added curveFitter and hermite stuff

This commit is contained in:
Dave Schuyler 2001-01-17 01:46:41 +00:00
parent cb9c0434d5
commit 2afad32dd2

View File

@ -18,6 +18,7 @@
#include "curve.h"
#include "config_parametrics.h"
#include "hermiteCurve.h"
#include "nurbsCurve.h"
#include "curveDrawer.h"
@ -204,7 +205,7 @@ calc_length(double from, double to) const {
////////////////////////////////////////////////////////////////////
double ParametricCurve::
compute_t(double start_t, double length_offset, double guess,
double threshold) const {
double threshold) const {
if (length_offset > 0.0) {
// If the length_offset is positive, we are looking forward.
// Enforce that the guess is greater than the start.
@ -245,7 +246,7 @@ compute_t(double start_t, double length_offset, double guess,
// Clamp it to the end of the curve.
if (guess > max_t) {
if (clamped) {
return max_t;
return max_t;
}
clamped = true;
guess = max_t;
@ -270,7 +271,6 @@ compute_t(double start_t, double length_offset, double guess,
////////////////////////////////////////////////////////////////////
bool ParametricCurve::
convert_to_hermite(HermiteCurve &hc) const {
#if 0 //[////todo:skyler
BezierSegs bz_segs;
if (!GetBezierSegs(bz_segs)) {
return false;
@ -293,9 +293,9 @@ convert_to_hermite(HermiteCurve &hc) const {
scale_in = scale_out;
scale_out = bz_segs[i+1]._t - bz_segs[i]._t;
if (!bz_segs[i]._v[3].almostEqual(bz_segs[i+1]._v[0], 0.0001)) {
// Oops, we have a cut.
hc.set_cv_type(n, HC_CUT);
if (!bz_segs[i]._v[3].almost_equal(bz_segs[i+1]._v[0], 0.0001)) {
// Oops, we have a cut.
hc.set_cv_type(n, HC_CUT);
}
n = hc.append_cv(HC_FREE, bz_segs[i+1]._v[0]);
@ -317,21 +317,20 @@ convert_to_hermite(HermiteCurve &hc) const {
int num_cvs = hc.get_num_cvs();
for (n = 1; n < num_cvs-1; n++) {
if (hc.get_cv_type(n)!=HC_CUT) {
pfVec3 in = hc.get_cv_in(n);
pfVec3 out = hc.get_cv_out(n);
LVector3f in = hc.get_cv_in(n);
LVector3f out = hc.get_cv_out(n);
if (in.almostEqual(out, 0.0001)) {
hc.set_cv_type(n, HC_SMOOTH);
if (in.almost_equal(out, 0.0001)) {
hc.set_cv_type(n, HC_SMOOTH);
} else {
in.normalize();
out.normalize();
if (in.almostEqual(out, 0.0001)) {
hc.set_cv_type(n, HC_G1);
}
in.normalize();
out.normalize();
if (in.almost_equal(out, 0.0001)) {
hc.set_cv_type(n, HC_G1);
}
}
}
}
#endif //]
return true;
}
@ -359,8 +358,8 @@ convert_to_nurbs(NurbsCurve &nc) const {
nc.append_cv(bz_segs[i]._v[1]);
nc.append_cv(bz_segs[i]._v[2]);
if (i == bz_segs.size()-1 ||
!bz_segs[i]._v[3].almost_equal(bz_segs[i+1]._v[0], 0.0001)) {
nc.append_cv(bz_segs[i]._v[3]);
!bz_segs[i]._v[3].almost_equal(bz_segs[i+1]._v[0], 0.0001)) {
nc.append_cv(bz_segs[i]._v[3]);
}
}
@ -379,9 +378,9 @@ convert_to_nurbs(NurbsCurve &nc) const {
nc.set_knot(ki+2, t);
ki += 3;
if (i == bz_segs.size()-1 ||
!bz_segs[i]._v[3].almost_equal(bz_segs[i+1]._v[0], 0.0001)) {
nc.set_knot(ki, t);
ki++;
!bz_segs[i]._v[3].almost_equal(bz_segs[i+1]._v[0], 0.0001)) {
nc.set_knot(ki, t);
ki++;
}
}
}
@ -443,8 +442,8 @@ ascii_draw() const {
r = (p[2] - minz) * zscale;
if (r>=0 && r<rows && c>=0 && c<cols) {
int digit = ((int)floor(t))%10;
text[rows-1-r][c] = digit + '0';
int digit = ((int)floor(t))%10;
text[rows-1-r][c] = digit + '0';
}
}
}
@ -524,8 +523,8 @@ invalidate(double t1, double t2) {
if (t1 <= t2) {
