f3/libprobe.c
Michel Machado efdb48c79b f3probe: balance the number of writes and resets
One can write more blocks per pass in order to reduce
the total number of passes.
Trading resets for writes is effective when writing blocks is
cheaper than reseting the device being probed.

This patch dynamically balances the number of writes and
resets while probing.
The effectiveness of this balance is shown below:

A good 256MB drive produced the following measurements:
Probe time: 2.89 seconds
Probe read op: count=64, total time=0.13s, avg op time=2.06ms
Probe write op: count=48, total time=1.41s, avg op time=29.47ms
Probe reset op: count=8, total time=1.35s, avg op time=168.48ms

The results from previous commit (see git log):
Probe time: 47.57 seconds
Probe read op: count=2014, total time=1.72s, avg op time=0.85ms
Probe write op: count=2003, total time=45.32s, avg op time=22.62ms
Probe reset op: count=3, total time=0.53s, avg op time=175.66ms

Moreover, this patch spaces more uniformly
the blocks write_test_blocks() writes to improve
the effectiveness of each pass.
2014-10-09 17:54:30 -04:00

1271 lines
32 KiB
C

#define _GNU_SOURCE
#define _POSIX_C_SOURCE 200809L
#define _FILE_OFFSET_BITS 64
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
#include <math.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdint.h>
#include <errno.h>
#include <err.h>
#include <linux/fs.h>
#include <linux/usbdevice_fs.h>
#include <libudev.h>
#include "libprobe.h"
static const char const *ftype_to_name[FKTY_MAX] = {
[FKTY_GOOD] = "good",
[FKTY_BAD] = "bad",
[FKTY_LIMBO] = "limbo",
[FKTY_WRAPAROUND] = "wraparound",
[FKTY_CHAIN] = "chain",
};
const char *fake_type_to_name(enum fake_type fake_type)
{
assert(fake_type < FKTY_MAX);
return ftype_to_name[fake_type];
}
int dev_param_valid(uint64_t real_size_byte,
uint64_t announced_size_byte, int wrap, int block_order)
{
int block_size;
/* Check general ranges. */
if (real_size_byte > announced_size_byte || wrap < 0 || wrap >= 64 ||
block_order < 9 || block_order > 20)
return false;
/* Check alignment of the sizes. */
block_size = 1 << block_order;
if (real_size_byte % block_size || announced_size_byte % block_size)
return false;
/* If good, @wrap must make sense. */
if (real_size_byte == announced_size_byte) {
uint64_t two_wrap = ((uint64_t)1) << wrap;
return announced_size_byte <= two_wrap;
}
return true;
}
enum fake_type dev_param_to_type(uint64_t real_size_byte,
uint64_t announced_size_byte, int wrap, int block_order)
{
uint64_t two_wrap;
assert(dev_param_valid(real_size_byte, announced_size_byte,
wrap, block_order));
if (real_size_byte == announced_size_byte)
return FKTY_GOOD;
if (real_size_byte == 0)
return FKTY_BAD;
/* real_size_byte < announced_size_byte */
two_wrap = ((uint64_t)1) << wrap;
if (two_wrap <= real_size_byte)
return FKTY_WRAPAROUND;
if (two_wrap < announced_size_byte)
return FKTY_CHAIN;
return FKTY_LIMBO;
}
struct device {
uint64_t size_byte;
int block_order;
int (*read_block)(struct device *dev, char *buf, int length,
uint64_t offset);
int (*write_block)(struct device *dev, const char *buf, int length,
uint64_t offset);
int (*reset)(struct device *dev);
void (*free)(struct device *dev);
};
static inline uint64_t dev_get_size_byte(struct device *dev)
{
return dev->size_byte;
}
static inline int dev_get_block_order(struct device *dev)
{
return dev->block_order;
}
static inline int dev_get_block_size(struct device *dev)
{
return 1 << dev->block_order;
}
static inline int dev_read_block(struct device *dev, char *buf, uint64_t block)
{
const int block_size = 1 << dev->block_order;
uint64_t offset = block << dev->block_order;
assert(offset + block_size <= dev->size_byte);
return dev->read_block(dev, buf, block_size, offset);
}
static inline int dev_write_block(struct device *dev, const char *buf,
uint64_t block)
{
const int block_size = 1 << dev->block_order;
uint64_t offset = block << dev->block_order;
assert(offset + block_size <= dev->size_byte);
return dev->write_block(dev, buf, block_size, offset);
}
static inline int dev_reset(struct device *dev)
{
return dev->reset ? dev->reset(dev) : 0;
}
static inline int dev_write_and_reset(struct device *dev, const char *buf,
