mirror of
https://github.com/AltraMayor/f3.git
synced 2025-08-03 18:46:00 -04:00

`sizeof()` returns the number of bytes, not bits, and since this is as an unsigned type and the value typically less than 10 the assertion currently does not fail but also fails to detect problems when `MAX_N_BLOCK_ORDER` is too big as the comparison is with the the very big number resulting from an unsigned overflow, typically 2^32-2.
823 lines
22 KiB
C
823 lines
22 KiB
C
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdbool.h>
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <errno.h>
|
|
#include <time.h> /* For time(). */
|
|
#include <sys/time.h> /* For gettimeofday(). */
|
|
|
|
#include "libutils.h"
|
|
#include "libprobe.h"
|
|
|
|
static int write_blocks(struct device *dev,
|
|
uint64_t first_pos, uint64_t last_pos, uint64_t salt)
|
|
{
|
|
const int block_order = dev_get_block_order(dev);
|
|
const int block_size = dev_get_block_size(dev);
|
|
/* Aligning these pointers is necessary to directly read and write
|
|
* the block device.
|
|
* For the file device, this is superfluous.
|
|
*/
|
|
char stack[align_head(block_order) + BIG_BLOCK_SIZE_BYTE];
|
|
char *buffer = align_mem(stack, block_order);
|
|
char *stamp_blk = buffer;
|
|
char *flush_blk = buffer + BIG_BLOCK_SIZE_BYTE;
|
|
uint64_t offset = first_pos << block_order;
|
|
uint64_t pos, write_pos = first_pos;
|
|
|
|
for (pos = first_pos; pos <= last_pos; pos++) {
|
|
fill_buffer_with_block(stamp_blk, block_order, offset, salt);
|
|
stamp_blk += block_size;
|
|
offset += block_size;
|
|
|
|
if (stamp_blk == flush_blk || pos == last_pos) {
|
|
if (dev_write_blocks(dev, buffer, write_pos, pos) &&
|
|
dev_write_blocks(dev, buffer, write_pos, pos))
|
|
return true;
|
|
stamp_blk = buffer;
|
|
write_pos = pos + 1;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int high_level_reset(struct device *dev, uint64_t start_pos,
|
|
uint64_t cache_size_block, int need_reset, uint64_t salt)
|
|
{
|
|
if (write_blocks(dev,
|
|
start_pos, start_pos + cache_size_block - 1, salt))
|
|
return true;
|
|
|
|
/* Reset. */
|
|
if (need_reset && dev_reset(dev) && dev_reset(dev))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Statistics used by bisect() in order to optimize the proportion
|
|
* between writes and resets.
|
|
*/
|
|
struct bisect_stats {
|
|
int write_count;
|
|
int reset_count;
|
|
uint64_t write_time_us;
|
|
uint64_t reset_time_us;
|
|
};
|
|
|
|
static void init_bisect_stats(struct bisect_stats *stats)
|
|
{
|
|
memset(stats, 0, sizeof(*stats));
|
|
}
|
|
|
|
#define MAX_N_BLOCK_ORDER 10
|
|
|
|
static uint64_t estimate_n_bisect_blocks(struct bisect_stats *pstats)
|
|
{
|
|
double t_w_us, t_2w_us, t_r_us;
|
|
uint64_t n_block_order;
|
|
|
|
if (pstats->write_count < 10 || pstats->reset_count < 1) {
|
|
/* There is not enough measurements. */
|
|
return (1 << 4) - 1;
|
|
}
|
|
|
|
/* Let 2^n be the total number of blocks on the drive.
|
|
* Let p be the total number of passes.
|
|
* Let w = (2^m - 1) be the number of blocks written on each pass,
|
|
* where m >= 1.
|
|
*
|
|
* A pass is an iteration of the loop in search_edge(), that is,
|
|
* a call to write_test_blocks(), dev_reset(), and probe_test_blocks().
|
|
*
|
|
* The reason to have w = (2^m - 1) instead of w = 2^m is because
|
|
* the former leads to a clean relationship between n, p, and m
|
|
* when m is constant: 2^n / (w + 1)^p = 1 => p = n/m
|
|
*
|
|
* Let Tr be the time to reset the device.
