mirror of
https://github.com/panda3d/panda3d.git
synced 2025-10-01 09:23:03 -04:00
resolve pixel-offset issues with gaussian and box filters
This commit is contained in:
parent
c7daa00c5b
commit
297864e834
@ -37,7 +37,7 @@ ConfigVariableBool pfm_reverse_dimensions
|
||||
"on input. Does not affect output, which is always written width height."));
|
||||
|
||||
ConfigVariableBool pfm_resize_quick
|
||||
("pfm-resize-quick", false,
|
||||
("pfm-resize-quick", true,
|
||||
PRC_DESC("Specify true to implement PfmFile::resize() with a \"quick\" filter, "
|
||||
"but only when the pfm is being downsampled (to a smaller size). "
|
||||
"This just controls the behavior of resize(); you can "
|
||||
@ -47,13 +47,13 @@ ConfigVariableBool pfm_resize_gaussian
|
||||
("pfm-resize-gaussian", true,
|
||||
PRC_DESC("Specify true to implement PfmFile::resize() with a higher-quality "
|
||||
"Gaussian filter, or false to implement it with a faster box "
|
||||
"filter. If pfm-resize-quick is also true, then only takes effect "
|
||||
"filter. If pfm-resize-quick is also true, this only takes effect "
|
||||
"when the pfm is being upsampled. This just controls the behavior "
|
||||
"of resize(); you can always call box_filter() or gaussian_filter() "
|
||||
"explicitly."));
|
||||
|
||||
ConfigVariableDouble pfm_resize_radius
|
||||
("pfm-resize-radius", 0.5,
|
||||
("pfm-resize-radius", 1.0,
|
||||
PRC_DESC("Specify the default filter radius for PfmFile::resize(). "
|
||||
"This just controls the behavior of resize(); you can "
|
||||
"always call box_filter() or gaussian_filter() explicitly with "
|
||||
|
@ -111,25 +111,28 @@ filter_row(StoreType dest[], int dest_len,
|
||||
double scale, // == dest_len / source_len
|
||||
const WorkType filter[],
|
||||
double filter_width) {
|
||||
// If we are expanding the row (scale>1.0), we need to look at a fractional
|
||||
// granularity. Hence, we scale our filter index by scale. If we are
|
||||
// compressing (scale<1.0), we don't need to fiddle with the filter index, so
|
||||
// we leave it at one.
|
||||
double iscale = max(scale, 1.0);
|
||||
// If we are expanding the row (scale > 1.0), we need to look at a
|
||||
// fractional granularity. Hence, we scale our filter index by
|
||||
// scale. If we are compressing (scale < 1.0), we don't need to
|
||||
// fiddle with the filter index, so we leave it at one.
|
||||
|
||||
// Similarly, if we are expanding the row, we want to start the new row at
|
||||
// the far left edge of the original pixel, not in the center. So we will
|
||||
// have a non-zero offset.
|
||||
int offset = (int)cfloor(iscale*0.5);
|
||||
double iscale;
|
||||
if (scale < 1.0) {
|
||||
iscale = 1.0;
|
||||
filter_width /= scale;
|
||||
} else {
|
||||
iscale = scale;
|
||||
}
|
||||
|
||||
for (int dest_x = 0; dest_x < dest_len; dest_x++) {
|
||||
double center = (dest_x - offset) / scale;
|
||||
// The additional offset of 0.5 keeps the pixel centered.
|
||||
double center = (dest_x + 0.5) / scale - 0.5;
|
||||
|
||||
// left and right are the starting and ending ranges of the radius of
|
||||
// interest of the filter function. We need to apply the filter to each
|
||||
// value in this range.
|
||||
int left = max((int)cfloor(center - filter_width), 0);
|
||||
int right = min((int)cceil(center + filter_width), source_len-1);
|
||||
int right = min((int)cceil(center + filter_width), source_len - 1);
|
||||
|
||||
// right_center is the point just to the right of the center. This
|
||||
// allows us to flip the sign of the offset when we cross the center point.
|
||||
@ -144,13 +147,13 @@ filter_row(StoreType dest[], int dest_len,
|
||||
// of center--so we don't have to incur the overhead of calling fabs()
|
||||
// each time through the loop.