uint64_t block)
{
int rc = dev_write_block(dev, buf, block);
return rc ? rc : dev_reset(dev);
}
void free_device(struct device *dev)
{
if (dev->free)
dev->free(dev);
free(dev);
}
struct file_device {
/* This must be the first field. See dev_fdev() for details. */
struct device dev;
int fd;
uint64_t real_size_byte;
uint64_t address_mask;
};
static inline struct file_device *dev_fdev(struct device *dev)
{
return (struct file_device *)dev;
}
static int fdev_read_block(struct device *dev, char *buf, int length,
uint64_t offset)
{
struct file_device *fdev = dev_fdev(dev);
off_t off_ret;
int done;
offset &= fdev->address_mask;
if (offset >= fdev->real_size_byte) {
memset(buf, 0, length);
return 0;
}
off_ret = lseek(fdev->fd, offset, SEEK_SET);
if (off_ret < 0)
return - errno;
assert((uint64_t)off_ret == offset);
done = 0;
do {
ssize_t rc = read(fdev->fd, buf + done, length - done);
assert(rc >= 0);
if (!rc) {
/* Tried to read beyond the end of the file. */
assert(!done);
memset(buf, 0, length);
done += length;
}
done += rc;
} while (done < length);
return 0;
}
static int write_all(int fd, const char *buf, int count)
{
int done = 0;
do {
ssize_t rc = write(fd, buf + done, count - done);
assert(rc >= 0); /* Did the write() went right? */
done += rc;
} while (done < count);
return 0;
}
static int fdev_write_block(struct device *dev, const char *buf, int length,
uint64_t offset)
{
struct file_device *fdev = dev_fdev(dev);
off_t off_ret;
offset &= fdev->address_mask;
if (offset >= fdev->real_size_byte)
return 0;
off_ret = lseek(fdev->fd, offset, SEEK_SET);
if (off_ret < 0)
return - errno;
assert((uint64_t)off_ret == offset);
return write_all(fdev->fd, buf, length);
}
static void fdev_free(struct device *dev)
{
struct file_device *fdev = dev_fdev(dev);
assert(!close(fdev->fd));
}
struct device *create_file_device(const char *filename,
uint64_t real_size_byte, uint64_t fake_size_byte, int wrap,
int block_order, int keep_file)
{
struct file_device *fdev;
if (!dev_param_valid(real_size_byte, fake_size_byte, wrap, block_order))
goto error;
fdev = malloc(sizeof(*fdev));
if (!fdev)
goto error;
fdev->fd = open(filename, O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR);
if (fdev->fd < 0) {
err(errno, "Can't create file `%s'", filename);
goto fdev;
}
if (!keep_file) {
/* Unlinking the file now guarantees that it won't exist if
* there is a crash.
*/
assert(!unlink(filename));
}
fdev->real_size_byte = real_size_byte;
fdev->address_mask = (((uint64_t)1) << wrap) - 1;
fdev->dev.size_byte = fake_size_byte;
fdev->dev.block_order = block_order;
fdev->dev.read_block = fdev_read_block;
fdev->dev.write_block = fdev_write_block;
fdev->dev.reset = NULL;
fdev->dev.free = fdev_free;
return &fdev->dev;
fdev:
free(fdev);
error:
return NULL;
}
struct block_device {
/* This must be the first field. See dev_bdev() for details. */
struct device dev;
const char *filename;
int fd;
int hw_fd; /* Underlying hardware of the block device. */
};
static inline struct block_device *dev_bdev(struct device *dev)
{
return (struct block_device *)dev;
}
static int read_all(int fd, char *buf, int count)
{
int done = 0;
do {
ssize_t rc = read(fd, buf + done, count - done);
assert(rc >= 0); /* Did the read() went right? */
assert(rc != 0); /* We should never hit the end of the file. */
done += rc;
} while (done < count);
return 0;
}
static int bdev_read_block(struct device *dev, char *buf, int length,
uint64_t offset)
{
struct block_device *bdev = dev_bdev(dev);
off_t off_ret = lseek(bdev->fd, offset, SEEK_SET);
if (off_ret < 0)
return - errno;
assert((uint64_t)off_ret == offset);
return read_all(bdev->fd, buf, length);
}
static int bdev_write_block(struct device *dev, const char *buf, int length,
uint64_t offset)
{
struct block_device *bdev = dev_bdev(dev);
off_t off_ret = lseek(bdev->fd, offset, SEEK_SET);
if (off_ret < 0)
return - errno;
assert((uint64_t)off_ret == offset);
return write_all(bdev->fd, buf, length);
}
static inline int bdev_open(const char *filename)
{
return open(filename, O_RDWR | O_DIRECT | O_SYNC);
}
/* XXX Monitor the USB subsytem to know when the drive was unplugged and
* plugged back to continue instead of waiting for a key.
