4, 7, 10, 13 };
// Diagonal traversal of range region, in order to minimize size of saved
// column noise buffer
int stripe;
for (stripe = 0; stripe < maxDim + minDim - 1; stripe++)
{
cx = xStart;
cz = zStart;
while (cx < cx2 && cz >= cz1)
{
int csx = (cx * 4) & ~15; // start of chunk coordinates
int csz = (cz * 4) & ~15;
int ci = cx & 3;
int cj = cz & 3;
colNoise = &buf[idx];
if (stripe == 0)
genColumnNoise(snb, colNoise, cx, cz, 0);
sampleBiomeNoiseBeta(bnb, NULL, climate, csx+off[ci], csz+off[cj]);
processColumnNoise(&cols[0], colNoise, climate);
colNoise = &buf[(idx + minDim + 1) % bufLen];
if (cz == cz1)
genColumnNoise(snb, colNoise, cx+1, cz, 0);
sampleBiomeNoiseBeta(bnb, NULL, climate, csx+off[ci+1], csz+off[cj]);
processColumnNoise(&cols[2], colNoise, climate);
colNoise = &buf[(idx + minDim) % bufLen];
if (cx == cx1)
genColumnNoise(snb, colNoise, cx, cz+1, 0);
sampleBiomeNoiseBeta(bnb, NULL, climate, csx+off[ci], csz+off[cj+1]);
processColumnNoise(&cols[4], colNoise, climate);
colNoise = &buf[idx];
genColumnNoise(snb, colNoise, cx+1, cz+1, 0);
sampleBiomeNoiseBeta(bnb, NULL, climate, csx+off[ci+1], csz+off[cj+1]);
processColumnNoise(&cols[6], colNoise, climate);
// scale=1: cellwidth=0, steps=4
// scale=4: cellwidth=2, steps=1
for (j = 0; j < steps; j++)
{
z = cz * steps + j;
if (z < r.z || z >= r.z + r.sz)
continue;
for (i = 0; i < steps; i++)
{
x = cx * steps + i;
if (x < r.x || x >= r.x + r.sx)
continue;
int mid = r.scale >> 1;
int bx = x * r.scale + mid;
int bz = z * r.scale + mid;
int id = sampleBiomeNoiseBeta(bnb, NULL, climate, bx, bz);
double dx = (bx & 3) * 0.25;
double dz = (bz & 3) * 0.25;
if (lerp4(cols+0, cols+2, cols+4, cols+6, 7./8, dx, dz) <= 0)
id = (climate[0] < 0.5) ? frozen_ocean : ocean;
out[(int64_t)(z - r.z) * r.sx + (x - r.x)] = id;
}
}
cx++;
cz--;
idx = (idx+1) % bufLen;
}
if (zStart < cz2-1)
zStart++;
else
xStart++;
if (stripe+1 < minDim)
idx = (idx + minDim-stripe-1) % bufLen;
else if (stripe+1 > maxDim)
idx = (idx + stripe-maxDim+2) % bufLen;
else if (xStart > cx1)
idx = (idx + 1) % bufLen;
}
return 0;
}
int getBiomeDepthAndScale(int id, double *depth, double *scale, int *grass)
{
const int dh = 62; // default height
double s = 0, d = 0, g = 0;
switch (id) {
case ocean: s = 0.100; d = -1.000; g = dh; break;
case plains: s = 0.050; d = 0.125; g = dh; break;
case desert: s = 0.050; d = 0.125; g = 0; break;
case mountains: s = 0.500; d = 1.000; g = dh; break;
case forest: s = 0.200; d = 0.100; g = dh; break;
case taiga: s = 0.200; d = 0.200; g = dh; break;
case swamp: s = 0.100; d = -0.200; g = dh; break;
case river: s = 0.000; d = -0.500; g = 60; break;
case frozen_ocean: s = 0.100; d = -1.000; g = dh; break;
case frozen_river: s = 0.000; d = -0.500; g = 60; break;
case snowy_tundra: s = 0.050; d = 0.125; g = dh; break;
case snowy_mountains: s = 0.300; d = 0.450; g = dh; break;
case mushroom_fields: s = 0.300; d = 0.200; g = 0; break;
case mushroom_field_shore: s = 0.025; d = 0.000; g = 0; break;
case beach: s = 0.025; d = 0.000; g = 64; break;
case desert_hills: s = 0.300; d = 0.450; g = 0; break;
case wooded_hills: s = 0.300; d = 0.450; g = dh; break;
case taiga_hills: s = 0.300; d = 0.450; g = dh; break;
case mountain_edge: s = 0.300; d = 0.800; g = dh; break;
case jungle: s = 0.200; d = 0.100; g = dh; break;
case jungle_hills: s = 0.300; d = 0.450; g = dh; break;