DrawerList::iterator n;
for (n = _drawers.begin();
n != _drawers.end();
++n) {
n != _drawers.end();
++n) {
(*n)->recompute(max(t1, 0.0), min(t2, get_max_t()), this);
}
}
@ -560,7 +559,7 @@ invalidate_all() {
////////////////////////////////////////////////////////////////////
float ParametricCurve::
r_calc_length(double t1, double t2, const LVector3f &p1, const LVector3f &p2,
float seglength) const {
float seglength) const {
static const float length_tolerance = 0.0000001;
static const double t_tolerance = 0.000001;
@ -701,7 +700,7 @@ get_2ndtangent(double t, LVector3f &tangent2) const {
////////////////////////////////////////////////////////////////////
bool PiecewiseCurve::
adjust_point(double t,
float px, float py, float pz) {
float px, float py, float pz) {
const ParametricCurve *curve;
bool result = find_curve(curve, t);
@ -711,9 +710,9 @@ adjust_point(double t,
}
rebuild_curveseg(RT_CV | RT_KEEP_ORIG, 0.0, LVector4f(),
RT_POINT, t, LVector4f(px, py, pz, 1.0),
RT_TANGENT | RT_KEEP_ORIG, t, LVector4f(),
RT_CV | RT_KEEP_ORIG, 0.0, LVector4f());
RT_POINT, t, LVector4f(px, py, pz, 1.0),
RT_TANGENT | RT_KEEP_ORIG, t, LVector4f(),
RT_CV | RT_KEEP_ORIG, 0.0, LVector4f());
return true;
}
@ -726,7 +725,7 @@ adjust_point(double t,
////////////////////////////////////////////////////////////////////
bool PiecewiseCurve::
adjust_tangent(double t,
float tx, float ty, float tz) {
float tx, float ty, float tz) {
const ParametricCurve *curve;
bool result = find_curve(curve, t);
@ -736,9 +735,9 @@ adjust_tangent(double t,
}
rebuild_curveseg(RT_CV | RT_KEEP_ORIG, 0.0, LVector4f(),
RT_POINT | RT_KEEP_ORIG, t, LVector4f(),
RT_TANGENT, t, LVector4f(tx, ty, tz, 0.0),
RT_CV | RT_KEEP_ORIG, 0.0, LVector4f());
RT_POINT | RT_KEEP_ORIG, t, LVector4f(),
RT_TANGENT, t, LVector4f(tx, ty, tz, 0.0),
RT_CV | RT_KEEP_ORIG, 0.0, LVector4f());
return true;
}
@ -750,8 +749,8 @@ adjust_tangent(double t,
////////////////////////////////////////////////////////////////////
bool PiecewiseCurve::
adjust_pt(double t,
float px, float py, float pz,
float tx, float ty, float tz) {
float px, float py, float pz,
float tx, float ty, float tz) {
const ParametricCurve *curve;
bool result = find_curve(curve, t);
@ -761,9 +760,9 @@ adjust_pt(double t,
}
rebuild_curveseg(RT_CV | RT_KEEP_ORIG, 0.0, LVector4f(),
RT_POINT, t, LVector4f(px, py, pz, 1.0),
RT_TANGENT, t, LVector4f(tx, ty, tz, 0.0),
RT_CV | RT_KEEP_ORIG, 0.0, LVector4f());
RT_POINT, t, LVector4f(px, py, pz, 1.0),
RT_TANGENT, t, LVector4f(tx, ty, tz, 0.0),
RT_CV | RT_KEEP_ORIG, 0.0, LVector4f());
return true;
}
@ -832,11 +831,11 @@ insert_curveseg(int ti, ParametricCurve *seg, double tlength) {
} else if (ti==0) {
_segs.insert(_segs.begin(),
Curveseg(seg, tlength));
Curveseg(seg, tlength));
} else {
_segs.insert(_segs.begin() + ti,
Curveseg(seg, _segs[ti-1]._tend + tlength));
Curveseg(seg, _segs[ti-1]._tend + tlength));
}
return true;
@ -954,15 +953,15 @@ set_tlength(int ti, double tlength) {
////////////////////////////////////////////////////////////////////
void PiecewiseCurve::
make_nurbs(int order, int num_cvs,
const double knots[], const LVector4f cvs[]) {
const double knots[], const LVector4f cvs[]) {
remove_all_curvesegs();
for (int i=0; i<num_cvs - order + 1; i++) {
if (knots[i+order] > knots[i+order-1]) {