*/
static int bdev_manual_reset(struct device *dev)
{
struct block_device *bdev = dev_bdev(dev);
assert(!close(bdev->fd));
printf("Please unplug and plug back the USB drive, and press a key to continue...\n");
getchar();
bdev->fd = bdev_open(bdev->filename);
if (bdev->fd < 0)
err(errno, "Can't REopen device `%s'", bdev->filename);
return 0;
}
static int bdev_reset(struct device *dev)
{
struct block_device *bdev = dev_bdev(dev);
assert(!close(bdev->fd));
assert(!ioctl(bdev->hw_fd, USBDEVFS_RESET));
bdev->fd = bdev_open(bdev->filename);
if (bdev->fd < 0)
err(errno, "Can't REopen device `%s'", bdev->filename);
return 0;
}
static void bdev_free(struct device *dev)
{
struct block_device *bdev = dev_bdev(dev);
if (bdev->hw_fd >= 0)
assert(!close(bdev->hw_fd));
if (bdev->fd >= 0)
assert(!close(bdev->fd));
free((void *)bdev->filename);
}
static bool is_block_dev(int fd)
{
struct stat stat;
assert(!fstat(fd, &stat));
return S_ISBLK(stat.st_mode);
}
static char *map_block_to_usb_dev(const char *block_dev)
{
struct udev *udev;
struct udev_enumerate *enumerate;
struct udev_list_entry *devices, *dev_list_entry;
char *usb_dev_path = NULL;
udev = udev_new();
if (!udev)
err(errno, "Can't create udev");
/* XXX Avoid the enumeration using udev_device_new_from_devnum(). */
enumerate = udev_enumerate_new(udev);
assert(enumerate);
assert(!udev_enumerate_add_match_subsystem(enumerate, "block"));
assert(!udev_enumerate_scan_devices(enumerate));
devices = udev_enumerate_get_list_entry(enumerate);
assert(devices);
udev_list_entry_foreach(dev_list_entry, devices) {
const char *sys_path, *dev_path;
struct udev_device *dev, *parent_dev;
/* Get the filename of the /sys entry for the device,
* and create a udev_device object (dev) representing it.
*/
sys_path = udev_list_entry_get_name(dev_list_entry);
dev = udev_device_new_from_syspath(udev, sys_path);
/* usb_device_get_devnode() returns the path to
* the device node itself in /dev.
*/
dev_path = udev_device_get_devnode(dev);
if (strcmp(block_dev, dev_path)) {
assert(!udev_device_unref(dev));
continue;
}
/* The device pointed to by dev contains information about
* the USB device.
* In order to get information about the USB device,
* get the parent device with the subsystem/devtype pair of
* "usb"/"usb_device".
* This will be several levels up the tree,
* but the function will find it.
*/
parent_dev = udev_device_get_parent_with_subsystem_devtype(
dev, "usb", "usb_device");
if (!parent_dev)
err(errno, "Unable to find parent usb device of `%s'",
block_dev);
usb_dev_path = strdup(udev_device_get_devnode(parent_dev));
/* @parent_dev is not referenced, and will be freed when
* the child (i.e. @dev) is freed.
* See udev_device_get_parent_with_subsystem_devtype() for
* details.
*/
assert(!udev_device_unref(dev));
break;
}
/* Free the enumerator object. */
assert(!udev_enumerate_unref(enumerate));
assert(!udev_unref(udev));
return usb_dev_path;
}
/* Count the number of 1 bits. */
static int pop(uint64_t x)
{
int n = 0;
while (x) {
n++;
x = x & (x - 1);
}
return n;
}
static int ilog2(uint64_t x)
{
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
x = x | (x >> 32);
return pop(x) - 1;
}
/* XXX Test if it's a device, or a partition.
* If a partition, warn user, and ask for confirmation before
* going ahead.
* Suggest how to call f3probe with the correct device name if
* the block device is a partition.
* Use udev to do these tests.
* Make sure that no partition of the drive is mounted.
*/
/* XXX Test for write access of the block device to give
* a nice error message.
* If it fails, suggest running f3probe as root.