|
|
* Let Tw be the time to write a block to @dev.
|
|
* Let Tw' be the time to write a block to the underlying device
|
|
* of @dev, that is, without overhead due to chaining multiple
|
|
* struct device. For example, when struct safe_device is used
|
|
* Tw > Tw'.
|
|
* Let Trd be the time to read a block from @dev.
|
|
*
|
|
* Notice that each single-block pass reduces the search space in half,
|
|
* and that to reduce the search space in half writing blocks,
|
|
* one has to increase m of one.
|
|
*
|
|
* Thus, in order to be better writing more blocks than
|
|
* going for another pass, the following relation must be true:
|
|
*
|
|
* Tr + Tw + Tw' >= (w - 1)(Tw + Tw')
|
|
*
|
|
* The relation above assumes Trd = 0.
|
|
*
|
|
* The left side of the relation above is the time to do _another_
|
|
* pass writing a single block, whereas the right side is the time to
|
|
* stay in the same pass and write (w - 1) more blocks.
|
|
* In order words, if there is no advantage to write more blocks,
|
|
* we stick to single-block passes.
|
|
*
|
|
* Tw' is there to account for any operation that writes
|
|
* the blocks back (e.g. using struct safe_device), otherwise
|
|
* processing operations related per written blocks that is not
|
|
* being accounted for (e.g. reading the blocks back to test).
|
|
*
|
|
* Solving the relation for w: w <= Tr/(Tw + Tw') + 2
|
|
*
|
|
* However, we are not interested in any w, but only those of
|
|
* of the form (2^m - 1) to make sure that we are not better off
|
|
* calling another pass. Thus, solving the previous relation for m:
|
|
*
|
|
* m <= log_2(Tr/(Tw + Tw') + 3)
|
|
*
|
|
* We approximate Tw' making it equal to Tw.
|
|
*/
|
|
t_w_us = (double)pstats->write_time_us / pstats->write_count;
|
|
t_r_us = (double)pstats->reset_time_us / pstats->reset_count;
|
|
t_2w_us = t_w_us > 0. ? 2. * t_w_us : 1.; /* Avoid zero division. */
|
|
n_block_order = ilog2(round(t_r_us / t_2w_us + 3.));
|
|
|
|
/* Bound the maximum number of blocks per pass to limit
|
|
* the necessary amount of memory struct safe_device pre-allocates.
|
|
*/
|
|
if (n_block_order > MAX_N_BLOCK_ORDER)
|
|
n_block_order = MAX_N_BLOCK_ORDER;
|
|
|
|
return (1 << n_block_order) - 1;
|
|
}
|
|
|
|
/* Write blocks whose offsets are after @left_pos and before @right_pos. */
|
|
static int write_bisect_blocks(struct device *dev,
|
|
uint64_t left_pos, uint64_t right_pos, uint64_t n_blocks,
|
|
uint64_t salt, uint64_t *pa, uint64_t *pb, uint64_t *pmax_idx)
|
|
{
|
|
uint64_t pos, last_pos;
|
|
|
|
assert(n_blocks >= 1);
|
|
|
|
/* Find coeficients of function a*idx + b where idx <= max_idx. */
|
|
assert(left_pos < right_pos);
|
|
assert(right_pos - left_pos >= 2);
|
|
*pb = left_pos + 1;
|
|
*pa = round((right_pos - *pb - 1.) / (n_blocks + 1.));
|
|
*pa = !*pa ? 1ULL : *pa;
|
|
*pmax_idx = (right_pos - *pb - 1) / *pa;
|
|
if (*pmax_idx >= n_blocks) {
|
|
/* Shift the zero of the function to the right.
|
|
* This avoids picking the leftmost block when a more
|
|
* informative block to the right is available.