case jungle_edge: s = 0.200; d = 0.100; g = dh; break;
case deep_ocean: s = 0.100; d = -1.800; g = dh; break;
case stone_shore: s = 0.800; d = 0.100; g = 64; break;
case snowy_beach: s = 0.025; d = 0.000; g = 64; break;
case birch_forest: s = 0.200; d = 0.100; g = dh; break;
case birch_forest_hills: s = 0.300; d = 0.450; g = dh; break;
case dark_forest: s = 0.200; d = 0.100; g = dh; break;
case snowy_taiga: s = 0.200; d = 0.200; g = dh; break;
case snowy_taiga_hills: s = 0.300; d = 0.450; g = dh; break;
case giant_tree_taiga: s = 0.200; d = 0.200; g = dh; break;
case giant_tree_taiga_hills: s = 0.300; d = 0.450; g = dh; break;
case wooded_mountains: s = 0.500; d = 1.000; g = dh; break;
case savanna: s = 0.050; d = 0.125; g = dh; break;
case savanna_plateau: s = 0.025; d = 1.500; g = dh; break;
case badlands: s = 0.200; d = 0.100; g = 0; break;
case wooded_badlands_plateau: s = 0.025; d = 1.500; g = 0; break;
case badlands_plateau: s = 0.025; d = 1.500; g = 0; break;
case warm_ocean: s = 0.100; d = -1.000; g = 0; break;
case lukewarm_ocean: s = 0.100; d = -1.000; g = dh; break;
case cold_ocean: s = 0.100; d = -1.000; g = dh; break;
case deep_warm_ocean: s = 0.100; d = -1.800; g = 0; break;
case deep_lukewarm_ocean: s = 0.100; d = -1.800; g = dh; break;
case deep_cold_ocean: s = 0.100; d = -1.800; g = dh; break;
case deep_frozen_ocean: s = 0.100; d = -1.800; g = dh; break;
case sunflower_plains: s = 0.050; d = 0.125; g = dh; break;
case desert_lakes: s = 0.250; d = 0.225; g = 0; break;
case gravelly_mountains: s = 0.500; d = 1.000; g = dh; break;
case flower_forest: s = 0.400; d = 0.100; g = dh; break;
case taiga_mountains: s = 0.400; d = 0.300; g = dh; break;
case swamp_hills: s = 0.300; d = -0.100; g = dh; break;
case ice_spikes: s = 0.450; d = 0.425; g = 0; break;
case modified_jungle: s = 0.400; d = 0.200; g = dh; break;
case modified_jungle_edge: s = 0.400; d = 0.200; g = dh; break;
case tall_birch_forest: s = 0.400; d = 0.200; g = dh; break;
case tall_birch_hills: s = 0.500; d = 0.550; g = dh; break;
case dark_forest_hills: s = 0.400; d = 0.200; g = dh; break;
case snowy_taiga_mountains: s = 0.400; d = 0.300; g = dh; break;
case giant_spruce_taiga: s = 0.200; d = 0.200; g = dh; break;
case giant_spruce_taiga_hills: s = 0.200; d = 0.200; g = dh; break;
case modified_gravelly_mountains: s = 0.500; d = 1.000; g = dh; break;
case shattered_savanna: s = 1.225; d = 0.3625; g = dh; break;
case shattered_savanna_plateau: s = 1.212; d = 1.050; g = dh; break;
case eroded_badlands: s = 0.200; d = 0.100; g = 0; break;
case modified_wooded_badlands_plateau: s = 0.300; d = 0.450; g = 0; break;
case modified_badlands_plateau: s = 0.300; d = 0.450; g = 0; break;
case bamboo_jungle: s = 0.200; d = 0.100; g = dh; break;
case bamboo_jungle_hills: s = 0.300; d = 0.450; g = dh; break;
default:
return 0;
}
if (scale) *scale = s;
if (depth) *depth = d;
if (grass) *grass = g;
return 1;
}
Range getVoronoiSrcRange(Range r)
{
if (r.scale != 1)
{
printf("getVoronoiSrcRange() expects input range with scale 1:1\n");
exit(1);
}
Range s; // output has scale 1:4
int x = r.x - 2;
int z = r.z - 2;
s.scale = 4;
s.x = x >> 2;
s.z = z >> 2;
s.sx = ((x + r.sx) >> 2) - s.x + 2;
s.sz = ((z + r.sz) >> 2) - s.z + 2;
if (r.sy < 1)
{
s.y = s.sy = 0;
}
else
{
int ty = r.y - 2;
s.y = ty >> 2;
s.sy = ((ty + r.sy) >> 2) - s.y + 2;
}
return s;
}