*/
struct device *create_block_device(const char *filename, int manual_reset)
{
struct block_device *bdev;
int block_size;
bdev = malloc(sizeof(*bdev));
if (!bdev)
goto error;
bdev->filename = strdup(filename);
if (!bdev->filename)
goto bdev;
bdev->fd = bdev_open(filename);
if (bdev->fd < 0) {
err(errno, "Can't open device `%s'", filename);
goto filename;
}
if (!is_block_dev(bdev->fd)) {
err(EINVAL, "File `%s' is not a block device", filename);
goto fd;
}
if (manual_reset) {
bdev->hw_fd = -1;
bdev->dev.reset = bdev_manual_reset;
} else {
/* XXX Add support for block devices backed by SCSI and ATA. */
const char *usb_filename = map_block_to_usb_dev(filename);
if (!usb_filename) {
err(EINVAL, "Block device `%s' is not backed by a USB device",
filename);
goto fd;
}
bdev->hw_fd = open(usb_filename, O_WRONLY | O_NONBLOCK);
free((void *)usb_filename);
if (bdev->hw_fd < 0) {
err(errno, "Can't open device `%s'", usb_filename);
goto fd;
}
bdev->dev.reset = bdev_reset;
}
assert(!ioctl(bdev->fd, BLKGETSIZE64, &bdev->dev.size_byte));
assert(!ioctl(bdev->fd, BLKBSZGET, &block_size));
bdev->dev.block_order = ilog2(block_size);
assert(block_size == (1 << bdev->dev.block_order));
bdev->dev.read_block = bdev_read_block;
bdev->dev.write_block = bdev_write_block;
bdev->dev.free = bdev_free;
return &bdev->dev;
fd:
assert(!close(bdev->fd));
filename:
free((void *)bdev->filename);
bdev:
free(bdev);
error:
return NULL;
}
struct perf_device {
/* This must be the first field. See dev_pdev() for details. */
struct device dev;
struct device *shadow_dev;
uint64_t read_count;
uint64_t read_time_us;
uint64_t write_count;
uint64_t write_time_us;
uint64_t reset_count;
uint64_t reset_time_us;
};
static inline struct perf_device *dev_pdev(struct device *dev)
{
return (struct perf_device *)dev;
}
static inline uint64_t diff_timeval_us(const struct timeval *t1,
const struct timeval *t2)
{
return (t2->tv_sec - t1->tv_sec) * 1000000ULL +
t2->tv_usec - t1->tv_usec;
}
static int pdev_read_block(struct device *dev, char *buf, int length,
uint64_t offset)
{
struct perf_device *pdev = dev_pdev(dev);
struct timeval t1, t2;
int rc;
assert(!gettimeofday(&t1, NULL));
rc = pdev->shadow_dev->read_block(pdev->shadow_dev, buf,
length, offset);
assert(!gettimeofday(&t2, NULL));
pdev->read_count++;
pdev->read_time_us += diff_timeval_us(&t1, &t2);
return rc;
}
static int pdev_write_block(struct device *dev, const char *buf, int length,
uint64_t offset)
{
struct perf_device *pdev = dev_pdev(dev);
struct timeval t1, t2;
int rc;
assert(!gettimeofday(&t1, NULL));
rc = pdev->shadow_dev->write_block(pdev->shadow_dev, buf,
length, offset);
assert(!gettimeofday(&t2, NULL));
pdev->write_count++;
pdev->write_time_us += diff_timeval_us(&t1, &t2);
return rc;
}
static int pdev_reset(struct device *dev)
{
struct perf_device *pdev = dev_pdev(dev);
struct timeval t1, t2;
int rc;
assert(!gettimeofday(&t1, NULL));
rc = dev_reset(pdev->shadow_dev);
assert(!gettimeofday(&t2, NULL));
pdev->reset_count++;
pdev->reset_time_us += diff_timeval_us(&t1, &t2);
return rc;
}
static void pdev_free(struct device *dev)
{
struct perf_device *pdev = dev_pdev(dev);
free_device(pdev->shadow_dev);
}
/* Detach the shadow device of @pdev, free @pdev, and return
* the shadow device.
