mirror of
https://github.com/panda3d/panda3d.git
synced 2025-09-28 07:48:37 -04:00
*** empty log message ***
This commit is contained in:
parent
2c9655669b
commit
ad14a7bce2
942
direct/src/directutil/DirectManipulation.py
Normal file
942
direct/src/directutil/DirectManipulation.py
Normal file
@ -0,0 +1,942 @@
|
||||
from PandaObject import *
|
||||
from DirectGeometry import *
|
||||
|
||||
MANIPULATION_MOVE_DELAY = 0.65
|
||||
VISIBLE_DISCS = ['x-disc-visible', 'y-disc-visible', 'z-disc-visible']
|
||||
|
||||
class DirectManipulationControl(PandaObject):
|
||||
def __init__(self, direct):
|
||||
# Create the grid
|
||||
self.direct = direct
|
||||
self.chan = direct.chan
|
||||
self.camera = self.chan.camera
|
||||
self.objectHandles = ObjectHandles(direct)
|
||||
self.hitPt = Point3(0)
|
||||
self.prevHit = Vec3(0)
|
||||
self.rotationCenter = Point3(0)
|
||||
self.initScaleMag = 1
|
||||
self.refNodePath = render.attachNewNode(NamedNode('refNodePath'))
|
||||
self.hitPtDist = 0
|
||||
self.constraint = None
|
||||
self.rotateAxis = 'x'
|
||||
self.lastCrankAngle = 0
|
||||
self.fSetCoa = 0
|
||||
self.fHitInit = 1
|
||||
self.fWidgetTop = 0
|
||||
self.fFreeManip = 1
|
||||
self.fScaling = 1
|
||||
|
||||
def manipulationStart(self, chan):
|
||||
# Start out in select mode
|
||||
self.mode = 'select'
|
||||
|
||||
# Check for a widget hit point
|
||||
numEntries = self.direct.iRay.pickWidget(
|
||||
render,chan.mouseX,chan.mouseY)
|
||||
# Did we hit a widget?
|
||||
if(numEntries):
|
||||
# Yes!
|
||||
|
||||
# Find the closest hit point if multiple hits
|
||||
# Start off with first point
|
||||
minPt = 0
|
||||
# Find hit point in camera's space
|
||||
self.hitPt = self.direct.iRay.camToHitPt(minPt)
|
||||
self.hitPtDist = Vec3(self.hitPt - ZERO_POINT).length()
|
||||
# Check other intersection points, sorting them
|
||||
# TBD: Use TBS C++ function to do this
|
||||
if numEntries > 1:
|
||||
for i in range(1,numEntries):
|
||||
hitPt = self.direct.iRay.camToHitPt(i)
|
||||
dist = Vec3(hitPt - ZERO_POINT).length()
|
||||
if (dist < self.hitPtDist):
|
||||
self.hitPtDist = dist
|
||||
self.hitPt = hitPt
|
||||
minPt = i
|
||||
|
||||
# Get the associated collision queue object
|
||||
entry = self.direct.iRay.cq.getEntry(minPt)
|
||||
# Extract the node
|
||||
node = entry.getIntoNode()
|
||||
# Constraint determined by nodes name
|
||||
self.constraint = node.getName()
|
||||
else:
|
||||
# Nope, off the widget, no constraint
|
||||
self.constraint = None
|
||||
|
||||
# Check to see if we are moving the object
|
||||
# We are moving the object if we either wait long enough
|
||||
"""
|
||||
taskMgr.spawnTaskNamed(
|
||||
Task.doLater(MANIPULATION_MOVE_DELAY,
|
||||
Task.Task(self.switchToMoveMode),
|
||||
'manip-switch-to-move'),
|
||||
'manip-move-wait')
|
||||
"""
|
||||
|
||||
# Or if we move far enough
|
||||
self.moveDir = None
|
||||
watchMouseTask = Task.Task(self.watchMouseTask)
|
||||
watchMouseTask.initX = self.chan.mouseX
|
||||
watchMouseTask.initY = self.chan.mouseY
|
||||
taskMgr.spawnTaskNamed(watchMouseTask, 'manip-watch-mouse')
|
||||
|
||||
def switchToMoveMode(self, state):
|
||||
taskMgr.removeTasksNamed('manip-watch-mouse')
|
||||
self.mode = 'move'
|
||||
self.manipulateObject()
|
||||
return Task.done
|
||||
|
||||
def watchMouseTask(self, state):
|
||||
if (((abs (state.initX - self.chan.mouseX)) > 0.01) |
|
||||
((abs (state.initY - self.chan.mouseY)) > 0.01)):
|
||||
taskMgr.removeTasksNamed('manip-move-wait')
|
||||
taskMgr.removeTasksNamed('manip-switch-to-move')
|
||||
self.mode = 'move'
|
||||
self.manipulateObject()
|
||||
return Task.done
|
||||
else:
|
||||
return Task.cont
|
||||
|
||||
def manipulationStop(self):
|
||||
taskMgr.removeTasksNamed('manipulateObject')
|
||||
taskMgr.removeTasksNamed('manip-move-wait')
|
||||
taskMgr.removeTasksNamed('manip-switch-to-move')
|
||||
taskMgr.removeTasksNamed('manip-watch-mouse')
