# vim:set sw=2 sts=2 ts=2: """ Named Binary Tag library. Serializes and deserializes TAG_* objects to and from binary data. Load a Minecraft level by calling nbt.load(). Create your own TAG_* objects and set their values. Save a TAG_* object to a file or StringIO object. Read the test functions at the end of the file to get started. This library requires Numpy. Get it here: http://new.scipy.org/download.html Official NBT documentation is here: http://www.minecraft.net/docs/NBT.txt Copyright 2010 David Rio Vierra """ import collections import gzip import itertools import logging import struct import zlib from cStringIO import StringIO import numpy from numpy import array, zeros, fromstring log = logging.getLogger(__name__) class NBTFormatError(RuntimeError): pass TAG_BYTE = 1 TAG_SHORT = 2 TAG_INT = 3 TAG_LONG = 4 TAG_FLOAT = 5 TAG_DOUBLE = 6 TAG_BYTE_ARRAY = 7 TAG_STRING = 8 TAG_LIST = 9 TAG_COMPOUND = 10 TAG_INT_ARRAY = 11 TAG_SHORT_ARRAY = 12 class TAG_Value(object): """Simple values. Subclasses override fmt to change the type and size. Subclasses may set data_type instead of overriding setValue for automatic data type coercion""" __slots__ = ('_name', '_value') def __init__(self, value=0, name=""): self.value = value self.name = name fmt = struct.Struct("b") tagID = NotImplemented data_type = NotImplemented _name = None _value = None @property def value(self): return self._value @value.setter def value(self, newVal): """Change the TAG's value. Data types are checked and coerced if needed.""" self._value = self.data_type(newVal) @property def name(self): return self._name @name.setter def name(self, newVal): """Change the TAG's name. Coerced to a unicode.""" self._name = unicode(newVal) @classmethod def load_from(cls, ctx): data = ctx.data[ctx.offset:] (value,) = cls.fmt.unpack_from(data) self = cls(value=value) ctx.offset += self.fmt.size return self def __repr__(self): return "<%s name=\"%s\" value=%r>" % (str(self.__class__.__name__), self.name, self.value) def write_tag(self, buf): buf.write(chr(self.tagID)) def write_name(self, buf): if self.name is not None: write_string(self.name, buf) def write_value(self, buf): buf.write(self.fmt.pack(self.value)) class TAG_Byte(TAG_Value): __slots__ = ('_name', '_value') tagID = TAG_BYTE fmt = struct.Struct(">b") data_type = int class TAG_Short(TAG_Value): __slots__ = ('_name', '_value') tagID = TAG_SHORT fmt = struct.Struct(">h") data_type = int class TAG_Int(TAG_Value): __slots__ = ('_name', '_value') tagID = TAG_INT fmt = struct.Struct(">i") data_type = int class TAG_Long(TAG_Value): __slots__ = ('_name', '_value') tagID = TAG_LONG fmt = struct.Struct(">q") data_type = long class TAG_Float(TAG_Value): __slots__ = ('_name', '_value') tagID = TAG_FLOAT fmt = struct.Struct(">f") data_type = float class TAG_Double(TAG_Value): __slots__ = ('_name', '_value') tagID = TAG_DOUBLE fmt = struct.Struct(">d") data_type = float class TAG_Byte_Array(TAG_Value): """Like a string, but for binary data. Four length bytes instead of two. Value is a numpy array, and you can change its elements""" tagID = TAG_BYTE_ARRAY def __init__(self, value=None, name=""): if value is None: value = zeros(0, self.dtype) self.name = name self.value = value def __repr__(self): return "<%s name=%s length=%d>" % (self.__class__, self.name, len(self.value)) __slots__ = ('_name', '_value') def data_type(self, value): return array(value, self.dtype) dtype = numpy.dtype('uint8') @classmethod def load_from(cls, ctx): data = ctx.data[ctx.offset:] (string_len,) = TAG_Int.fmt.unpack_from(data) value = fromstring(data[4:string_len * cls.dtype.itemsize + 4], cls.dtype) self = cls(value) ctx.offset += string_len * cls.dtype.itemsize + 4 return self def write_value(self, buf): value_str = self.value.tostring() buf.write(struct.pack(">I%ds" % (len(value_str),), self.value.size, value_str)) class TAG_Int_Array(TAG_Byte_Array): """An array of big-endian 32-bit integers""" tagID = TAG_INT_ARRAY __slots__ = ('_name', '_value') dtype = numpy.dtype('>u4') class TAG_Short_Array(TAG_Int_Array): """An array of big-endian 