|
|
*/
|
|
*pb += *pa;
|
|
|
|
*pmax_idx = n_blocks - 1;
|
|
}
|
|
last_pos = *pa * *pmax_idx + *pb;
|
|
assert(last_pos < right_pos);
|
|
|
|
/* Write test blocks. */
|
|
for (pos = *pb; pos <= last_pos; pos += *pa)
|
|
if (write_blocks(dev, pos, pos, salt))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int is_block_good(struct device *dev, uint64_t pos, int *pis_good,
|
|
uint64_t salt)
|
|
{
|
|
const int block_size = dev_get_block_size(dev);
|
|
const int block_order = dev_get_block_order(dev);
|
|
char stack[align_head(block_order) + block_size];
|
|
char *probe_blk = align_mem(stack, block_order);
|
|
uint64_t found_offset;
|
|
|
|
if (dev_read_blocks(dev, probe_blk, pos, pos) &&
|
|
dev_read_blocks(dev, probe_blk, pos, pos))
|
|
return true;
|
|
|
|
*pis_good = !validate_buffer_with_block(probe_blk, block_order,
|
|
&found_offset, salt) &&
|
|
found_offset == (pos << block_order);
|
|
return false;
|
|
}
|
|
|
|
static int probe_bisect_blocks(struct device *dev,
|
|
uint64_t *pleft_pos, uint64_t *pright_pos, uint64_t salt,
|
|
uint64_t a, uint64_t b, uint64_t max_idx)
|
|
{
|
|
/* Signed variables. */
|
|
int64_t left_idx = 0;
|
|
int64_t right_idx = max_idx;
|
|
while (left_idx <= right_idx) {
|
|
int64_t idx = (left_idx + right_idx) / 2;
|
|
uint64_t pos = a * idx + b;
|
|
int is_good;
|
|
if (is_block_good(dev, pos, &is_good, salt))
|
|
return true;
|
|
if (is_good) {
|
|
left_idx = idx + 1;
|
|
*pleft_pos = pos;
|
|
} else {
|
|
right_idx = idx - 1;
|
|
*pright_pos = pos;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* This function assumes that the block at @left_pos is good, and
|
|
* that the block at @*pright_pos is bad.
|
|
*/
|
|
static int bisect(struct device *dev, struct bisect_stats *pstats,
|
|
uint64_t left_pos, uint64_t *pright_pos, uint64_t reset_pos,
|
|
uint64_t cache_size_block, int need_reset, uint64_t salt)
|
|
{
|
|
uint64_t gap = *pright_pos - left_pos;
|
|
struct timeval t1, t2;
|
|
|
|
assert(*pright_pos > left_pos);
|
|
while (gap >= 2) {
|
|
uint64_t a, b, max_idx;
|
|
uint64_t n_blocks = estimate_n_bisect_blocks(pstats);
|
|
|
|
assert(!gettimeofday(&t1, NULL));
|
|
if (write_bisect_blocks(dev, left_pos, *pright_pos, n_blocks,
|
|
salt, &a, &b, &max_idx))
|
|
return true;
|
|
assert(!gettimeofday(&t2, NULL));
|
|
pstats->write_count += max_idx + 1;
|
|
pstats->write_time_us += diff_timeval_us(&t1, &t2);
|
|
|
|
/* Reset. */
|
|
assert(!gettimeofday(&t1, NULL));
|
|
if (high_level_reset(dev, reset_pos,
|
|
cache_size_block, need_reset, salt))
|
|
return true;
|
|
assert(!gettimeofday(&t2, NULL));
|
|
pstats->reset_count++;
|
|
pstats->reset_time_us += diff_timeval_us(&t1, &t2);
|
|
|
|
if (probe_bisect_blocks(dev, &left_pos, pright_pos, salt,
|
|
a, b, max_idx))
|
|
return true;
|
|
|
|
gap = *pright_pos - left_pos;
|
|
}
|
|
assert(gap == 1);
|
|
return false;
|
|
}
|
|
|
|
static int count_good_blocks(struct device *dev, uint64_t *pcount,
|
|
uint64_t first_pos, uint64_t last_pos, uint64_t salt)
|
|
{
|
|
const int block_size = dev_get_block_size(dev);
|
|
const int block_order = dev_get_block_order(dev);