|
||||
# depending on flag.....
|
||||
if self.mode == 'select':
|
||||
# Check for object under mouse
|
||||
numEntries = self.direct.iRay.pickGeom(
|
||||
render,self.chan.mouseX,self.chan.mouseY)
|
||||
# Filter out widgets from entry list
|
||||
indexList = []
|
||||
for i in range(0,numEntries):
|
||||
entry = self.direct.iRay.cq.getEntry(i)
|
||||
node = entry.getIntoNode()
|
||||
# Is it a named node?, If so, see if it has a name
|
||||
if issubclass(node.__class__, NamedNode):
|
||||
name = node.getName()
|
||||
if name not in VISIBLE_DISCS:
|
||||
indexList.append(i)
|
||||
else:
|
||||
# Not one of the widgets, use it
|
||||
indexList.append(i)
|
||||
# Did we hit an object?
|
||||
if(indexList):
|
||||
# Yes!
|
||||
# Find the closest hit point if multiple hits
|
||||
# Start off with first point
|
||||
minPt = indexList[0]
|
||||
# Find hit point in camera's space
|
||||
self.hitPt = self.direct.iRay.camToHitPt(minPt)
|
||||
self.hitPtDist = Vec3(self.hitPt - ZERO_POINT).length()
|
||||
# Check other intersection points, sorting them
|
||||
# TBD: Use TBS C++ function to do this
|
||||
if len(indexList) > 1:
|
||||
for i in range(1,len(indexList)):
|
||||
entryNum = indexList[i]
|
||||
hitPt = self.direct.iRay.camToHitPt(entryNum)
|
||||
dist = Vec3(hitPt - ZERO_POINT).length()
|
||||
if (dist < self.hitPtDist):
|
||||
self.hitPtDist = dist
|
||||
self.hitPt = hitPt
|
||||
minPt = entryNum
|
||||
# Get the associated collision queue object
|
||||
entry = self.direct.iRay.cq.getEntry(minPt)
|
||||
# Extract the node
|
||||
node = entry.getIntoNode()
|
||||
nodePath = render.findPathDownTo(node)
|
||||
# Select it
|
||||
self.direct.select(nodePath)
|
||||
else:
|
||||
self.direct.deselectAll()
|
||||
else:
|
||||
self.manipulateObjectCleanup()
|
||||
|
||||
def manipulateObjectCleanup(self):
|
||||
if self.fScaling:
|
||||
# We had been scaling, need to reset object handles
|
||||
self.objectHandles.transferObjectHandlesScale()
|
||||
self.fScaling = 0
|
||||
if self.fSetCoa:
|
||||
self.objectHandles.manipModeColor()
|
||||
self.direct.selected.highlightAll()
|
||||
self.objectHandles.showAllHandles()
|
||||
self.objectHandles.hideGuides()
|
||||
# Restart followSelectedNodePath task
|
||||
if self.direct.selected.last:
|
||||
self.spawnFollowSelectedNodePathTask()
|
||||
messenger.send('manipulateObjectCleanup')
|
||||
|
||||
def spawnFollowSelectedNodePathTask(self):
|
||||
# Where are the object handles relative to the selected object
|
||||
pos = VBase3(0)
|
||||
hpr = VBase3(0)
|
||||
decomposeMatrix(self.direct.selected.last.mCoa2Dnp,
|
||||
VBase3(0), hpr, pos, getDefaultCoordinateSystem())
|
||||
# Create the task
|
||||
t = Task.Task(self.followSelectedNodePathTask)
|
||||
# Update state variables
|
||||
t.pos = pos
|
||||
t.hpr = hpr
|
||||
t.base = self.direct.selected.last
|
||||
# Spawn the task
|
||||
taskMgr.spawnTaskNamed(t, 'followSelectedNodePath')
|
||||
|
||||
def followSelectedNodePathTask(self, state):
|
||||
self.direct.widget.setPosHpr(state.base, state.pos, state.hpr)