16-bit integers. Not official, but used by some mods.""" tagID = TAG_SHORT_ARRAY __slots__ = ('_name', '_value') dtype = numpy.dtype('>u2') class TAG_String(TAG_Value): """String in UTF-8 The value parameter must be a 'unicode' or a UTF-8 encoded 'str' """ tagID = TAG_STRING def __init__(self, value="", name=""): if name: self.name = name self.value = value _decodeCache = {} __slots__ = ('_name', '_value') def data_type(self, value): if isinstance(value, unicode): return value else: decoded = self._decodeCache.get(value) if decoded is None: decoded = value.decode('utf-8') self._decodeCache[value] = decoded return decoded @classmethod def load_from(cls, ctx): value = load_string(ctx) return cls(value) def write_value(self, buf): write_string(self._value, buf) string_len_fmt = struct.Struct(">H") def load_string(ctx): data = ctx.data[ctx.offset:] (string_len,) = string_len_fmt.unpack_from(data) value = data[2:string_len + 2].tostring() ctx.offset += string_len + 2 return value def write_string(string, buf): encoded = string.encode('utf-8') buf.write(struct.pack(">h%ds" % (len(encoded),), len(encoded), encoded)) #noinspection PyMissingConstructor class TAG_Compound(TAG_Value, collections.MutableMapping): """A heterogenous list of named tags. Names must be unique within the TAG_Compound. Add tags to the compound using the subscript operator []. This will automatically name the tags.""" tagID = TAG_COMPOUND ALLOW_DUPLICATE_KEYS = False __slots__ = ('_name', '_value') def __init__(self, value=None, name=""): self.value = value or [] self.name = name def __repr__(self): return "<%s name='%s' keys=%r>" % (str(self.__class__.__name__), self.name, self.keys()) def data_type(self, val): for i in val: self.check_value(i) return list(val) def check_value(self, val): if not isinstance(val, TAG_Value): raise TypeError("Invalid type for TAG_Compound element: %s" % val.__class__.__name__) if not val.name: raise ValueError("Tag needs a name to be inserted into TAG_Compound: %s" % val) @classmethod def load_from(cls, ctx): self = cls() while ctx.offset < len(ctx.data): tag_type = ctx.data[ctx.offset] ctx.offset += 1 if tag_type == 0: break tag_name = load_string(ctx) tag = tag_classes[tag_type].load_from(ctx) tag.name = tag_name self._value.append(tag) return self def save(self, filename_or_buf=None, compressed=True): """ Save the TAG_Compound element to a file. Since this element is the root tag, it can be named. Pass a filename to save the data to a file. Pass a file-like object (with a read() method) to write the data to that object. Pass nothing to return the data as a string. """ if self.name is None: self.name = "" buf = StringIO() self.write_tag(buf) self.write_name(buf) self.write_value(buf) data = buf.getvalue() if compressed: gzio = StringIO() gz = gzip.GzipFile(fileobj=gzio, mode='wb') gz.write(data) gz.close() data = gzio.getvalue() if filename_or_buf is None: return data if isinstance(filename_or_buf, basestring): f = file(filename_or_buf, "wb") f.write(data) else: filename_or_buf.write(data) def write_value(self, buf): for tag in self.value: tag.write_tag(buf) tag.write_name(buf) tag.write_value(buf) buf.write("\x00") # --- collection functions --- def __getitem__(self, key): # hits=filter(lambda x: x.name==key, self.value) # if(len(hits)): return hits[0] for tag in self.value: if tag.name == key: return tag raise KeyError("Key {0} not found".format(key)) def __iter__(self): return itertools.imap(lambda x: x.name, self.value) def __contains__(self, key): return key in map(lambda x: x.name, self.value) def __len__(self): return self.value.__len__() def __setitem__(self, key, item): """Automatically wraps lists and tuples in a TAG_List, and wraps strings and unicodes in a TAG_String.""" if isinstance(item, (list, tuple)): item = TAG_List(item) elif isinstance(item, basestring): item = TAG_String(item) item.name = key self.check_value(item) # remove any items already named "key". if not self.ALLOW_DUPLICATE_KEYS: self._value = filter(lambda x: x.name != key, self._value) self._value.append(item) def __delitem__(self, key): self.value.