|
|
char stack[align_head(block_order) + BIG_BLOCK_SIZE_BYTE];
|
|
char *buffer = align_mem(stack, block_order);
|
|
uint64_t expected_sector_offset = first_pos << block_order;
|
|
uint64_t start_pos = first_pos;
|
|
uint64_t step = (BIG_BLOCK_SIZE_BYTE >> block_order) - 1;
|
|
uint64_t count = 0;
|
|
|
|
assert(BIG_BLOCK_SIZE_BYTE >= block_size);
|
|
|
|
while (start_pos <= last_pos) {
|
|
char *probe_blk = buffer;
|
|
uint64_t pos, next_pos = start_pos + step;
|
|
|
|
if (next_pos > last_pos)
|
|
next_pos = last_pos;
|
|
if (dev_read_blocks(dev, buffer, start_pos, next_pos) &&
|
|
dev_read_blocks(dev, buffer, start_pos, next_pos))
|
|
return true;
|
|
|
|
for (pos = start_pos; pos <= next_pos; pos++) {
|
|
uint64_t found_sector_offset;
|
|
if (!validate_buffer_with_block(probe_blk, block_order,
|
|
&found_sector_offset, salt) &&
|
|
expected_sector_offset == found_sector_offset)
|
|
count++;
|
|
expected_sector_offset += block_size;
|
|
probe_blk += block_size;
|
|
}
|
|
|
|
start_pos = next_pos + 1;
|
|
}
|
|
|
|
*pcount = count;
|
|
return false;
|
|
}
|
|
|
|
static int assess_reset_effect(struct device *dev,
|
|
uint64_t *pcache_size_block, int *pneed_reset, int *pdone,
|
|
uint64_t first_pos, uint64_t last_pos, uint64_t salt)
|
|
{
|
|
uint64_t write_target = (last_pos + 1) - first_pos;
|
|
uint64_t b4_reset_count_block, after_reset_count_block;
|
|
|
|
if (count_good_blocks(dev, &b4_reset_count_block,
|
|
first_pos, last_pos, salt))
|
|
return true;
|
|
|
|
if (!b4_reset_count_block) {
|
|
/* The drive has no cache whatsoever. */
|
|
*pcache_size_block = 0;
|
|
*pneed_reset = false;
|
|
*pdone = true;
|
|
return false;
|
|
}
|
|
|
|
/* Reset. */
|
|
if (dev_reset(dev) && dev_reset(dev))
|
|
return true;
|
|
|
|
if (count_good_blocks(dev, &after_reset_count_block,
|
|
first_pos, last_pos, salt))
|
|
return true;
|
|
|
|
/* Although unexpected, some fake cards do recover blocks after
|
|
* a reset! This behavior is not consistent, though.
|
|
* The first reported case is found here:
|
|
* https://github.com/AltraMayor/f3/issues/50
|
|
*/
|
|
if (b4_reset_count_block < write_target ||
|
|
after_reset_count_block < write_target) {
|
|
*pneed_reset = after_reset_count_block < b4_reset_count_block;
|
|
*pcache_size_block = *pneed_reset
|
|
? after_reset_count_block
|
|
: write_target;
|
|
*pdone = true;
|
|
return false;
|
|
}
|
|
|
|
*pdone = false;
|
|
return false;
|
|
}
|
|
|
|
static inline uint64_t uint64_rand(void)
|
|
{
|
|
return ((uint64_t)rand() << 32) | rand();
|
|
}
|
|
|
|
static uint64_t uint64_rand_range(uint64_t a, uint64_t b)
|
|
{
|
|
uint64_t r = uint64_rand();
|
|
assert(a <= b);
|
|
return a + (r % (b - a + 1));
|
|
}
|
|
|
|
#define N_BLOCK_SAMPLES 64
|
|
|
|
static int probabilistic_test(struct device *dev,
|
|
uint64_t first_pos, uint64_t last_pos, int *pfound_a_bad_block,
|
|
uint64_t salt)
|
|
{
|
|
uint64_t gap;
|
|
int i, n, is_linear;
|
|
|
|
if (first_pos > last_pos)
|
|
goto not_found;
|
|
|
|
/* Let g be the number of good blocks between
|
|
* @first_pos and @last_pos including them.