|
||||
return Task.cont
|
||||
|
||||
def enableManipulation(self):
|
||||
# Accept mouse events
|
||||
self.accept('handleMouse1', self.manipulationStart, [self.chan])
|
||||
self.accept('handleMouse1Up', self.manipulationStop)
|
||||
self.enableHotKeys()
|
||||
|
||||
def enableHotKeys(self):
|
||||
self.accept(
|
||||
'.', self.objectHandles.multiplyScalingFactorBy, [2.0])
|
||||
self.accept(
|
||||
',', self.objectHandles.multiplyScalingFactorBy, [0.5])
|
||||
self.accept('F', self.objectHandles.growToFit)
|
||||
|
||||
def disableManipulation(self):
|
||||
# Ignore middle mouse events
|
||||
self.ignore('handleMouse1')
|
||||
self.ignore('handleMouse1Up')
|
||||
self.disableHotKeys()
|
||||
|
||||
def disableHotKeys(self):
|
||||
self.ignore('.')
|
||||
self.ignore(',')
|
||||
self.ignore('F')
|
||||
|
||||
def removeManipulateObjectTask(self):
|
||||
taskMgr.removeTasksNamed('manipulateObject')
|
||||
|
||||
def manipulateObject(self):
|
||||
# Only do this if something is selected
|
||||
if self.direct.selected:
|
||||
# Remove the task to keep the widget attached to the object
|
||||
taskMgr.removeTasksNamed('followSelectedNodePath')
|
||||
# and the task to highlight the widget
|
||||
taskMgr.removeTasksNamed('highlightWidgetTask')
|
||||
# Set manipulation flag
|
||||
self.fManip = 1
|
||||
# Update object handles visibility
|
||||
self.objectHandles.showGuides()
|
||||
self.objectHandles.hideAllHandles()
|
||||
self.objectHandles.showHandle(self.constraint)
|
||||
if self.fSetCoa:
|
||||
self.objectHandles.coaModeColor()
|
||||
|
||||
# Record relationship between selected nodes and widget
|
||||
self.direct.selected.getWrtAll()
|
||||
|
||||
# hide the bbox of the selected objects during interaction
|
||||
self.direct.selected.dehighlightAll()
|
||||
|
||||
"""
|
||||
# Push the undo dcs for the selected objects
|
||||
self.direct.undo.push(
|
||||
(self.direct.selected, 'dcs'))
|
||||
"""
|
||||
# Manipulate the real object with the constraint
|
||||
# The constraint is passed as the name of the node
|
||||
self.spawnManipulateObjectTask()
|
||||
|
||||
def spawnManipulateObjectTask(self):
|
||||
# reset hit-pt flag
|
||||
self.fHitInit = 1
|
||||
# record initial offset between widget and camera
|
||||
t = Task.Task(self.manipulateObjectTask)
|
||||
taskMgr.spawnTaskNamed(t, 'manipulateObject')
|
||||
|
||||
def manipulateObjectTask(self, state):
|
||||
|
||||
if self.constraint:
|
||||
type = self.constraint[2:]
|
||||
if type == 'post':
|
||||
self.xlate1D()
|
||||
elif type == 'disc':
|
||||
self.xlate2D()
|
||||
elif type == 'ring':
|
||||
self.rotate1D()
|
||||
elif self.fFreeManip:
|
||||
if self.fScaling & (not self.direct.fAlt):
|
||||
# We had been scaling and changed modes,
|
||||
# reset object handles
|
||||
self.objectHandles.transferObjectHandlesScale()
|
||||
self.fScaling = 0
|
||||
if self.direct.fControl:
|
||||
self.rotate2D()
|
||||
elif self.direct.fAlt:
|
||||
self.fScaling = 1
|
||||
self.scale3D()
|
||||