*/
static struct device *pdev_detach_and_free(struct device *dev)
{
struct perf_device *pdev = dev_pdev(dev);
struct device *shadow_dev = pdev->shadow_dev;
pdev->shadow_dev = NULL;
pdev->dev.free = NULL;
free_device(&pdev->dev);
return shadow_dev;
}
struct device *create_perf_device(struct device *dev)
{
struct perf_device *pdev;
pdev = malloc(sizeof(*pdev));
if (!pdev)
return NULL;
pdev->shadow_dev = dev;
pdev->read_count = 0;
pdev->read_time_us = 0;
pdev->write_count = 0;
pdev->write_time_us = 0;
pdev->reset_count = 0;
pdev->reset_time_us = 0;
pdev->dev.size_byte = dev->size_byte;
pdev->dev.block_order = dev->block_order;
pdev->dev.read_block = pdev_read_block;
pdev->dev.write_block = pdev_write_block;
pdev->dev.reset = pdev_reset;
pdev->dev.free = pdev_free;
return &pdev->dev;
}
void perf_device_sample(struct device *dev,
uint64_t *pread_count, uint64_t *pread_time_us,
uint64_t *pwrite_count, uint64_t *pwrite_time_us,
uint64_t *preset_count, uint64_t *preset_time_us)
{
struct perf_device *pdev = dev_pdev(dev);
if (pread_count)
*pread_count = pdev->read_count;
if (pread_time_us)
*pread_time_us = pdev->read_time_us;
if (pwrite_count)
*pwrite_count = pdev->write_count;
if (pwrite_time_us)
*pwrite_time_us = pdev->write_time_us;
if (preset_count)
*preset_count = pdev->reset_count;
if (preset_time_us)
*preset_time_us = pdev->reset_time_us;
}
#define SDEV_BITMAP_WORD long
#define SDEV_BITMAP_BITS_PER_WORD (8*sizeof(SDEV_BITMAP_WORD))
struct safe_device {
/* This must be the first field. See dev_sdev() for details. */
struct device dev;
struct device *shadow_dev;
char *saved_blocks;
uint64_t *sb_offsets;
SDEV_BITMAP_WORD *sb_bitmap;
int sb_n;
int sb_max;
};
static inline struct safe_device *dev_sdev(struct device *dev)
{
return (struct safe_device *)dev;
}
static int sdev_read_block(struct device *dev, char *buf, int length,
uint64_t offset)
{
struct safe_device *sdev = dev_sdev(dev);
return sdev->shadow_dev->read_block(sdev->shadow_dev, buf,
length, offset);
}
static inline void *align_512(void *p)
{
uintptr_t ip = (uintptr_t)p;
return (void *)( (ip + 511) & ~511 );
}
static int sdev_save_block(struct safe_device *sdev,
int length, uint64_t offset)
{
const int block_order = dev_get_block_order(sdev->shadow_dev);
lldiv_t idx = lldiv(offset >> block_order, SDEV_BITMAP_BITS_PER_WORD);
SDEV_BITMAP_WORD set_bit = (SDEV_BITMAP_WORD)1 << idx.rem;
char *block;
int rc;
/* The current implementation doesn't support variable lengths. */
assert(length == dev_get_block_size(sdev->shadow_dev));
/* Is this block already saved? */
if (!sdev->sb_bitmap) {
int i;
/* Running without bitmap. */
for (i = 0; i < sdev->sb_n; i++)
if (sdev->sb_offsets[i] == offset) {
/* The block at @offset is already saved. */
return 0;
}
} else if (sdev->sb_bitmap[idx.quot] & set_bit) {
/* The block at @offset is already saved. */
return 0;
}
/* The block at @offset hasn't been saved before. Save this block. */
assert(sdev->sb_n < sdev->sb_max);
block = (char *)align_512(sdev->saved_blocks) +
(sdev->sb_n << block_order);
rc = sdev->shadow_dev->read_block(sdev->shadow_dev, block,
length, offset);
if (rc)
return rc;
/* Bookkeeping. */
if (sdev->sb_bitmap)
sdev->sb_bitmap[idx.quot] |= set_bit;
sdev->sb_offsets[sdev->sb_n] = offset;
sdev->sb_n++;
return 0;
}
static int sdev_write_block(struct device *dev, const char *buf, int length,
uint64_t offset)
{
struct safe_device *sdev = dev_sdev(dev);
int rc;
rc = sdev_save_block(sdev, length, offset);
if (rc)
return rc;
return sdev->shadow_dev->write_block(sdev->shadow_dev, buf,
length, offset);
}
static int sdev_reset(struct device *dev)
{
return dev_reset(dev_sdev(dev)->shadow_dev);
}
static void sdev_free(struct device *dev)
{
struct safe_device *sdev = dev_sdev(dev);
if (sdev->sb_n > 0) {
char *first_block = align_512(sdev->saved_blocks);
char *block = first_block +
((sdev->sb_n - 1) <<
dev_get_block_order(sdev->shadow_dev));
uint64_t *poffset = &sdev->sb_offsets[sdev->sb_n - 1];
int block_size = dev_get_block_size(sdev->shadow_dev);
int failed = false;
/* Restore blocks in reverse order to cope with
* wraparound and chain drives.