|
|
* Let b be the number of bad and overwritten blocks between
|
|
* @first_pos and @last_pos including them.
|
|
*
|
|
* The probability Pr_g of sampling a good block at random between
|
|
* @first_pos and @last_pos is Pr_g = g / (g + b), and
|
|
* the probability Pr_1b that among k block samples at least
|
|
* one block is bad is Pr_1b = 1 - Pr_g^k.
|
|
*
|
|
* Assuming Pr_g <= 95% and k = 64, Pr_1b >= 96.2%.
|
|
* That is, with high probability (i.e. Pr_1b),
|
|
* one can find at least a bad block with k samples
|
|
* when most blocks are good (Pr_g).
|
|
*/
|
|
|
|
/* Test @samples. */
|
|
gap = last_pos - first_pos + 1;
|
|
is_linear = gap <= N_BLOCK_SAMPLES;
|
|
n = is_linear ? gap : N_BLOCK_SAMPLES;
|
|
for (i = 0; i < n; i++) {
|
|
uint64_t sample_pos = is_linear
|
|
? first_pos + i
|
|
: uint64_rand_range(first_pos, last_pos);
|
|
int is_good;
|
|
|
|
if (is_block_good(dev, sample_pos, &is_good, salt))
|
|
return true;
|
|
if (!is_good) {
|
|
/* Found a bad block. */
|
|
*pfound_a_bad_block = true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
not_found:
|
|
*pfound_a_bad_block = false;
|
|
return false;
|
|
}
|
|
|
|
static int uint64_cmp(const void *pa, const void *pb)
|
|
{
|
|
const uint64_t *pia = pa;
|
|
const uint64_t *pib = pb;
|
|
return *pia - *pib;
|
|
}
|
|
|
|
static int find_a_bad_block(struct device *dev,
|
|
uint64_t left_pos, uint64_t *pright_pos, int *found_a_bad_block,
|
|
uint64_t reset_pos, uint64_t cache_size_block, int need_reset,
|
|
uint64_t salt)
|
|
{
|
|
/* We need to list all sampled blocks because
|
|
* we need a sorted array; read the code to find the why.
|
|
* If the sorted array were not needed, one could save the seed
|
|
* of the random sequence and repeat the sequence to read the blocks
|
|
* after writing them.
|
|
*/
|
|
uint64_t samples[N_BLOCK_SAMPLES];
|
|
uint64_t gap, prv_sample;
|
|
int n, i;
|
|
|
|
if (*pright_pos <= left_pos + 1)
|
|
goto not_found;
|
|
|
|
/* The code below relies on the same analytical result derived
|
|
* in probabilistic_test().
|
|
*/
|
|
|
|
/* Fill up @samples. */
|
|
gap = *pright_pos - left_pos - 1;
|
|
if (gap <= N_BLOCK_SAMPLES) {
|
|
n = gap;
|
|
for (i = 0; i < n; i++)
|
|
samples[i] = left_pos + 1 + i;
|
|
|
|
/* Write @samples. */
|
|
if (write_blocks(dev, left_pos + 1, *pright_pos - 1, salt))
|
|
return true;
|
|
} else {
|
|
n = N_BLOCK_SAMPLES;
|
|
for (i = 0; i < n; i++)
|
|
samples[i] = uint64_rand_range(left_pos + 1,
|
|
*pright_pos - 1);
|
|
|
|
/* Sort entries of @samples to minimize reads.
|
|
* As soon as one finds a bad block, one can stop and ignore
|
|
* the remaining blocks because the found bad block is
|
|
* the leftmost bad block.