elif self.direct.fShift:
|
||||
self.xlateCamXY()
|
||||
else:
|
||||
self.xlateCamXZ()
|
||||
else:
|
||||
# MRM: Needed, more elegant fallback
|
||||
return Task.cont
|
||||
|
||||
if self.fSetCoa:
|
||||
# Update coa based on current widget position
|
||||
self.direct.selected.last.mCoa2Dnp.assign(
|
||||
self.direct.widget.getMat(self.direct.selected.last)
|
||||
)
|
||||
else:
|
||||
# Move the objects with the widget
|
||||
self.direct.selected.moveWrtWidgetAll()
|
||||
|
||||
# Continue
|
||||
return Task.cont
|
||||
|
||||
def xlate1D(self):
|
||||
# Constrained 1D Translation along widget axis
|
||||
# Compute nearest hit point along axis and try to keep
|
||||
# that point as close to the current mouse position as possible
|
||||
# what point on the axis is the mouse pointing at?
|
||||
self.hitPt.assign(self.objectHandles.getAxisIntersectPt(
|
||||
self.constraint[:1]))
|
||||
# use it to see how far to move the widget
|
||||
if self.fHitInit:
|
||||
# First time through, just record that point
|
||||
self.fHitInit = 0
|
||||
self.prevHit.assign(self.hitPt)
|
||||
else:
|
||||
# Move widget to keep hit point as close to mouse as possible
|
||||
offset = self.hitPt - self.prevHit
|
||||
self.direct.widget.setPos(self.direct.widget, offset)
|
||||
|
||||
def xlate2D(self):
|
||||
# Constrained 2D (planar) translation
|
||||
# Compute point of intersection of ray from eyepoint through cursor
|
||||
# to one of the three orthogonal planes on the widget.
|
||||
# This point tracks all subsequent mouse movements
|
||||
self.hitPt.assign(self.objectHandles.getWidgetIntersectPt(
|
||||
self.direct.widget, self.constraint[:1]))
|
||||
# use it to see how far to move the widget
|
||||
if self.fHitInit:
|
||||
# First time through just record hit point
|
||||
self.fHitInit = 0
|
||||
self.prevHit.assign(self.hitPt)
|
||||
else:
|
||||
offset = self.hitPt - self.prevHit
|
||||
self.direct.widget.setPos(self.direct.widget, offset)
|
||||
|
||||
|
||||
def xlateCamXZ(self):
|
||||
"""Constrained 2D motion parallel to the camera's image plane
|
||||
This moves the object in the camera's XZ plane"""
|
||||
# reset fHitInit
|
||||
# (in case we later switch to another manipulation mode)
|
||||
#self.fHitInit = 1
|
||||
# Where is the widget relative to current camera view
|
||||
vWidget2Camera = self.direct.widget.getPos(self.camera)
|
||||
x = vWidget2Camera[0]
|
||||
y = vWidget2Camera[1]
|
||||
z = vWidget2Camera[2]
|
||||
# Move widget (and objects) based upon mouse motion
|
||||
# Scaled up accordingly based upon widget distance
|
||||
chan = self.chan
|
||||
self.direct.widget.setX(
|
||||
self.camera,
|
||||
x + 0.5 * chan.mouseDeltaX * chan.nearWidth * (y/chan.near))
|
||||
self.direct.widget.setZ(
|
||||
self.camera,
|
||||
z + 0.5 * chan.mouseDeltaY * chan.nearHeight * (y/chan.near))
|
||||
|
||||
def xlateCamXY(self):
|
||||
"""Constrained 2D motion perpendicular to camera's image plane
|
||||
This moves the object in the camera's XY plane"""
|
||||
