dwarfs/fsst/libfsst.hpp
2025-03-14 15:07:49 +01:00

452 lines
23 KiB
C++

// this software is distributed under the MIT License (http://www.opensource.org/licenses/MIT):
//
// Copyright 2018-2020, CWI, TU Munich, FSU Jena
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
// (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// - The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// You can contact the authors via the FSST source repository : https://github.com/cwida/fsst
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <fstream>
#include <iostream>
#include <numeric>
#include <memory>
#include <queue>
#include <string>
#include <unordered_set>
#include <vector>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stddef.h>
using namespace std;
#include "fsst.h" // the official FSST API -- also usable by C mortals
/* unsigned integers */
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
#define FSST_ENDIAN_MARKER ((u64) 1)
#define FSST_VERSION_20190218 20190218
#define FSST_VERSION ((u64) FSST_VERSION_20190218)
// "symbols" are character sequences (up to 8 bytes)
// A symbol is compressed into a "code" of, in principle, one byte. But, we added an exception mechanism:
// byte 255 followed by byte X represents the single-byte symbol X. Its code is 256+X.
// we represent codes in u16 (not u8). 12 bits code (of which 10 are used), 4 bits length
#define FSST_LEN_BITS 12
#define FSST_CODE_BITS 9
#define FSST_CODE_BASE 256UL /* first 256 codes [0,255] are pseudo codes: escaped bytes */
#define FSST_CODE_MAX (1UL<<FSST_CODE_BITS) /* all bits set: indicating a symbol that has not been assigned a code yet */
#define FSST_CODE_MASK (FSST_CODE_MAX-1UL) /* all bits set: indicating a symbol that has not been assigned a code yet */
inline uint64_t fsst_unaligned_load(u8 const* V) {
uint64_t Ret;
memcpy(&Ret, V, sizeof(uint64_t)); // compiler will generate efficient code (unaligned load, where possible)
return Ret;
}
struct Symbol {
static const unsigned maxLength = 8;
// the byte sequence that this symbol stands for
union { char str[maxLength]; u64 num; } val; // usually we process it as a num(ber), as this is fast
// icl = u64 ignoredBits:16,code:12,length:4,unused:32 -- but we avoid exposing this bit-field notation
u64 icl; // use a single u64 to be sure "code" is accessed with one load and can be compared with one comparison
Symbol() : icl(0) { val.num = 0; }
explicit Symbol(u8 c, u16 code) : icl((1<<28)|(code<<16)|56) { val.num = c; } // single-char symbol
explicit Symbol(const char* begin, const char* end) : Symbol(begin, (u32) (end-begin)) {}
explicit Symbol(const u8* begin, const u8* end) : Symbol((const char*)begin, (u32) (end-begin)) {}
explicit Symbol(const char* input, u32 len) {
val.num = 0;
if (len>=8) {
len = 8;
memcpy(val.str, input, 8);
} else {
memcpy(val.str, input, len);
}
set_code_len(FSST_CODE_MAX, len);
}
void set_code_len(u32 code, u32 len) { icl = (len<<28)|(code<<16)|((8-len)*8); }
u32 length() const { return (u32) (icl >> 28); }
u16 code() const { return (icl >> 16) & FSST_CODE_MASK; }
u32 ignoredBits() const { return (u32) icl; }
u8 first() const { assert( length() >= 1); return 0xFF & val.num; }
u16 first2() const { assert( length() >= 2); return 0xFFFF & val.num; }
#define FSST_HASH_LOG2SIZE 10
#define FSST_HASH_PRIME 2971215073LL
#define FSST_SHIFT 15
#define FSST_HASH(w) (((w)*FSST_HASH_PRIME)^(((w)*FSST_HASH_PRIME)>>FSST_SHIFT))
size_t hash() const { size_t v = 0xFFFFFF & val.num; return FSST_HASH(v); } // hash on the next 3 bytes
};
// Symbol that can be put in a queue, ordered on gain