*/
do {
failed |= sdev->shadow_dev->write_block(
sdev->shadow_dev, block, block_size, *poffset);
block -= block_size;
poffset--;
} while (block >= first_block);
/* Try to recover all bocks before failing. */
assert(!failed);
}
free(sdev->sb_bitmap);
free(sdev->sb_offsets);
free(sdev->saved_blocks);
free_device(sdev->shadow_dev);
}
struct device *create_safe_device(struct device *dev, int max_blocks,
int min_memory)
{
struct safe_device *sdev;
const int block_order = dev_get_block_order(dev);
uint64_t length;
sdev = malloc(sizeof(*sdev));
if (!sdev)
goto error;
length = 511 + (max_blocks << block_order);
sdev->saved_blocks = malloc(length);
if (!sdev->saved_blocks)
goto sdev;
sdev->sb_offsets = malloc(max_blocks * sizeof(*sdev->sb_offsets));
if (!sdev->sb_offsets)
goto saved_blocks;
if (!min_memory) {
lldiv_t idx = lldiv(dev_get_size_byte(dev) >> block_order,
SDEV_BITMAP_BITS_PER_WORD);
length = (idx.quot + (idx.rem ? 1 : 0)) *
sizeof(SDEV_BITMAP_WORD);
sdev->sb_bitmap = malloc(length);
if (!sdev->sb_bitmap)
goto offsets;
memset(sdev->sb_bitmap, 0, length);
} else {
sdev->sb_bitmap = NULL;
}
sdev->shadow_dev = dev;
sdev->sb_n = 0;
sdev->sb_max = max_blocks;
sdev->dev.size_byte = dev->size_byte;
sdev->dev.block_order = block_order;
sdev->dev.read_block = sdev_read_block;
sdev->dev.write_block = sdev_write_block;
sdev->dev.reset = sdev_reset;
sdev->dev.free = sdev_free;
return &sdev->dev;
offsets:
free(sdev->sb_offsets);
saved_blocks:
free(sdev->saved_blocks);
sdev:
free(sdev);
error:
return NULL;
}
static inline int equal_blk(struct device *dev, const char *b1, const char *b2)
{
return !memcmp(b1, b2, dev_get_block_size(dev));
}
/* Return true if @b1 and b2 are at most @tolerance_byte bytes different. */
static int similar_blk(struct device *dev, const char *b1, const char *b2,
int tolerance_byte)
{
const int block_size = dev_get_block_size(dev);
int i;
for (i = 0; i < block_size; i++) {
if (*b1 != *b2) {
tolerance_byte--;
if (tolerance_byte <= 0)
return false;
}
b1++;
b2++;
}
return true;
}
/* Return true if the block at @pos is damaged. */
static int test_block(struct device *dev,
const char *stamp_blk, char *probe_blk, uint64_t pos)
{
/* Write block. */
if (dev_write_block(dev, stamp_blk, pos) &&
dev_write_block(dev, stamp_blk, pos))
return true;
/* Reset. */
if (dev_reset(dev) && dev_reset(dev))
return true;
/*
* Test block.
*/
if (dev_read_block(dev, probe_blk, pos) &&
dev_read_block(dev, probe_blk, pos))
return true;
if (equal_blk(dev, stamp_blk, probe_blk))
return false;
/* Save time with certainly damaged blocks. */
if (!similar_blk(dev, stamp_blk, probe_blk, 8)) {
/* The probe block is damaged. */
return true;
}
/* The probe block seems to be damaged.
* Trying a second time...
*/
return dev_write_and_reset(dev, stamp_blk, pos) ||
dev_read_block(dev, probe_blk, pos) ||
!equal_blk(dev, stamp_blk, probe_blk);
}
/* Minimum size of the memory chunk used to build flash drives.
* It must be a power of two.
*/
static inline uint64_t initial_high_bit_block(struct device *dev)
{
int block_order = dev_get_block_order(dev);
assert(block_order <= 20);
return 1ULL << (20 - block_order);
}
/* Caller must guarantee that the left bock is good, and written. */
static int search_wrap(struct device *dev,
uint64_t left_pos, uint64_t *pright_pos,
const char *stamp_blk, char *probe_blk)
{
uint64_t high_bit = initial_high_bit_block(dev);
uint64_t pos = high_bit + left_pos;
/* The left block must be in the first memory chunk. */
assert(left_pos < high_bit);
/* Check that the drive has at least one memory chunk. */
assert((high_bit - 1) <= *pright_pos);
while (pos < *pright_pos) {
if (dev_read_block(dev, probe_blk, pos) &&
dev_read_block(dev, probe_blk, pos))
return true;
/* XXX Deal with flipped bit on reception. */
if (equal_blk(dev, stamp_blk, probe_blk)) {
/* XXX Test wraparound hypothesis. */
*pright_pos = high_bit - 1;
return false;
}
high_bit <<= 1;
pos = high_bit + left_pos;
}
return false;
}
#define MAX_N_BLOCK_ORDER 10
static uint64_t estimate_best_n_block(struct device *dev)
{
uint64_t write_count, write_time_us;
uint64_t reset_count, reset_time_us;
double t_w_us, t_2w_us, t_r_us;
uint64_t n_block_order;
perf_device_sample(dev, NULL, NULL, &write_count, &write_time_us,
&reset_count, &reset_time_us);
if (!write_count || !reset_count) {
/* There is not enough measurements. */
return (1 << 2) - 1;
}
/* Let 2^n be the total number of blocks on the drive.