# Now, where is the widget relative to current camera view
|
||||
vWidget2Camera = self.direct.widget.getPos(self.camera)
|
||||
# If this is first time around, record initial y distance
|
||||
if self.fHitInit:
|
||||
self.fHitInit = 0
|
||||
# Record widget offset along y
|
||||
self.initY = vWidget2Camera[1]
|
||||
# Extract current values
|
||||
x = vWidget2Camera[0]
|
||||
y = vWidget2Camera[1]
|
||||
z = vWidget2Camera[2]
|
||||
# Move widget (and objects) based upon mouse motion
|
||||
# Scaled up accordingly based upon widget distance
|
||||
chan = self.chan
|
||||
self.direct.widget.setPos(
|
||||
self.camera,
|
||||
x + 0.5 * chan.mouseDeltaX * chan.nearWidth * (y/chan.near),
|
||||
y + self.initY * chan.mouseDeltaY,
|
||||
z)
|
||||
|
||||
def getCrankAngle(self):
|
||||
# Used to compute current angle of mouse (relative to the widget's
|
||||
# origin) in screen space
|
||||
x = self.chan.mouseX - self.rotationCenter[0]
|
||||
y = self.chan.mouseY - self.rotationCenter[2]
|
||||
return (180 + rad2Deg(math.atan2(y,x)))
|
||||
|
||||
def widgetCheck(self,type):
|
||||
# Utility to see if we are looking at the top or bottom of
|
||||
# a 2D planar widget or if we are looking at a 2D planar widget
|
||||
# edge on
|
||||
# Based upon angle between view vector from eye through the
|
||||
# widget's origin and one of the three principle axes
|
||||
axis = self.constraint[:1]
|
||||
# First compute vector from eye through widget origin
|
||||
mWidget2Cam = self.direct.widget.getMat(self.camera)
|
||||
# And determine where the viewpoint is relative to widget
|
||||
pos = VBase3(0)
|
||||
decomposeMatrix(mWidget2Cam, VBase3(0), VBase3(0), pos,
|
||||
getDefaultCoordinateSystem())
|
||||
widgetDir = Vec3(pos)
|
||||
widgetDir.normalize()
|
||||
# Convert specified widget axis to view space
|
||||
if axis == 'x':
|
||||
widgetAxis = Vec3(mWidget2Cam.xformVec(X_AXIS))
|
||||
elif axis == 'y':
|
||||
widgetAxis = Vec3(mWidget2Cam.xformVec(Y_AXIS))
|
||||
elif axis == 'z':
|
||||
widgetAxis = Vec3(mWidget2Cam.xformVec(Z_AXIS))
|
||||
widgetAxis.normalize()
|
||||
if type == 'top?':
|
||||
# Check sign of angle between two vectors
|
||||
return (widgetDir.dot(widgetAxis) < 0.)
|
||||
elif type == 'edge?':
|
||||
# Checking to see if we are viewing edge-on
|
||||
# Check angle between two vectors
|
||||
return(abs(widgetDir.dot(widgetAxis)) < .2)
|
||||
|
||||
def getWidgetsNearProjectionPoint(self):
|
||||
# Find the position of the projection of the specified node path
|
||||
# on the near plane
|
||||
widgetOrigin = self.direct.widget.getPos(self.camera)
|
||||
# project this onto near plane
|
||||
return widgetOrigin * (self.chan.near / widgetOrigin[1])
|
||||
|
||||
def getScreenXY(self):
|
||||
# Where does the widget's projection fall on the near plane
|
||||
nearVec = self.getWidgetsNearProjectionPoint()
|
||||
# Clamp these coordinates to visible screen
|
||||
nearX = self.clamp(nearVec[0], self.chan.left, self.chan.right)
|
||||
nearY = self.clamp(nearVec[2], self.chan.bottom, self.chan.top)