struct QSymbol{
Symbol symbol;
mutable u32 gain; // mutable because gain value should be ignored in find() on unordered_set of QSymbols
bool operator==(const QSymbol& other) const { return symbol.val.num == other.symbol.val.num && symbol.length() == other.symbol.length(); }
};
// we construct FSST symbol tables using a random sample of about 16KB (1<<14)
#define FSST_SAMPLETARGET (1<<14)
#define FSST_SAMPLEMAXSZ ((long) 2*FSST_SAMPLETARGET)
// two phases of compression, before and after optimize():
//
// (1) to encode values we probe (and maintain) three datastructures:
// - u16 byteCodes[256] array at the position of the next byte (s.length==1)
// - u16 shortCodes[65536] array at the position of the next twobyte pattern (s.length==2)
// - Symbol hashtable[1024] (keyed by the next three bytes, ie for s.length>2),
// this search will yield a u16 code, it points into Symbol symbols[]. You always find a hit, because the first 256 codes are
// pseudo codes representing a single byte these will become escapes)
//
// (2) when we finished looking for the best symbol table we call optimize() to reshape it:
// - it renumbers the codes by length (first symbols of length 2,3,4,5,6,7,8; then 1 (starting from byteLim are symbols of length 1)
// length 2 codes for which no longer suffix symbol exists (< suffixLim) come first among the 2-byte codes
// (allows shortcut during compression)
// - for each two-byte combination, in all unused slots of shortCodes[], it enters the byteCode[] of the symbol corresponding
// to the first byte (if such a single-byte symbol exists). This allows us to just probe the next two bytes (if there is only one
// byte left in the string, there is still a terminator-byte added during compression) in shortCodes[]. That is, byteCodes[]
// and its codepath is no longer required. This makes compression faster. The reason we use byteCodes[] during symbolTable construction
// is that adding a new code/symbol is expensive (you have to touch shortCodes[] in 256 places). This optimization was
// hence added to make symbolTable construction faster.
//
// this final layout allows for the fastest compression code, only currently present in compressBulk
// in the hash table, the icl field contains (low-to-high) ignoredBits:16,code:12,length:4
#define FSST_ICL_FREE ((15<<28)|(((u32)FSST_CODE_MASK)<<16)) // high bits of icl (len=8,code=FSST_CODE_MASK) indicates free bucket
// ignoredBits is (8-length)*8, which is the amount of high bits to zero in the input word before comparing with the hashtable key
// ..it could of course be computed from len during lookup, but storing it precomputed in some loose bits is faster
//
// the gain field is only used in the symbol queue that sorts symbols on gain
struct SymbolTable {
static const u32 hashTabSize = 1<<FSST_HASH_LOG2SIZE; // smallest size that incurs no precision loss
// lookup table using the next two bytes (65536 codes), or just the next single byte
u16 shortCodes[65536]; // contains code for 2-byte symbol, otherwise code for pseudo byte (escaped byte)
// lookup table (only used during symbolTable construction, not during normal text compression)
u16 byteCodes[256]; // contains code for every 1-byte symbol, otherwise code for pseudo byte (escaped byte)
// 'symbols' is the current symbol table symbol[code].symbol is the max 8-byte 'symbol' for single-byte 'code'
Symbol symbols[FSST_CODE_MAX]; // x in [0,255]: pseudo symbols representing escaped byte x; x in [FSST_CODE_BASE=256,256+nSymbols]: real symbols
// replicate long symbols in hashTab (avoid indirection).