|
||||
for (source_x = left; source_x < right_center; source_x++) {
|
||||
index = (int)(iscale * (center - source_x));
|
||||
index = (int)(iscale * (center - source_x) + 0.5);
|
||||
net_value += filter[index] * source[source_x];
|
||||
net_weight += filter[index];
|
||||
}
|
||||
|
||||
for (; source_x <= right; source_x++) {
|
||||
index = (int)(iscale * (source_x - center));
|
||||
index = (int)(iscale * (source_x - center) + 0.5);
|
||||
net_value += filter[index] * source[source_x];
|
||||
net_weight += filter[index];
|
||||
}
|
||||
@ -172,26 +175,28 @@ filter_sparse_row(StoreType dest[], StoreType dest_weight[], int dest_len,
|
||||
double scale, // == dest_len / source_len
|
||||
const WorkType filter[],
|
||||
double filter_width) {
|
||||
// If we are expanding the row (scale>1.0), we need to look at a fractional
|
||||
// granularity. Hence, we scale our filter index by scale. If we are
|
||||
// compressing (scale<1.0), we don't need to fiddle with the filter index, so
|
||||
// we leave it at one.
|
||||
double iscale = max(scale, 1.0);
|
||||
// If we are expanding the row (scale > 1.0), we need to look at a
|
||||
// fractional granularity. Hence, we scale our filter index by
|
||||
// scale. If we are compressing (scale < 1.0), we don't need to
|
||||
// fiddle with the filter index, so we leave it at one.
|
||||
|
||||
// Similarly, if we are expanding the row, we want to start the new row at
|
||||
// the far left edge of the original pixel, not in the center. So we will
|
||||
// have a non-zero offset.
|
||||
int offset = (int)cfloor(iscale*0.5);
|
||||
double iscale;
|
||||
if (scale < 1.0) {
|
||||
iscale = 1.0;
|
||||
filter_width /= scale;
|
||||
} else {
|
||||
iscale = scale;
|
||||
}
|
||||
|
||||
for (int dest_x = 0; dest_x < dest_len; dest_x++) {
|
||||
// The additional offset of 0.5 keeps the pixel centered.
|
||||
double center = (dest_x - offset + 0.5) / scale;
|
||||
double center = (dest_x + 0.5) / scale - 0.5;
|
||||
|
||||
// left and right are the starting and ending ranges of the radius of
|
||||
// interest of the filter function. We need to apply the filter to each
|
||||
// value in this range.
|
||||
int left = max((int)cfloor(center - filter_width), 0);
|
||||
int right = min((int)cceil(center + filter_width), source_len-1);
|
||||
int right = min((int)cceil(center + filter_width), source_len - 1);
|
||||
|
||||
// right_center is the point just to the right of the center. This
|
||||
// allows us to flip the sign of the offset when we cross the center point.
|
||||
@ -206,13 +211,13 @@ filter_sparse_row(StoreType dest[], StoreType dest_weight[], int dest_len,
|
||||
// of center--so we don't have to incur the overhead of calling fabs()
|
||||
// each time through the loop.
|
||||
for (source_x = left; source_x < right_center; source_x++) {
|
||||
index = (int)(iscale * (center - source_x));
|
||||
index = (int)(iscale * (center - source_x) + 0.5);
|
||||
net_value += filter[index] * source[source_x] * source_weight[source_x];
|
||||
net_weight += filter[index] * source_weight[source_x];
|
||||
}
|
||||
|
||||
for (; source_x <= right; source_x++) {
|
||||
index = (int)(iscale * (source_x - center));
|
||||
index = (int)(iscale * (source_x - center) + 0.5);
|
||||
net_value += filter[index] * source[source_x] * source_weight[source_x];
|
||||
net_weight += filter[index] * source_weight[source_x];
|
||||
}
|
||||
@ -258,7 +263,7 @@ box_filter_impl(double scale, double width,
|
||||
fscale = scale;
|
||||
}
|
||||
filter_width = width;
|
||||
int actual_width = (int)cceil((filter_width + 1) * fscale);
|
||||
int actual_width = (int)cceil((filter_width + 1) * fscale) + 1;
|
||||
|
||||
filter = (WorkType *)PANDA_MALLOC_ARRAY(actual_width * sizeof(WorkType));
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user