|
||||
# What percentage of the distance across the screen is this?
|
||||
percentX = (nearX - self.chan.left)/self.chan.nearWidth
|
||||
percentY = (nearY - self.chan.bottom)/self.chan.nearHeight
|
||||
# Map this percentage to the same -1 to 1 space as the mouse
|
||||
screenXY = Vec3((2 * percentX) - 1.0,nearVec[1],(2 * percentY) - 1.0)
|
||||
# Return the resulting value
|
||||
return screenXY
|
||||
|
||||
def rotate1D(self):
|
||||
# Constrained 1D rotation about the widget's main axis (X,Y, or Z)
|
||||
# Rotation depends upon circular motion of the mouse about the
|
||||
# projection of the widget's origin on the image plane
|
||||
# A complete circle about the widget results in a change in
|
||||
# orientation of 360 degrees.
|
||||
|
||||
# First initialize hit point/rotation angle
|
||||
if self.fHitInit:
|
||||
self.fHitInit = 0
|
||||
self.rotateAxis = self.constraint[:1]
|
||||
self.fWidgetTop = self.widgetCheck('top?')
|
||||
self.rotationCenter = self.getScreenXY()
|
||||
self.lastCrankAngle = self.getCrankAngle()
|
||||
|
||||
# Rotate widget based on how far cursor has swung around origin
|
||||
newAngle = self.getCrankAngle()
|
||||
deltaAngle = self.lastCrankAngle - newAngle
|
||||
if self.fWidgetTop:
|
||||
deltaAngle = -1 * deltaAngle
|
||||
if self.rotateAxis == 'x':
|
||||
self.direct.widget.setP(self.direct.widget, deltaAngle)
|
||||
elif self.rotateAxis == 'y':
|
||||
self.direct.widget.setR(self.direct.widget, -deltaAngle)
|
||||
elif self.rotateAxis == 'z':
|
||||
self.direct.widget.setH(self.direct.widget, deltaAngle)
|
||||
# Record crank angle for next time around
|
||||
self.lastCrankAngle = newAngle
|
||||
|
||||
def relHpr(self, base, h, p, r):
|
||||
# Compute widget2newWidget relative to base coordinate system
|
||||
mWidget2Base = self.direct.widget.getMat(base)
|
||||
mBase2NewBase = Mat4()
|
||||
mBase2NewBase.composeMatrix(
|
||||
UNIT_VEC, VBase3(h,p,r), ZERO_VEC,
|
||||
getDefaultCoordinateSystem())
|
||||
mBase2Widget = base.getMat(self.direct.widget)
|
||||
mWidget2Parent = self.direct.widget.getMat()
|
||||
# Compose the result
|
||||
resultMat = mWidget2Base * mBase2NewBase
|
||||
resultMat = resultMat * mBase2Widget
|
||||
resultMat = resultMat * mWidget2Parent
|
||||
# Extract and apply the hpr
|
||||
hpr = Vec3(0)
|
||||
decomposeMatrix(resultMat, VBase3(), hpr, VBase3(),
|
||||
getDefaultCoordinateSystem())
|
||||
self.direct.widget.setHpr(hpr)
|
||||
|
||||
def rotate2D(self):
|
||||
# Virtual trackball or arcball rotation of widget
|
||||
# Rotation method depends upon variable dd-want-arcball
|
||||
# Default is virtual trackball (handles 1D rotations better)
|
||||
self.fHitInit = 1
|
||||
tumbleRate = 360
|
||||
# Mouse motion edge to edge of channel results in one full turn
|
||||
self.relHpr(self.camera,
|
||||
self.chan.mouseDeltaX * tumbleRate,
|
||||
-self.chan.mouseDeltaY * tumbleRate,
|
||||
0)
|
||||
|
||||
def scale3D(self):
|
||||
# Scale the selected node based upon up down mouse motion
|
||||
# Mouse motion from edge to edge results in a factor of 4 scaling
|
||||
# From midpoint to edge doubles or halves objects scale
|
||||
if self.fHitInit:
|
||||
self.fHitInit = 0
|
||||
self.refNodePath.setPos(self.direct.widget, 0, 0, 0)
