dwarfs/test/fits_categorizer_test.cpp
2025-04-08 12:38:09 +02:00

179 lines
5.8 KiB
C++

/* vim:set ts=2 sw=2 sts=2 et: */
/**
* \author Marcus Holland-Moritz (github@mhxnet.de)
* \copyright Copyright (c) Marcus Holland-Moritz
*
* This file is part of dwarfs.
*
* dwarfs is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* dwarfs is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with dwarfs. If not, see <https://www.gnu.org/licenses/>.
*
* SPDX-License-Identifier: GPL-3.0-only
*/
#include <cstring>
#include <exception>
#include <filesystem>
#include <random>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <boost/program_options.hpp>
#include <folly/String.h>
#include <folly/lang/Bits.h>
#include <nlohmann/json.hpp>
#include <dwarfs/mmap.h>
#include <dwarfs/writer/categorizer.h>
#include "test_logger.h"
using namespace dwarfs;
namespace fs = std::filesystem;
namespace po = boost::program_options;
template <typename Base>
class fits_categorizer_fixture : public Base {
protected:
void SetUp() override { lgr.clear(); }
void create_catmgr() { create_catmgr({}); }
void create_catmgr(std::vector<char const*> args) {
auto& catreg = writer::categorizer_registry::instance();
po::options_description opts;
catreg.add_options(opts);
args.insert(args.begin(), "program");
po::variables_map vm;
auto parsed = po::parse_command_line(args.size(), args.data(), opts);
po::store(parsed, vm);
po::notify(vm);
catmgr = std::make_shared<writer::categorizer_manager>(lgr, "/");
catmgr->add(catreg.create(lgr, "fits", vm, nullptr));
}
public:
auto categorize(fs::path const& path, std::span<uint8_t const> data) {
auto job = catmgr->job(path);
job.set_total_size(data.size());
job.categorize_random_access(data);
job.categorize_sequential(data);
return job.result();
}
std::shared_ptr<writer::categorizer_manager> catmgr;
test::test_logger lgr{logger::INFO};
};
using fits_categorizer = fits_categorizer_fixture<::testing::Test>;
TEST_F(fits_categorizer, requirements) {
create_catmgr();
EXPECT_THAT(
[&] {
auto cat = catmgr->category_value("fits/image").value();
catmgr->set_metadata_requirements(cat, R"({"foo": ["set", ["bar"]]})");
},
::testing::ThrowsMessage<std::runtime_error>(
"unsupported metadata requirements: foo"));
EXPECT_NO_THROW(catmgr->set_metadata_requirements(
catmgr->category_value("fits/image").value(), R"({})"));
}
namespace {
constexpr std::string_view fits_header{
// clang-format off
// 0 1 2 3 4 5 6 7 8
// 12345678901234567890123456789012345678901234567890123456789012345678901234567890
"SIMPLE = T / file does conform to FITS standard "
"BITPIX = 16 / number of bits per data pixel "
"NAXIS = 2 / number of data axes "
"NAXIS1 = 16 / length of data axis 1 "
"NAXIS2 = 8 / length of data axis 2 "
"EXTEND = T / FITS dataset may contain extensions "
"END "
// clang-format on
};
void fill_fits_header(std::span<uint8_t> data) {
std::memcpy(data.data(), fits_header.data(), fits_header.size());
std::memset(data.data() + fits_header.size(), ' ', 2880 - fits_header.size());
}
} // namespace
TEST_F(fits_categorizer, unused_lsb_count_test) {
create_catmgr();
alignas(2) std::array<uint8_t, 2 * 2880 + 64> data;
std::fill(data.begin(), data.end(), 0);
auto metadata_category = catmgr->category_value("fits/metadata").value();
auto image_category = catmgr->category_value("fits/image").value();
std::map<writer::fragment_category, std::set<unsigned>> categories;
for (size_t offset = 0; offset < 64; offset += 2) {
std::span<uint8_t> fits{data.data() + offset, 2 * 2880};
fill_fits_header(fits);
std::span<uint16_t> image{reinterpret_cast<uint16_t*>(fits.data() + 2880),
8 * 16};
for (auto& pixel : image) {
for (unsigned unused_lsb_count = 0; unused_lsb_count <= 8;
++unused_lsb_count) {
pixel = folly::Endian::big<uint16_t>(1 << unused_lsb_count);
auto job = catmgr->job(
fmt::format("test-{}-{}-{}", offset, pixel, unused_lsb_count));
job.set_total_size(fits.size());
job.categorize_random_access(fits);
auto frag = job.result();
auto fs = frag.span();
ASSERT_EQ(3, fs.size());
EXPECT_EQ(metadata_category, fs[0].category().value());
EXPECT_EQ(2880, fs[0].size());
EXPECT_EQ(image_category, fs[1].category().value());
EXPECT_EQ(256, fs[1].size());
EXPECT_EQ(metadata_category, fs[2].category().value());
EXPECT_EQ(2624, fs[2].size());
categories[fs[1].category()].insert(unused_lsb_count);
pixel = 0;
}
}
}
EXPECT_EQ(9, categories.size());
for (auto& [cat, unused_lsb_counts] : categories) {
EXPECT_EQ(1, unused_lsb_counts.size());
unsigned unused_lsb_count = *unused_lsb_counts.begin();
auto json = catmgr->category_metadata(cat);
auto metadata = nlohmann::json::parse(json);
EXPECT_EQ(unused_lsb_count, metadata["unused_lsb_count"].get<int>());
}
}