Symbol hashTab[hashTabSize]; // used for all symbols of 3 and more bytes
u16 nSymbols; // amount of symbols in the map (max 255)
u16 suffixLim; // codes higher than this do not have a longer suffix
u16 terminator; // code of 1-byte symbol, that can be used as a terminator during compression
bool zeroTerminated; // whether we are expecting zero-terminated strings (we then also produce zero-terminated compressed strings)
u16 lenHisto[FSST_CODE_BITS]; // lenHisto[x] is the amount of symbols of byte-length (x+1) in this SymbolTable
SymbolTable() : nSymbols(0), suffixLim(FSST_CODE_MAX), terminator(0), zeroTerminated(false) {
// stuff done once at startup
for (u32 i=0; i<256; i++) {
symbols[i] = Symbol(i,i|(1<<FSST_LEN_BITS)); // pseudo symbols
}
Symbol unused = Symbol((u8) 0,FSST_CODE_MASK); // single-char symbol, exception code
for (u32 i=256; i<FSST_CODE_MAX; i++) {
symbols[i] = unused; // we start with all symbols unused
}
// empty hash table
Symbol s;
s.val.num = 0;
s.icl = FSST_ICL_FREE; //marks empty in hashtab
for(u32 i=0; i<hashTabSize; i++)
hashTab[i] = s;
// fill byteCodes[] with the pseudo code all bytes (escaped bytes)
for(u32 i=0; i<256; i++)
byteCodes[i] = (1<<FSST_LEN_BITS) | i;
// fill shortCodes[] with the pseudo code for the first byte of each two-byte pattern
for(u32 i=0; i<65536; i++)
shortCodes[i] = (1<<FSST_LEN_BITS) | (i&255);
memset(lenHisto, 0, sizeof(lenHisto)); // all unused
}
void clear() {
// clear a symbolTable with minimal effort (only erase the used positions in it)
memset(lenHisto, 0, sizeof(lenHisto)); // all unused
for(u32 i=FSST_CODE_BASE; i<FSST_CODE_BASE+nSymbols; i++) {
if (symbols[i].length() == 1) {
u16 val = symbols[i].first();
byteCodes[val] = (1<<FSST_LEN_BITS) | val;
} else if (symbols[i].length() == 2) {
u16 val = symbols[i].first2();
shortCodes[val] = (1<<FSST_LEN_BITS) | (val&255);
} else {
u32 idx = symbols[i].hash() & (hashTabSize-1);
hashTab[idx].val.num = 0;
hashTab[idx].icl = FSST_ICL_FREE; //marks empty in hashtab
}
}
nSymbols = 0; // no need to clean symbols[] as no symbols are used
}
bool hashInsert(Symbol s) {
u32 idx = s.hash() & (hashTabSize-1);
bool taken = (hashTab[idx].icl < FSST_ICL_FREE);
if (taken) return false; // collision in hash table
hashTab[idx].icl = s.icl;
hashTab[idx].val.num = s.val.num & (0xFFFFFFFFFFFFFFFF >> (u8) s.icl);
return true;
}
bool add(Symbol s) {
assert(FSST_CODE_BASE + nSymbols < FSST_CODE_MAX);
u32 len = s.length();
s.set_code_len(FSST_CODE_BASE + nSymbols, len);
if (len == 1) {
byteCodes[s.first()] = FSST_CODE_BASE + nSymbols + (1<<FSST_LEN_BITS); // len=1 (<<FSST_LEN_BITS)
} else if (len == 2) {
shortCodes[s.first2()] = FSST_CODE_BASE + nSymbols + (2<<FSST_LEN_BITS); // len=2 (<<FSST_LEN_BITS)
} else if (!hashInsert(s)) {
return false;
}
symbols[FSST_CODE_BASE + nSymbols++] = s;
lenHisto[len-1]++;
return true;
}
/// Find longest expansion, return code (= position in symbol table)
u16 findLongestSymbol(Symbol s) const {
size_t idx = s.hash() & (hashTabSize-1);
if (hashTab[idx].icl <= s.icl && hashTab[idx].val.num == (s.val.num & (0xFFFFFFFFFFFFFFFF >> ((u8) hashTab[idx].icl)))) {
return (hashTab[idx].icl>>16) & FSST_CODE_MASK; // matched a long symbol
}
if (s.length() >= 2) {
u16 code = shortCodes[s.first2()] & FSST_CODE_MASK;
if (code >= FSST_CODE_BASE) return code;
}
return byteCodes[s.first()] & FSST_CODE_MASK;
}
u16 findLongestSymbol(const u8* cur, const u8* end) const {
return findLongestSymbol(Symbol(cur,end)); // represent the string as a temporary symbol
}
// rationale for finalize:
// - during symbol table construction, we may create more than 256 codes, but bring it down to max 255 in the last makeTable()
// consequently we needed more than 8 bits during symbol table contruction, but can simplify the codes to single bytes in finalize()
// (this feature is in fact lo longer used, but could still be exploited: symbol construction creates no more than 255 symbols in each pass)
// - we not only reduce the amount of codes to <255, but also *reorder* the symbols and renumber their codes, for higher compression perf.