* Let p be the total number of passes.
* Let w = (2^m - 1) be the number of blocks written on each pass,
* where m >= 1.
*
* A pass is an iteration of the loop in search_edge(), that is,
* a call to write_test_blocks(), dev_reset(), and probe_test_blocks().
*
* The reason to have w = (2^m - 1) instead of w = 2^m is because
* the former leads to a clean relationship between n, p, and m
* when m is constant: 2^n / (w + 1)^p = 1 => p = n/m
*
* Let Tr be the time to reset the device.
* Let Tw be the time to write a block to @dev.
* Let Tw' be the time to write a block to the underlying device
* of @dev, that is, without overhead due to chaining multiple
* struct device. For example, when struct safe_device is used
* Tw > Tw'.
* Let Trd be the time to read a block from @dev.
*
* Notice that each single-block pass reduces the search space in half,
* and that to reduce the search space in half writing blocks,
* one has to increase m of one.
*
* Thus, in order to be better writing more blocks than
* going for another pass, the following relation must be true:
*
* Tr + Tw + Tw' >= (w - 1)(Tw + Tw')
*
* The relation above assumes Trd = 0.
*
* The left side of the relation above is the time to do _another_
* pass writing a single block, whereas the right side is the time to
* stay in the same pass and write (w - 1) more blocks.
* In order words, if there is no advantage to write more blocks,
* we stick to single-block passes.
*
* Tw' is there to account for any operation that writes
* the blocks back (e.g. using struct safe_device), otherwise
* processing operations related per written blocks that is not
* being accounted for (e.g. reading the blocks back to test).
*
* Solving the relation for w: w <= Tr/(Tw + Tw') + 2
*
* However, we are not interested in any w, but only those of
* of the form (2^m - 1) to make sure that we are not better off
* calling another pass. Thus, solving the previous relation for m:
*
* m <= log_2(Tr/(Tw + Tw') + 3)
*
* We approximate Tw' making it equal to Tw.
*/
t_w_us = (double)write_time_us / write_count;
t_r_us = (double)reset_time_us / reset_count;
t_2w_us = t_w_us > 0. ? 2. * t_w_us : 1.; /* Avoid zero division. */
n_block_order = ilog2(round(t_r_us / t_2w_us + 3.));
/* Bound the maximum number of blocks per pass to limit
* the necessary amount of memory struct safe_device pre-allocates.
*/
if (n_block_order > MAX_N_BLOCK_ORDER)
n_block_order = MAX_N_BLOCK_ORDER;
return (1 << n_block_order) - 1;
}
/* Write blocks whose offsets are after @left_pos but
* less or equal to @right_pos.
*/
static int write_test_blocks(struct device *dev, const char *stamp_blk,
uint64_t left_pos, uint64_t right_pos,
uint64_t *pa, uint64_t *pb, uint64_t *pmax_idx)
{
uint64_t pos, last_pos;
uint64_t n_block = estimate_best_n_block(dev);
assert(n_block >= 1);
/* Find coeficients of function a*idx + b where idx <= max_idx. */
assert(left_pos < right_pos);
*pb = left_pos + 1;
*pa = round((right_pos - *pb) / (n_block + 1.));
*pa = !*pa ? 1ULL : *pa;
*pmax_idx = (right_pos - *pb) / *pa;
if (*pmax_idx >= n_block) {
/* Shift the zero of the function to the right.
* This avoids picking the leftmost block when a more
* informative block to the right is available.
* This also biases toward righter blocks,
* what improves the time to test good flash drives.
