dwarfs/fsst/fsst_avx512.cpp
2025-05-14 07:09:49 +02:00

151 lines
7.4 KiB
C++

// this software is distributed under the MIT License (http://www.opensource.org/licenses/MIT):
//
// Copyright 2018-2020, CWI, TU Munich, FSU Jena
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
// (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// - The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// You can contact the authors via the FSST source repository : https://github.com/cwida/fsst
#include "libfsst.hpp"
#if defined(__x86_64__) || defined(_M_X64)
#include <immintrin.h>
#ifdef _WIN32
namespace libfsst {
bool fsst_hasAVX512() {
int info[4];
__cpuidex(info, 0x00000007, 0);
return (info[1]>>16)&1;
}
} // namespace libfsst
#else
#include <cpuid.h>
namespace libfsst {
bool fsst_hasAVX512() {
int info[4];
__cpuid_count(0x00000007, 0, info[0], info[1], info[2], info[3]);
return (info[1]>>16)&1;
}
} // namespace libfsst
#endif
#else
namespace libfsst {
bool fsst_hasAVX512() { return false; }
} // namespace libfsst
#endif
namespace libfsst {
// BULK COMPRESSION OF STRINGS
//
// In one call of this function, we can compress 512 strings, each of maximum length 511 bytes.
// strings can be shorter than 511 bytes, no problem, but if they are longer we need to cut them up.
//
// In each iteration of the while loop, we find one code in each of the unroll*8 strings, i.e. (8,16,24 or 32) for resp. unroll=1,2,3,4
// unroll3 performs best on my hardware
//
// In the worst case, each final encoded string occupies 512KB bytes (512*1024; with 1024=512xexception, exception = 2 bytes).
// - hence codeBase is a buffer of 512KB (needs 19 bits jobs), symbolBase of 256KB (needs 18 bits jobs).
//
// 'jobX' controls the encoding of each string and is therefore a u64 with format [out:19][pos:9][end:18][cur:18] (low-to-high bits)
// The field 'pos' tells which string we are processing (0..511). We need this info as strings will complete compressing out-of-order.
//
// Strings will have different lengths, and when a string is finished, we reload from the buffer of 512 input strings.
// This continues until we have less than (8,16,24 or 32; depending on unroll) strings left to process.
// - so 'processed' is the amount of strings we started processing and it is between [480,512].
// Note that when we quit, there will still be some (<32) strings that we started to process but which are unfinished.
// - so 'unfinished' is that amount. These unfinished strings will be encoded further using the scalar method.
//
// Apart from the coded strings, we return in a output[] array of size 'processed' the job values of the 'finished' strings.
// In the following 'unfinished' slots (processed=finished+unfinished) we output the 'job' values of the unfinished strings.
//
// For the finished strings, we need [out:19] to see the compressed size and [pos:9] to see which string we refer to.
// For the unfinished strings, we need all fields of 'job' to continue the compression with scalar code (see SIMD code in compressBatch).
//
// THIS IS A SEPARATE CODE FILE NOT BECAUSE OF MY LOVE FOR MODULARIZED CODE BUT BECAUSE IT ALLOWS TO COMPILE IT WITH DIFFERENT FLAGS
// in particular, unrolling is crucial for gather/scatter performance, but requires registers. the #define all_* expressions however,
// will be detected to be constants by g++ -O2 and will be precomputed and placed into AVX512 registers - spoiling 9 of them.
// This reduces the effectiveness of unrolling, hence -O2 makes the loop perform worse than -O1 which skips this optimization.
// Assembly inspection confirmed that 3-way unroll with -O1 avoids needless load/stores.
size_t fsst_compressAVX512(SymbolTable &symbolTable, u8* codeBase, u8* symbolBase, SIMDjob *input, SIMDjob *output, size_t n, size_t unroll) {
size_t processed = 0;
// define some constants (all_x means that all 8 lanes contain 64-bits value X)
#ifdef __AVX512F__
//__m512i all_suffixLim= _mm512_broadcastq_epi64(_mm_set1_epi64((__m64) (u64) symbolTable->suffixLim)); -- for variants b,c
__m512i all_MASK = _mm512_broadcastq_epi64(_mm_set1_epi64((__m64) (u64) -1));
__m512i all_PRIME = _mm512_broadcastq_epi64(_mm_set1_epi64((__m64) (u64) FSST_HASH_PRIME));
__m512i all_ICL_FREE = _mm512_broadcastq_epi64(_mm_set1_epi64((__m64) (u64) FSST_ICL_FREE));
#define all_HASH _mm512_srli_epi64(all_MASK, 64-FSST_HASH_LOG2SIZE)
#define all_ONE _mm512_srli_epi64(all_MASK, 63)
#define all_M19 _mm512_srli_epi64(all_MASK, 45)
#define all_M18 _mm512_srli_epi64(all_MASK, 46)
#define all_M28 _mm512_srli_epi64(all_MASK, 36)
#define all_FFFFFF _mm512_srli_epi64(all_MASK, 40)
#define all_FFFF _mm512_srli_epi64(all_MASK, 48)
#define all_FF _mm512_srli_epi64(all_MASK, 56)
SIMDjob *inputEnd = input+n;
assert(n >= unroll*8 && n <= 512); // should be close to 512
__m512i job1, job2, job3, job4; // will contain current jobs, for each unroll 1,2,3,4
__mmask8 loadmask1 = 255, loadmask2 = 255*(unroll>1), loadmask3 = 255*(unroll>2), loadmask4 = 255*(unroll>3); // 2b loaded new strings bitmask per unroll
u32 delta1 = 8, delta2 = 8*(unroll>1), delta3 = 8*(unroll>2), delta4 = 8*(unroll>3); // #new loads this SIMD iteration per unroll
if (unroll >= 4) {
while (input+delta1+delta2+delta3+delta4 < inputEnd) {
#include "fsst_avx512_unroll4.inc"
}
} else if (unroll == 3) {
while (input+delta1+delta2+delta3 < inputEnd) {
#include "fsst_avx512_unroll3.inc"
}
} else if (unroll == 2) {
while (input+delta1+delta2 < inputEnd) {
#include "fsst_avx512_unroll2.inc"
}
} else {
while (input+delta1 < inputEnd) {
#include "fsst_avx512_unroll1.inc"
}
}
// flush the job states of the unfinished strings at the end of output[]
processed = n - (inputEnd - input);
u32 unfinished = 0;
if (unroll > 1) {
if (unroll > 2) {
if (unroll > 3) {
_mm512_mask_compressstoreu_epi64(output+unfinished, loadmask4=~loadmask4, job4);
unfinished += _mm_popcnt_u32((int) loadmask4);
}
_mm512_mask_compressstoreu_epi64(output+unfinished, loadmask3=~loadmask3, job3);
unfinished += _mm_popcnt_u32((int) loadmask3);
}
_mm512_mask_compressstoreu_epi64(output+unfinished, loadmask2=~loadmask2, job2);
unfinished += _mm_popcnt_u32((int) loadmask2);
}
_mm512_mask_compressstoreu_epi64(output+unfinished, loadmask1=~loadmask1, job1);
#else
(void) symbolTable;
(void) codeBase;
(void) symbolBase;
(void) input;
(void) output;
(void) n;
(void) unroll;
#endif
return processed;
}
} // namespace libfsst