// we renumber codes so they are grouped by length, to allow optimized scalar string compression (byteLim and suffixLim optimizations).
// - we make the use of byteCode[] no longer necessary by inserting single-byte codes in the free spots of shortCodes[]
// Using shortCodes[] only makes compression faster. When creating the symbolTable, however, using shortCodes[] for the single-byte
// symbols is slow, as each insert touches 256 positions in it. This optimization was added when optimizing symbolTable construction time.
//
// In all, we change the layout and coding, as follows..
//
// before finalize():
// - The real symbols are symbols[256..256+nSymbols>. As we may have nSymbols > 255
// - The first 256 codes are pseudo symbols (all escaped bytes)
//
// after finalize():
// - table layout is symbols[0..nSymbols>, with nSymbols < 256.
// - Real codes are [0,nSymbols>. 8-th bit not set.
// - Escapes in shortCodes have the 8th bit set (value: 256+255=511). 255 because the code to be emitted is the escape byte 255
// - symbols are grouped by length: 2,3,4,5,6,7,8, then 1 (single-byte codes last)
// the two-byte codes are split in two sections:
// - first section contains codes for symbols for which there is no longer symbol (no suffix). It allows an early-out during compression
//
// finally, shortCodes[] is modified to also encode all single-byte symbols (hence byteCodes[] is not required on a critical path anymore).
//
void finalize(u8 zeroTerminated) {
assert(nSymbols <= 255);
u8 newCode[256], rsum[8], byteLim = nSymbols - (lenHisto[0] - zeroTerminated);
// compute running sum of code lengths (starting offsets for each length)
rsum[0] = byteLim; // 1-byte codes are highest
rsum[1] = zeroTerminated;
for(u32 i=1; i<7; i++)
rsum[i+1] = rsum[i] + lenHisto[i];
// determine the new code for each symbol, ordered by length (and splitting 2byte symbols into two classes around suffixLim)
suffixLim = rsum[1];
symbols[newCode[0] = 0] = symbols[256]; // keep symbol 0 in place (for zeroTerminated cases only)
for(u32 i=zeroTerminated, j=rsum[2]; i<nSymbols; i++) {
Symbol s1 = symbols[FSST_CODE_BASE+i];
u32 len = s1.length(), opt = (len == 2)*nSymbols;
if (opt) {
u16 first2 = s1.first2();
for(u32 k=0; k<opt; k++) {
Symbol s2 = symbols[FSST_CODE_BASE+k];
if (k != i && s2.length() > 1 && first2 == s2.first2()) // test if symbol k is a suffix of s
opt = 0;
}
newCode[i] = opt?suffixLim++:--j; // symbols without a larger suffix have a code < suffixLim
} else
newCode[i] = rsum[len-1]++;
s1.set_code_len(newCode[i],len);
symbols[newCode[i]] = s1;
}
// renumber the codes in byteCodes[]
for(u32 i=0; i<256; i++)
if ((byteCodes[i] & FSST_CODE_MASK) >= FSST_CODE_BASE)
