mirror of
https://github.com/panda3d/panda3d.git
synced 2025-10-01 01:07:51 -04:00
fixed non-rotating objects
This commit is contained in:
parent
cad885b343
commit
53854756f7
@ -57,6 +57,7 @@ child_integrate(Physical *physical,
|
||||
// otherwise your transforms will be VERY bad. No good.
|
||||
precompute_angular_matrices(physical, forces);
|
||||
const pvector< LMatrix4f > &matrices = get_precomputed_angular_matrices();
|
||||
assert(matrices.size() == (forces.size() + physical->get_angular_forces().size()));
|
||||
|
||||
// Loop through each object in the set. This processing occurs in O(pf) time,
|
||||
// where p is the number of physical objects and f is the number of
|
||||
@ -91,7 +92,7 @@ child_integrate(Physical *physical,
|
||||
|
||||
// global forces
|
||||
f_cur = forces.begin();
|
||||
int index = 0;
|
||||
unsigned int index = 0;
|
||||
for (; f_cur != forces.end(); ++f_cur) {
|
||||
AngularForce *cur_force = *f_cur;
|
||||
|
||||
@ -103,6 +104,7 @@ child_integrate(Physical *physical,
|
||||
force_node = cur_force->get_force_node();
|
||||
|
||||
// now we go from force space to our object's space.
|
||||
assert(index >= 0 && index < matrices.size());
|
||||
f = cur_force->get_vector(current_object) * matrices[index++];
|
||||
|
||||
// tally it into the accum vector, applying the inertial tensor.
|
||||
@ -122,11 +124,13 @@ child_integrate(Physical *physical,
|
||||
force_node = cur_force->get_force_node();
|
||||
|
||||
// go from force space to object space
|
||||
assert(index >= 0 && index < matrices.size());
|
||||
f = cur_force->get_vector(current_object) * matrices[index++];
|
||||
|
||||
// tally it into the accum vectors
|
||||
accum_vec += f;
|
||||
}
|
||||
assert(index == matrices.size());
|
||||
|
||||
// apply the accumulated torque vector to the object's inertial tensor.
|
||||
// this matrix represents how much force the object 'wants' applied to it
|
||||
@ -142,19 +146,25 @@ child_integrate(Physical *physical,
|
||||
// imaginary quaternions where r = 0. This vector NOW represents the
|
||||
// imaginary vector formed by (i, j, k).
|
||||
|
||||
LVector3f normalized_rot_vec = rot_vec;
|
||||
float len = rot_vec.length();
|
||||
|
||||
normalized_rot_vec *= 1.0f / len;
|
||||
LRotationf rot_quat = LRotationf(normalized_rot_vec, len);
|
||||
if (len) {
|
||||
LVector3f normalized_rot_vec = rot_vec;
|
||||
normalized_rot_vec *= 1.0f / len;
|
||||
LRotationf rot_quat = LRotationf(normalized_rot_vec, len);
|
||||
assert(!(rot_quat[0]==0.0f && rot_quat[1]==0.0f && rot_quat[2]==0.0f && rot_quat[3]==0.0f));
|
||||
|
||||
LOrientationf old_orientation = current_object->get_orientation();
|
||||
LOrientationf new_orientation = old_orientation * rot_quat;
|
||||
new_orientation.normalize();
|
||||
LOrientationf old_orientation = current_object->get_orientation();
|
||||
assert(!(old_orientation[0]==0.0f && old_orientation[1]==0.0f && old_orientation[2]==0.0f && old_orientation[3]==0.0f));
|
||||
LOrientationf new_orientation = old_orientation * rot_quat;
|
||||
assert(!(new_orientation[0]==0.0f && new_orientation[1]==0.0f && new_orientation[2]==0.0f && new_orientation[3]==0.0f));
|
||||
new_orientation.normalize();
|
||||
assert(!(new_orientation[0]==0.0f && new_orientation[1]==0.0f && new_orientation[2]==0.0f && new_orientation[3]==0.0f));
|
||||
|
||||
// and write the results back.
|
||||
current_object->set_orientation(new_orientation);
|
||||
current_object->set_rotation(rot_vec);
|
||||
// and write the results back.
|
||||
current_object->set_orientation(new_orientation);
|
||||
current_object->set_rotation(rot_vec);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -167,7 +177,7 @@ child_integrate(Physical *physical,
|
||||
void AngularEulerIntegrator::
|
||||
output(ostream &out) const {
|
||||
#ifndef NDEBUG //[
|
||||
out<<"AngularEulerIntegrator";
|
||||
out<<"AngularEulerIntegrator (id "<<this<<")";
|
||||
#endif //] NDEBUG
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user