__delitem__(self.value.index(self[key])) def add(self, value): if value.name is None: raise ValueError("Tag %r must have a name." % value) self[value.name] = value def get_all(self, key): return [v for v in self._value if v.name == key] class TAG_List(TAG_Value, collections.MutableSequence): """A homogenous list of unnamed data of a single TAG_* type. Once created, the type can only be changed by emptying the list and adding an element of the new type. If created with no arguments, returns a list of TAG_Compound Empty lists in the wild have been seen with type TAG_Byte""" tagID = 9 def __init__(self, value=None, name="", list_type=TAG_BYTE): # can be created from a list of tags in value, with an optional # name, or created from raw tag data, or created with list_type # taken from a TAG class or instance self.name = name self.list_type = list_type self.value = value or [] __slots__ = ('_name', '_value') def __repr__(self): return "<%s name='%s' list_type=%r length=%d>" % (self.__class__.__name__, self.name, tag_classes[self.list_type], len(self)) def data_type(self, val): if val: self.list_type = val[0].tagID assert all([x.tagID == self.list_type for x in val]) return list(val) @classmethod def load_from(cls, ctx): self = cls() self.list_type = ctx.data[ctx.offset] ctx.offset += 1 (list_length,) = TAG_Int.fmt.unpack_from(ctx.data, ctx.offset) ctx.offset += TAG_Int.fmt.size for i in range(list_length): tag = tag_classes[self.list_type].load_from(ctx) self.append(tag) return self def write_value(self, buf): buf.write(chr(self.list_type)) buf.write(TAG_Int.fmt.pack(len(self.value))) for i in self.value: i.write_value(buf) def check_tag(self, value): if value.tagID != self.list_type: raise TypeError("Invalid type %s for TAG_List(%s)" % (value.__class__, tag_classes[self.list_type])) # --- collection methods --- def __iter__(self): return iter(self.value) def __contains__(self, tag): return tag in self.value def __getitem__(self, index): return self.value[index] def __len__(self): return len(self.value) def __setitem__(self, index, value): if isinstance(index, slice): for tag in value: self.check_tag(tag) else: self.check_tag(value) self.value[index] = value def __delitem__(self, index): del self.value[index] def insert(self, index, value): if len(self) == 0: self.list_type = value.tagID else: self.check_tag(value) value.name = "" self.value.insert(index, value) tag_classes = { c.tagID: c for c in (TAG_Byte, TAG_Short, TAG_Int, TAG_Long, TAG_Float, TAG_Double, TAG_String, TAG_Byte_Array, TAG_List, TAG_Compound, TAG_Int_Array, TAG_Short_Array) } def gunzip(data): return gzip.GzipFile(fileobj=StringIO(data)).read() def try_gunzip(data): try: data = gunzip(data) except IOError, zlib.error: pass return data def load(filename="", buf=None): """ Unserialize data from an NBT file and return the root TAG_Compound object. If filename is passed, reads from the file, otherwise uses data from buf. Buf can be a buffer object with a read() method or a string containing NBT data. """ if filename: buf = file(filename, "rb") if hasattr(buf, "read"): buf = buf.read() return _load_buffer(try_gunzip(buf)) class load_ctx(object): pass def _load_buffer(buf): if isinstance(buf, str): buf = fromstring(buf, 'uint8') data = buf if not len(data): raise NBTFormatError("Asked to load root tag of zero length") tag_type = data[0] if tag_type != 10: magic = data[:4] raise NBTFormatError('Not an NBT file with a root TAG_Compound ' '(file starts with "%s" (0x%08x)' % (magic.tostring(), magic.view(dtype='uint32'))) ctx = load_ctx() ctx.offset = 1 ctx.data = data tag_name = load_string(ctx) tag = TAG_Compound.load_from(ctx) tag.name = tag_name return tag __all__ = [a.__name__ for a in tag_classes.itervalues()] + ["load", "gunzip"] import nbt_util TAG_Value.__str__ = nbt_util.nested_string try: #noinspection PyUnresolvedReferences from _nbt import (load, TAG_Byte, TAG_Short, TAG_Int, TAG_Long, TAG_Float, TAG_Double, TAG_String, TAG_Byte_Array, TAG_List, TAG_Compound, TAG_Int_Array, TAG_Short_Array, NBTFormatError) except ImportError: pass