byteCodes[i] = newCode[(u8) byteCodes[i]] + (1 << FSST_LEN_BITS);
else
byteCodes[i] = 511 + (1 << FSST_LEN_BITS);
// renumber the codes in shortCodes[]
for(u32 i=0; i<65536; i++)
if ((shortCodes[i] & FSST_CODE_MASK) >= FSST_CODE_BASE)
shortCodes[i] = newCode[(u8) shortCodes[i]] + (shortCodes[i] & (15 << FSST_LEN_BITS));
else
shortCodes[i] = byteCodes[i&0xFF];
// replace the symbols in the hash table
for(u32 i=0; i<hashTabSize; i++)
if (hashTab[i].icl < FSST_ICL_FREE)
hashTab[i] = symbols[newCode[(u8) hashTab[i].code()]];
}
};
#ifdef NONOPT_FSST
struct Counters {
u16 count1[FSST_CODE_MAX]; // array to count frequency of symbols as they occur in the sample
u16 count2[FSST_CODE_MAX][FSST_CODE_MAX]; // array to count subsequent combinations of two symbols in the sample
void count1Set(u32 pos1, u16 val) {
count1[pos1] = val;
}
void count1Inc(u32 pos1) {
count1[pos1]++;
}
void count2Inc(u32 pos1, u32 pos2) {
count2[pos1][pos2]++;
}
u32 count1GetNext(u32 &pos1) {
return count1[pos1];
}
u32 count2GetNext(u32 pos1, u32 &pos2) {
return count2[pos1][pos2];
}
void backup1(u8 *buf) {
memcpy(buf, count1, FSST_CODE_MAX*sizeof(u16));
}
void restore1(u8 *buf) {
memcpy(count1, buf, FSST_CODE_MAX*sizeof(u16));
}
};
#else
// we keep two counters count1[pos] and count2[pos1][pos2] of resp 16 and 12-bits. Both are split into two columns for performance reasons
// first reason is to make the column we update the most during symbolTable construction (the low bits) thinner, thus reducing CPU cache pressure.
// second reason is that when scanning the array, after seeing a 64-bits 0 in the high bits column, we can quickly skip over many codes (15 or 7)
struct Counters {
// high arrays come before low arrays, because our GetNext() methods may overrun their 64-bits reads a few bytes
u8 count1High[FSST_CODE_MAX]; // array to count frequency of symbols as they occur in the sample (16-bits)
u8 count1Low[FSST_CODE_MAX]; // it is split in a low and high byte: cnt = count1High*256 + count1Low
u8 count2High[FSST_CODE_MAX][FSST_CODE_MAX/2]; // array to count subsequent combinations of two symbols in the sample (12-bits: 8-bits low, 4-bits high)
u8 count2Low[FSST_CODE_MAX][FSST_CODE_MAX]; // its value is (count2High*256+count2Low) -- but high is 4-bits (we put two numbers in one, hence /2)
// 385KB -- but hot area likely just 10 + 30*4 = 130 cache lines (=8KB)
void count1Set(u32 pos1, u16 val) {
count1Low[pos1] = val&255;
count1High[pos1] = val>>8;
}
void count1Inc(u32 pos1) {
if (!count1Low[pos1]++) // increment high early (when low==0, not when low==255). This means (high > 0) <=> (cnt > 0)
count1High[pos1]++; //(0,0)->(1,1)->..->(255,1)->(0,1)->(1,2)->(2,2)->(3,2)..(255,2)->(0,2)->(1,3)->(2,3)...