|
||||
self.refNodePath.setHpr(self.camera, 0, 0, 0)
|
||||
self.initScaleMag = Vec3(
|
||||
self.objectHandles.getWidgetIntersectPt(
|
||||
self.refNodePath, 'y')).length()
|
||||
# record initial scale
|
||||
self.initScale = self.direct.widget.getScale()
|
||||
# Begin
|
||||
# Scale factor is ratio current mag with init mag
|
||||
currScale = (
|
||||
self.initScale *
|
||||
(self.objectHandles.getWidgetIntersectPt(
|
||||
self.refNodePath, 'y').length() /
|
||||
self.initScaleMag)
|
||||
)
|
||||
self.direct.widget.setScale(currScale)
|
||||
|
||||
def clamp(self, val, min, max):
|
||||
if val < min:
|
||||
return min
|
||||
elif val > max:
|
||||
return max
|
||||
else:
|
||||
return val
|
||||
|
||||
|
||||
class ObjectHandles(NodePath,PandaObject):
|
||||
def __init__(self,direct):
|
||||
# Record pointer to direct object
|
||||
self.direct = direct
|
||||
# Initialize the superclass
|
||||
NodePath.__init__(self)
|
||||
|
||||
# Load up object handles model and assign it to self
|
||||
self.assign(loader.loadModel('misc/objectHandles'))
|
||||
self.node().setName('objectHandles')
|
||||
self.scalingNode = self.getChild(0)
|
||||
self.scalingNode.node().setName('ohScalingNode')
|
||||
self.ohScalingFactor = 1.0
|
||||
# To avoid recreating a vec every frame
|
||||
self.hitPt = Vec3(0)
|
||||
# Get a handle on the components
|
||||
self.xHandles = self.find('**/X')
|
||||
self.xPostGroup = self.xHandles.find('**/x-post-group')
|
||||
self.xPostCollision = self.xHandles.find('**/x-post')
|
||||
self.xRingGroup = self.xHandles.find('**/x-ring-group')
|
||||
self.xRingCollision = self.xHandles.find('**/x-ring')
|
||||
self.xDiscGroup = self.xHandles.find('**/x-disc-group')
|
||||
self.xDisc = self.xHandles.find('**/x-disc-visible')
|
||||
self.xDiscCollision = self.xHandles.find('**/x-disc')
|
||||
|
||||
self.yHandles = self.find('**/Y')
|
||||
self.yPostGroup = self.yHandles.find('**/y-post-group')
|
||||
self.yPostCollision = self.yHandles.find('**/y-post')
|
||||
self.yRingGroup = self.yHandles.find('**/y-ring-group')
|
||||
self.yRingCollision = self.yHandles.find('**/y-ring')
|
||||
self.yDiscGroup = self.yHandles.find('**/y-disc-group')
|
||||
self.yDisc = self.yHandles.find('**/y-disc-visible')
|
||||
self.yDiscCollision = self.yHandles.find('**/y-disc')
|
||||
|
||||
self.zHandles = self.find('**/Z')
|
||||
self.zPostGroup = self.zHandles.find('**/z-post-group')
|
||||
self.zPostCollision = self.zHandles.find('**/z-post')
|
||||
self.zRingGroup = self.zHandles.find('**/z-ring-group')
|
||||
self.zRingCollision = self.zHandles.find('**/z-ring')
|
||||
self.zDiscGroup = self.zHandles.find('**/z-disc-group')
|
||||
self.zDisc = self.zHandles.find('**/z-disc-visible')
|
||||
self.zDiscCollision = self.zHandles.find('**/z-disc')
|
||||
|
||||
# Adjust visiblity, colors, and transparency
|
||||
self.xPostCollision.hide()
|
||||
self.xRingCollision.hide()
|
||||
self.xDisc.setColor(1,0,0,.2)
|
||||
self.yPostCollision.hide()
|
||||
self.yRingCollision.hide()
|
||||
self.yDisc.setColor(0,1,0,.2)
|
||||
self.zPostCollision.hide()
|
||||
self.zRingCollision.hide()
|
||||
self.zDisc.setColor(0,0,1,.2)
|
||||
# Augment geometry with lines
|
||||
self.createObjectHandleLines()
|