|
|
*/
|
|
qsort(samples, n, sizeof(uint64_t), uint64_cmp);
|
|
|
|
/* Write @samples. */
|
|
prv_sample = left_pos;
|
|
for (i = 0; i < n; i++) {
|
|
if (samples[i] == prv_sample)
|
|
continue;
|
|
prv_sample = samples[i];
|
|
if (write_blocks(dev, prv_sample, prv_sample, salt))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* Reset. */
|
|
if (high_level_reset(dev, reset_pos,
|
|
cache_size_block, need_reset, salt))
|
|
return true;
|
|
|
|
/* Test @samples. */
|
|
prv_sample = left_pos;
|
|
for (i = 0; i < n; i++) {
|
|
int is_good;
|
|
|
|
if (samples[i] == prv_sample)
|
|
continue;
|
|
|
|
prv_sample = samples[i];
|
|
if (is_block_good(dev, prv_sample, &is_good, salt))
|
|
return true;
|
|
if (!is_good) {
|
|
/* Found the leftmost bad block. */
|
|
*pright_pos = prv_sample;
|
|
*found_a_bad_block = true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
not_found:
|
|
*found_a_bad_block = false;
|
|
return false;
|
|
}
|
|
|
|
/* Both need to be a power of 2 and larger than, or equal to 2^block_order. */
|
|
#define MIN_CACHE_SIZE_BYTE (1ULL << 20)
|
|
#define MAX_CACHE_SIZE_BYTE (1ULL << 30)
|
|
|
|
static int find_cache_size(struct device *dev,
|
|
uint64_t left_pos, uint64_t *pright_pos, uint64_t *pcache_size_block,
|
|
int *pneed_reset, int *pgood_drive, const uint64_t salt)
|
|
{
|
|
const int block_order = dev_get_block_order(dev);
|
|
uint64_t write_target = MIN_CACHE_SIZE_BYTE >> block_order;
|
|
uint64_t final_write_target = MAX_CACHE_SIZE_BYTE >> block_order;
|
|
uint64_t first_pos, last_pos, end_pos;
|
|
int done;
|
|
|
|
/*
|
|
* Basis
|
|
*
|
|
* The key difference between the basis and the inductive step is
|
|
* the fact that the basis always calls assess_reset_effect().
|
|
* This difference is not for correctness, that is, one can remove it,
|
|
* and fold the basis into the inductive step.
|
|
* However, this difference is an important speedup because many
|
|
* fake drives do not have permanent cache.
|
|
*/
|
|
|
|
assert(write_target > 0);
|
|
assert(write_target < final_write_target);
|
|
|
|
last_pos = end_pos = *pright_pos - 1;
|
|
/* This convoluted test is needed because
|
|
* the variables are unsigned.
|
|
* In a simplified form, it tests the following:
|
|
* *pright_pos - write_target > left_pos
|
|
*/
|
|
if (*pright_pos > left_pos + write_target) {
|
|
first_pos = *pright_pos - write_target;
|
|
} else if (*pright_pos > left_pos + 1) {
|
|
/* There's no room to write @write_target blocks,
|
|
* so write what's possible.
|
|
*/
|
|
first_pos = left_pos + 1;
|
|
} else {
|
|
goto good;
|
|
}
|
|
|
|
if (write_blocks(dev, first_pos, last_pos, salt))
|
|
goto bad;
|
|
|
|
if (assess_reset_effect(dev, pcache_size_block,
|
|
pneed_reset, &done, first_pos, end_pos, salt))
|
|
goto bad;
|
|
if (done) {
|
|
*pright_pos = first_pos;
|
|
*pgood_drive = false;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Inductive step
|
|
*/
|
|
|
|
while (write_target < final_write_target) {
|
|
int found_a_bad_block;
|
|
|
|
write_target <<= 1;
|
|
last_pos = first_pos - 1;
|
|
if (first_pos > left_pos + write_target)
|
|
first_pos -= write_target;
|
|
else if (first_pos > left_pos + 1)
|
|
first_pos = left_pos + 1;
|
|
else
|
|
break; /* Cannot write any further. */
|
|
|
|
/* Write @write_target blocks before
|
|
* the previously written blocks.