}
void count2Inc(u32 pos1, u32 pos2) {
if (!count2Low[pos1][pos2]++) // increment high early (when low==0, not when low==255). This means (high > 0) <=> (cnt > 0)
// inc 4-bits high counter with 1<<0 (1) or 1<<4 (16) -- depending on whether pos2 is even or odd, repectively
count2High[pos1][(pos2)>>1] += 1 << (((pos2)&1)<<2); // we take our chances with overflow.. (4K maxval, on a 8K sample)
}
u32 count1GetNext(u32 &pos1) { // note: we will advance pos1 to the next nonzero counter in register range
// read 16-bits single symbol counter, split into two 8-bits numbers (count1Low, count1High), while skipping over zeros
u64 high = fsst_unaligned_load(&count1High[pos1]); // note: this reads 8 subsequent counters [pos1..pos1+7]
u32 zero = high?(__builtin_ctzl(high)>>3):7UL; // number of zero bytes
high = (high >> (zero << 3)) & 255; // advance to nonzero counter
if (((pos1 += zero) >= FSST_CODE_MAX) || !high) // SKIP! advance pos2
return 0; // all zero
u32 low = count1Low[pos1];
if (low) high--; // high is incremented early and low late, so decrement high (unless low==0)
return (u32) ((high << 8) + low);
}
u32 count2GetNext(u32 pos1, u32 &pos2) { // note: we will advance pos2 to the next nonzero counter in register range
// read 12-bits pairwise symbol counter, split into low 8-bits and high 4-bits number while skipping over zeros
u64 high = fsst_unaligned_load(&count2High[pos1][pos2>>1]); // note: this reads 16 subsequent counters [pos2..pos2+15]
high >>= ((pos2&1) << 2); // odd pos2: ignore the lowest 4 bits & we see only 15 counters
u32 zero = high?(__builtin_ctzl(high)>>2):(15UL-(pos2&1UL)); // number of zero 4-bits counters
high = (high >> (zero << 2)) & 15; // advance to nonzero counter
if (((pos2 += zero) >= FSST_CODE_MAX) || !high) // SKIP! advance pos2
return 0UL; // all zero
u32 low = count2Low[pos1][pos2];
if (low) high--; // high is incremented early and low late, so decrement high (unless low==0)
return (u32) ((high << 8) + low);
}
void backup1(u8 *buf) {
memcpy(buf, count1High, FSST_CODE_MAX);
memcpy(buf+FSST_CODE_MAX, count1Low, FSST_CODE_MAX);
}
void restore1(u8 *buf) {
memcpy(count1High, buf, FSST_CODE_MAX);
memcpy(count1Low, buf+FSST_CODE_MAX, FSST_CODE_MAX);
}
};
#endif
#define FSST_BUFSZ (3<<19) // 768KB
// an encoder is a symbolmap plus some bufferspace, needed during map construction as well as compression
struct Encoder {
shared_ptr<SymbolTable> symbolTable; // symbols, plus metadata and data structures for quick compression (shortCode,hashTab, etc)
union {
Counters counters; // for counting symbol occurences during map construction
u8 simdbuf[FSST_BUFSZ]; // for compression: SIMD string staging area 768KB = 256KB in + 512KB out (worst case for 256KB in)
};
};
// job control integer representable in one 64bits SIMD lane: cur/end=input, out=output, pos=which string (2^9=512 per call)
struct SIMDjob {
u64 out:19,pos:9,end:18,cur:18; // cur/end is input offsets (2^18=256KB), out is output offset (2^19=512KB)
};
extern bool
fsst_hasAVX512(); // runtime check for avx512 capability
extern size_t
fsst_compressAVX512(
SymbolTable &symbolTable,
u8* codeBase, // IN: base address for codes, i.e. compression output (points to simdbuf+256KB)
u8* symbolBase, // IN: base address for string bytes, i.e. compression input (points to simdbuf)
SIMDjob* input, // IN: input array (size n) with job information: what to encode, where to store it.
SIMDjob* output, // OUT: output array (size n) with job information: how much got encoded, end output pointer.
size_t n, // IN: size of arrays input and output (should be max 512)
size_t unroll); // IN: degree of SIMD unrolling
// C++ fsst-compress function with some more control of how the compression happens (algorithm flavor, simd unroll degree)
size_t compressImpl(Encoder *encoder, size_t n, size_t lenIn[], u8 *strIn[], size_t size, u8 * output, size_t *lenOut, u8 *strOut[], bool noSuffixOpt, bool avoidBranch, int simd);
size_t compressAuto(Encoder *encoder, size_t n, size_t lenIn[], u8 *strIn[], size_t size, u8 * output, size_t *lenOut, u8 *strOut[], int simd);