*/
*pb += *pa;
*pmax_idx = n_block - 1;
}
last_pos = *pa * *pmax_idx + *pb;
assert(last_pos <= right_pos);
/* Write test blocks. */
for (pos = *pb; pos <= last_pos; pos += *pa)
if (dev_write_block(dev, stamp_blk, pos) &&
dev_write_block(dev, stamp_blk, pos))
return true;
return false;
}
/* Return true if the test block at @pos is damaged. */
static int test_test_block(struct device *dev,
const char *stamp_blk, char *probe_blk, uint64_t pos)
{
if (dev_read_block(dev, probe_blk, pos) &&
dev_read_block(dev, probe_blk, pos))
return true;
return !equal_blk(dev, stamp_blk, probe_blk);
}
static int probe_test_blocks(struct device *dev,
const char *stamp_blk, char *probe_blk,
uint64_t *pleft_pos, uint64_t *pright_pos,
uint64_t a, uint64_t b, uint64_t max_idx)
{
/* Signed variables. */
int64_t left_idx = 0;
int64_t right_idx = max_idx;
int64_t idx = right_idx;
while (left_idx <= right_idx) {
uint64_t pos = a * idx + b;
if (test_test_block(dev, stamp_blk, probe_blk, pos)) {
right_idx = idx - 1;
*pright_pos = pos;
} else {
left_idx = idx + 1;
*pleft_pos = pos;
}
idx = (left_idx + right_idx) / 2;
}
return false;
}
/* Caller must guarantee that the left bock is good, and written. */
static int search_edge(struct device *dev,
uint64_t *pleft_pos, uint64_t right_pos,
const char *stamp_blk, char *probe_blk)
{
uint64_t gap = right_pos - *pleft_pos;
uint64_t prv_gap = gap + 1;
while (prv_gap > gap && gap >= 1) {
uint64_t a, b, max_idx;
if (write_test_blocks(dev, stamp_blk, *pleft_pos, right_pos,
&a, &b, &max_idx))
return true;
/* Reset. */
if (dev_reset(dev) && dev_reset(dev))
return true;
if (probe_test_blocks(dev, stamp_blk, probe_blk,
pleft_pos, &right_pos, a, b, max_idx))
return true;
prv_gap = gap;
gap = right_pos - *pleft_pos;
}
return false;
}
/* XXX Write random data to make it harder for fake chips to become "smarter".
* There would be a random seed.
* Buffer cannot be all 0x00 or all 0xFF.
*/
static void fill_buffer(char *buf, int len)
{
memset(buf, 0xAA, len);
}
/* Least power of 2 greater than or equal to x. */
static uint64_t clp2(uint64_t x)
{
x = x - 1;
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
x = x | (x >> 32);
return x + 1;
}
static int ceiling_log2(uint64_t x)
{
return ilog2(clp2(x));
}
int probe_device_max_blocks(struct device *dev)
{
uint64_t num_blocks = dev_get_size_byte(dev) >>
dev_get_block_order(dev);
int n = ceiling_log2(num_blocks);
/* Make sure that there is no overflow in the formula below.
* The number 10 is arbitrary here, that is, it's not tight.
*/
assert(MAX_N_BLOCK_ORDER < sizeof(int) - 10);
return
/* search_wrap() */
1 +
/* Search_edge()
*
* The number of used blocks is (p * w); see comments in
* estimate_best_n_block() for the definition of the variables.
*
* p * w = n/m * (2^m - 1) < n/m * 2^m = n * (2^m / m)
*
* Let f(m) be 2^m / m. One can prove that f(m + 1) >= f(m)
* for all m >= 1. Therefore, the following bound is true.
*
* p * w < n * f(max_m)
*/
((n << MAX_N_BLOCK_ORDER) / MAX_N_BLOCK_ORDER);
}
/* XXX Properly handle read and write errors.
* Review each assert to check if them can be removed.
*/
int probe_device(struct device *dev, uint64_t *preal_size_byte,
uint64_t *pannounced_size_byte, int *pwrap, int *pblock_order)
{
uint64_t dev_size_byte = dev_get_size_byte(dev);
const int block_size = dev_get_block_size(dev);
const int block_order = dev_get_block_order(dev);
char stack[511 + (2 << block_order)];
char *stamp_blk, *probe_blk;
/* XXX Don't write at the very beginning of the card to avoid
* losing the partition table.
* But write at a random locations to make harder for fake chips
* to become "smarter".
* And try a couple of blocks if they keep failing.
*/
uint64_t left_pos = 10;
uint64_t right_pos = (dev_size_byte >> block_order) - 1;
struct device *pdev;
assert(dev_size_byte % block_size == 0);
assert(left_pos < right_pos);
pdev = create_perf_device(dev);
if (!pdev)
return -ENOMEM;
/* Aligning these pointers is necessary to directly read and write
* the block device.
* For the file device, this is superfluous.
*/
stamp_blk = align_512(stack);
probe_blk = stamp_blk + block_size;
fill_buffer(stamp_blk, block_size);
/* Make sure that there is at least a good block at the beginning
* of the drive.
*/
if (test_block(pdev, stamp_blk, probe_blk, left_pos))
goto bad;
if (search_wrap(pdev, left_pos, &right_pos, stamp_blk, probe_blk))
goto bad;
if (search_edge(pdev, &left_pos, right_pos, stamp_blk, probe_blk))
goto bad;
*preal_size_byte = (left_pos + 1) << block_order;
*pannounced_size_byte = dev_size_byte;
*pwrap = ceiling_log2(right_pos << block_order);
*pblock_order = block_order;
goto out;
bad:
*preal_size_byte = 0;
*pannounced_size_byte = dev_size_byte;
*pwrap = ceiling_log2(dev_size_byte);
*pblock_order = block_order;
out:
pdev_detach_and_free(pdev);
return 0;
}