|
|
*/
|
|
if (write_blocks(dev, first_pos, last_pos, salt))
|
|
goto bad;
|
|
|
|
if (probabilistic_test(dev, first_pos, end_pos,
|
|
&found_a_bad_block, salt))
|
|
goto bad;
|
|
if (found_a_bad_block) {
|
|
if (assess_reset_effect(dev, pcache_size_block,
|
|
pneed_reset, &done, first_pos, end_pos, salt))
|
|
goto bad;
|
|
assert(done);
|
|
*pright_pos = first_pos;
|
|
*pgood_drive = false;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
good:
|
|
*pright_pos = end_pos + 1;
|
|
*pcache_size_block = 0;
|
|
*pneed_reset = false;
|
|
*pgood_drive = true;
|
|
return false;
|
|
|
|
bad:
|
|
/* *pright_pos does not change. */
|
|
*pcache_size_block = 0;
|
|
*pneed_reset = false;
|
|
*pgood_drive = false;
|
|
return true;
|
|
}
|
|
|
|
static int find_wrap(struct device *dev,
|
|
uint64_t left_pos, uint64_t *pright_pos,
|
|
uint64_t reset_pos, uint64_t cache_size_block, int need_reset,
|
|
uint64_t salt)
|
|
{
|
|
uint64_t offset, high_bit, pos = left_pos + 1;
|
|
int is_good, block_order;
|
|
|
|
/*
|
|
* Basis
|
|
*/
|
|
|
|
/* Make sure that there is at least a good block at the beginning
|
|
* of the drive.
|
|
*/
|
|
|
|
if (pos >= *pright_pos)
|
|
return false;
|
|
|
|
if (write_blocks(dev, pos, pos, salt) ||
|
|
high_level_reset(dev, reset_pos,
|
|
cache_size_block, need_reset, salt) ||
|
|
is_block_good(dev, pos, &is_good, salt) ||
|
|
!is_good)
|
|
return true;
|
|
|
|
/*
|
|
* Inductive step
|
|
*/
|
|
|
|
block_order = dev_get_block_order(dev);
|
|
offset = pos << block_order;
|
|
high_bit = clp2(pos);
|
|
if (high_bit <= pos)
|
|
high_bit <<= 1;
|
|
pos += high_bit;
|
|
|
|
while (pos < *pright_pos) {
|
|
char stack[align_head(block_order) + (1 << block_order)];
|
|
char *probe_blk = align_mem(stack, block_order);
|
|
uint64_t found_offset;
|
|
|
|
if (dev_read_blocks(dev, probe_blk, pos, pos) &&
|
|
dev_read_blocks(dev, probe_blk, pos, pos))
|
|
return true;
|
|
|
|
if (!validate_buffer_with_block(probe_blk, block_order,
|
|
&found_offset, salt) &&
|
|
found_offset == offset) {
|
|
*pright_pos = high_bit;
|
|
return false;
|
|
}
|
|
|
|
high_bit <<= 1;
|
|
pos = high_bit + left_pos + 1;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
uint64_t probe_device_max_blocks(struct device *dev)
|
|
{
|
|
const int block_order = dev_get_block_order(dev);
|
|
uint64_t num_blocks = dev_get_size_byte(dev) >> block_order;
|
|
int n = ceiling_log2(num_blocks);
|
|
|
|
/* Make sure that there is no overflow in the formula below.
|
|
* The number 10 is arbitrary here, that is, it's not tight.
|
|
*/
|
|
assert(MAX_N_BLOCK_ORDER < 8*sizeof(int) - 10);
|
|
|
|
return
|
|
/* find_cache_size() */
|
|
(MAX_CACHE_SIZE_BYTE >> (block_order - 1)) +
|
|
/* find_wrap() */
|
|
1 +
|
|
/* The number below is just an educated guess. */
|
|
128 * (
|
|
/* bisect()
|
|
*
|
|
* The number of used blocks is (p * w); see comments
|
|
* in estimate_n_bisect_blocks() for the definition of
|
|
* the variables.
|
|
*
|
|
* p * w = n/m * (2^m - 1) < n/m * 2^m = n * (2^m / m)
|
|
*
|
|
* Let f(m) be 2^m / m. One can prove that
|
|
* f(m + 1) >= f(m) for all m >= 1.
|
|
* Therefore, the following bound is true.