int ti = get_num_segs();
bool result =
insert_curveseg(ti, new CubicCurveseg(order, knots+i, cvs+i),
knots[i+order] - knots[i+order-1]);
insert_curveseg(ti, new CubicCurveseg(order, knots+i, cvs+i),
knots[i+order] - knots[i+order-1]);
assert(result);
}
}
@ -1005,9 +1004,9 @@ GetBezierSegs(BezierSegs &bz_segs) const {
////////////////////////////////////////////////////////////////////
bool PiecewiseCurve::
rebuild_curveseg(int, double, const LVector4f &,
int, double, const LVector4f &,
int, double, const LVector4f &,
int, double, const LVector4f &) {
int, double, const LVector4f &,
int, double, const LVector4f &,
int, double, const LVector4f &) {
cerr << "rebuild_curveseg not implemented for this curve type.\n";
return false;
}
@ -1090,13 +1089,13 @@ find_curve(const ParametricCurve *&curve, double &t) const {
if (ti >= _segs.size()) {
if (_segs.empty()) {
curve = NULL;
t = 0.0;
return false;
curve = NULL;
t = 0.0;
return false;
} else {
curve = _segs.back()._curve;
t = 1.0;
return false;
curve = _segs.back()._curve;
t = 1.0;
return false;
}
} else if (!_segs[ti]._curve->is_valid()) {
curve = _segs[ti]._curve;
@ -1244,6 +1243,36 @@ get_2ndtangent(double t, LVector3f &tangent2) const {
}
////////////////////////////////////////////////////////////////////
// Function: CubicCurveseg::hermite_basis
// Access: Public
// Description: Defines the curve segment as a Hermite. This only
// sets up the basis vectors, so the curve will be
// computed correctly; it does not retain the CV's.
////////////////////////////////////////////////////////////////////
void CubicCurveseg::
hermite_basis(const HermiteCurveCV &cv0,
const HermiteCurveCV &cv1,
double tlength) {
static LMatrix4f
Mh(2, -3, 0, 1,
-2, 3, 0, 0,
1, -2, 1, 0,
1, -1, 0, 0);
LVector4f Gx(cv0._p[0], cv1._p[0],
cv0._out[0]*tlength, cv1._in[0]*tlength);
LVector4f Gy(cv0._p[1], cv1._p[1],
cv0._out[1]*tlength, cv1._in[1]*tlength);
LVector4f Gz(cv0._p[2], cv1._p[2],
cv0._out[2]*tlength, cv1._in[2]*tlength);
Bx = Gx * Mh;
By = Gy * Mh;
Bz = Gz * Mh;
rational = false;
}
////////////////////////////////////////////////////////////////////
// Function: CubicCurveseg::bezier_basis
// Access: Public
@ -1271,7 +1300,7 @@ bezier_basis(const BezierSeg &seg) {
static LVector4f
nurbs_blending_function(int order, int i, int j,
const double knots[]) {
const double knots[]) {
// This is doubly recursive. Ick.
LVector4f r;
@ -1292,9 +1321,9 @@ nurbs_blending_function(int order, int i, int j,
// First term. Division by zero is defined to equal zero.
if (d0 != 0.0) {
if (d1 != 0.0) {
r = bi0 / d0 - bi1 / d1;
r = bi0 / d0 - bi1 / d1;
} else {
r = bi0 / d0;
r = bi0 / d0;
}
} else if (d1 != 0.0) {
@ -1313,9 +1342,9 @@ nurbs_blending_function(int order, int i, int j,
// Second term.
if (d0 != 0.0) {
if (d1 != 0.0) {
r += bi0 * (- knots[i] / d0) + bi1 * (knots[i+j] / d1);
r += bi0 * (- knots[i] / d0) + bi1 * (knots[i+j] / d1);
} else {
r += bi0 * (- knots[i] / d0);
r += bi0 * (- knots[i] / d0);
}
} else if (d1 != 0.0) {
@ -1328,8 +1357,8 @@ nurbs_blending_function(int order, int i, int j,
void
compute_nurbs_basis(int order,
const double knots_in[],
LMatrix4f &basis) {
const double knots_in[],
LMatrix4f &basis) {
int i;
// Scale the supplied knots to the range 0..1.
@ -1408,9 +1437,9 @@ bool CubicCurveseg::
GetBezierSeg(BezierSeg &seg) const {
static LMatrix4f
Mbi(0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 1.0/3.0, 1.0,
0.0, 1.0/3.0, 2.0/3.0, 1.0,
1.0, 1.0, 1.0, 1.0);
0.0, 0.0, 1.0/3.0, 1.0,
0.0, 1.0/3.0, 2.0/3.0, 1.0,
1.0, 1.0, 1.0, 1.0);
LVector4f Gx = Bx * Mbi;
LVector4f Gy = By * Mbi;
@ -1437,9 +1466,9 @@ GetBezierSeg(BezierSeg &seg) const {
inline LVector4f
operator * (const LMatrix4f &M, const LVector4f &v) {
return LVector4f(M(0,0)*v[0] + M(0,1)*v[1] + M(0,2)*v[2] + M(0,3)*v[3],
M(1,0)*v[0] + M(1,1)*v[1] + M(1,2)*v[2] + M(1,3)*v[3],
M(2,0)*v[0] + M(2,1)*v[1] + M(2,2)*v[2] + M(2,3)*v[3],
M(3,0)*v[0] + M(3,1)*v[1] + M(3,2)*v[2] + M(3,3)*v[3]);
M(1,0)*v[0] + M(1,1)*v[1] + M(1,2)*v[2] + M(1,3)*v[3],
M(2,0)*v[0] + M(2,1)*v[1] + M(2,2)*v[2] + M(2,3)*v[3],
M(3,0)*v[0] + M(3,1)*v[1] + M(3,2)*v[2] + M(3,3)*v[3]);
}
////////////////////////////////////////////////////////////////////
@ -1450,12 +1479,12 @@ operator * (const LMatrix4f &M, const LVector4f &v) {
////////////////////////////////////////////////////////////////////
static bool
compute_seg_col(int c,
int rtype, double t, const LVector4f &v,
const LMatrix4f &B,
const LMatrix4f &Bi,
const LMatrix4f &G,
const LMatrix4f &GB,
LMatrix4f &T, LMatrix4f &P) {
int rtype, double t, const LVector4f &v,
const LMatrix4f &B,
const LMatrix4f &Bi,
const LMatrix4f &G,
const LMatrix4f &GB,
LMatrix4f &T, LMatrix4f &P) {
int keep_orig = (rtype & RT_KEEP_ORIG);
switch (rtype & RT_BASE_TYPE) {
@ -1556,12 +1585,12 @@ compute_seg_col(int c,
////////////////////////////////////////////////////////////////////
bool CubicCurveseg::
compute_seg(int rtype0, double t0, const LVector4f &v0,
int rtype1, double t1, const LVector4f &v1,
int rtype2, double t2, const LVector4f &v2,
int rtype3, double t3, const LVector4f &v3,
const LMatrix4f &B,
const LMatrix4f &Bi,
LMatrix4f &G) {
int rtype1, double t1, const LVector4f &v1,
int rtype2, double t2, const LVector4f &v2,
int rtype3, double t3, const LVector4f &v3,
const LMatrix4f &B,
const LMatrix4f &Bi,
LMatrix4f &G) {
// We can define a cubic curve segment given four arbitrary
// properties of the segment: any point along the curve, any tangent
@ -1590,9 +1619,9 @@ compute_seg(int rtype0, double t0, const LVector4f &v0,
}
if (! (compute_seg_col(0, rtype0, t0, v0, B, Bi, G, GB, T, P) &&
compute_seg_col(1, rtype1, t1, v1, B, Bi, G, GB, T, P) &&
compute_seg_col(2, rtype2, t2, v2, B, Bi, G, GB, T, P) &&
compute_seg_col(3, rtype3, t3, v3, B, Bi, G, GB, T, P))) {
compute_seg_col(1, rtype1, t1, v1, B, Bi, G, GB, T, P) &&
compute_seg_col(2, rtype2, t2, v2, B, Bi, G, GB, T, P) &&
compute_seg_col(3, rtype3, t3, v3, B, Bi, G, GB, T, P))) {
return false;
}