|
|
*
|
|
* p * w < n * f(max_m)
|
|
*/
|
|
((n << MAX_N_BLOCK_ORDER) / MAX_N_BLOCK_ORDER) +
|
|
/* find_a_bad_block() */
|
|
N_BLOCK_SAMPLES
|
|
);
|
|
}
|
|
|
|
int probe_device(struct device *dev, uint64_t *preal_size_byte,
|
|
uint64_t *pannounced_size_byte, int *pwrap,
|
|
uint64_t *pcache_size_block, int *pneed_reset, int *pblock_order)
|
|
{
|
|
const uint64_t dev_size_byte = dev_get_size_byte(dev);
|
|
const int block_order = dev_get_block_order(dev);
|
|
struct bisect_stats stats;
|
|
uint64_t salt, cache_size_block;
|
|
uint64_t left_pos, right_pos, mid_drive_pos, reset_pos;
|
|
int need_reset, good_drive, wrap, found_a_bad_block;
|
|
|
|
assert(block_order <= 20);
|
|
|
|
/* @left_pos must point to a good block.
|
|
* We just point to the last block of the first 1MB of the card
|
|
* because this region is reserved for partition tables.
|
|
*
|
|
* Given that all writing is confined to the interval
|
|
* (@left_pos, @right_pos), we avoid losing the partition table.
|
|
*/
|
|
left_pos = (1ULL << (20 - block_order)) - 1;
|
|
|
|
/* @right_pos must point to a bad block.
|
|
* We just point to the block after the very last block.
|
|
*/
|
|
right_pos = dev_size_byte >> block_order;
|
|
|
|
/* @left_pos cannot be equal to @right_pos since
|
|
* @left_pos points to a good block, and @right_pos to a bad block.
|
|
*/
|
|
if (left_pos >= right_pos) {
|
|
cache_size_block = 0;
|
|
need_reset = false;
|
|
goto bad;
|
|
}
|
|
|
|
/* I, Michel Machado, define that any drive with less than
|
|
* this number of blocks is fake.
|
|
*/
|
|
mid_drive_pos = clp2(right_pos / 2);
|
|
|
|
assert(left_pos < mid_drive_pos);
|
|
assert(mid_drive_pos < right_pos);
|
|
|
|
/* This call is needed due to rand(). */
|
|
srand(time(NULL));
|
|
|
|
salt = uint64_rand();
|
|
|
|
if (find_cache_size(dev, mid_drive_pos - 1, &right_pos,
|
|
&cache_size_block, &need_reset, &good_drive, salt))
|
|
goto bad;
|
|
assert(mid_drive_pos <= right_pos);
|
|
reset_pos = right_pos;
|
|
|
|
if (find_wrap(dev, left_pos, &right_pos,
|
|
reset_pos, cache_size_block, need_reset, salt))
|
|
goto bad;
|
|
wrap = ceiling_log2(right_pos << block_order);
|
|
|
|
init_bisect_stats(&stats);
|
|
if (!good_drive) {
|
|
if (mid_drive_pos < right_pos)
|
|
right_pos = mid_drive_pos;
|
|
if (bisect(dev, &stats, left_pos, &right_pos,
|
|
reset_pos, cache_size_block, need_reset, salt))
|
|
goto bad;
|
|
}
|
|
|
|
do {
|
|
if (find_a_bad_block(dev, left_pos, &right_pos,
|
|
&found_a_bad_block, reset_pos, cache_size_block,
|
|
need_reset, salt))
|
|
goto bad;
|
|
|
|
if (found_a_bad_block &&
|
|
bisect(dev, &stats, left_pos, &right_pos,
|
|
reset_pos, cache_size_block, need_reset, salt))
|
|
goto bad;
|
|
} while (found_a_bad_block);
|
|
|
|
if (right_pos == left_pos + 1) {
|
|
/* Bad drive. */
|
|
right_pos = 0;
|
|
}
|
|
|
|
*preal_size_byte = right_pos << block_order;
|
|
*pwrap = wrap;
|
|
goto out;
|
|
|
|
bad:
|
|
*preal_size_byte = 0;
|
|
*pwrap = ceiling_log2(dev_size_byte);
|
|
|
|
out:
|
|
*pannounced_size_byte = dev_size_byte;
|
|
*pcache_size_block = cache_size_block;
|
|
*pneed_reset = need_reset;
|
|
*pblock_order = block_order;
|
|
return false;
|
|
}
|