||||
# Create long markers to help line up in world
|
||||
self.createGuideLines()
|
||||
self.hideGuides()
|
||||
|
||||
def coaModeColor(self):
|
||||
self.setColor(.5,.5,.5,1)
|
||||
|
||||
def manipModeColor(self):
|
||||
self.clearColor()
|
||||
|
||||
def enableHandles(self, handles):
|
||||
if type(handles) == types.ListType:
|
||||
for handle in handles:
|
||||
self.enableHandle(handle)
|
||||
elif handles == 'x':
|
||||
self.enableHandles(['x-post','x-ring','x-disc'])
|
||||
elif handles == 'y':
|
||||
self.enableHandles(['y-post','y-ring','y-disc'])
|
||||
elif handles == 'z':
|
||||
self.enableHandles(['z-post','z-ring','z-disc'])
|
||||
elif handles == 'post':
|
||||
self.enableHandles(['x-post','y-post','z-post'])
|
||||
elif handles == 'ring':
|
||||
self.enableHandles(['x-ring','y-ring','z-ring'])
|
||||
elif handles == 'disc':
|
||||
self.enableHandles(['x-disc','y-disc','z-disc'])
|
||||
elif handles == 'all':
|
||||
self.enableHandles(['x-post','x-ring','x-disc',
|
||||
'y-post','y-ring','y-disc',
|
||||
'z-post','z-ring','z-disc'])
|
||||
|
||||
def enableHandle(self, handle):
|
||||
if handle == 'x-post':
|
||||
self.xPostGroup.reparentTo(self.xHandles)
|
||||
elif handle == 'x-ring':
|
||||
self.xRingGroup.reparentTo(self.xHandles)
|
||||
elif handle == 'x-disc':
|
||||
self.xDiscGroup.reparentTo(self.xHandles)
|
||||
if handle == 'y-post':
|
||||
self.yPostGroup.reparentTo(self.yHandles)
|
||||
elif handle == 'y-ring':
|
||||
self.yRingGroup.reparentTo(self.yHandles)
|
||||
elif handle == 'y-disc':
|
||||
self.yDiscGroup.reparentTo(self.yHandles)
|
||||
if handle == 'z-post':
|
||||
self.zPostGroup.reparentTo(self.zHandles)
|
||||
elif handle == 'z-ring':
|
||||
self.zRingGroup.reparentTo(self.zHandles)
|
||||
elif handle == 'z-disc':
|
||||
self.zDiscGroup.reparentTo(self.zHandles)
|
||||
|
||||
def disableHandles(self, handles):
|
||||
if type(handles) == types.ListType:
|
||||
for handle in handles:
|
||||
self.disableHandle(handle)
|
||||
elif handles == 'x':
|
||||
self.disableHandles(['x-post','x-ring','x-disc'])
|
||||
elif handles == 'y':
|
||||
self.disableHandles(['y-post','y-ring','y-disc'])
|
||||
elif handles == 'z':
|
||||
self.disableHandles(['z-post','z-ring','z-disc'])
|
||||
elif handles == 'post':
|
||||
self.disableHandles(['x-post','y-post','z-post'])
|
||||
elif handles == 'ring':
|
||||
self.disableHandles(['x-ring','y-ring','z-ring'])
|
||||
elif handles == 'disc':
|
||||
self.disableHandles(['x-disc','y-disc','z-disc'])
|
||||
elif handles == 'all':
|
||||
self.disableHandles(['x-post','x-ring','x-disc',
|
||||
'y-post','y-ring','y-disc',
|
||||
'z-post','z-ring','z-disc'])
|
||||
|
||||
def disableHandle(self, handle):
|
||||
if handle == 'x-post':
|
||||
self.xPostGroup.reparentTo(hidden)
|
||||
elif handle == 'x-ring':
|
||||
self.xRingGroup.reparentTo(hidden)
|
||||
elif handle == 'x-disc':
|
||||
self.xDiscGroup.reparentTo(hidden)
|
||||
if handle == 'y-post':
|
||||
self.yPostGroup.reparentTo(hidden)
|
||||
elif handle == 'y-ring':
|
||||
self.yRingGroup.reparentTo(hidden)
|
||||
elif handle == 'y-disc':
|
||||
self.yDiscGroup.reparentTo(hidden)
|
||||
if handle == 'z-post':
|
||||
self.zPostGroup.reparentTo(hidden)
|
||||
elif handle == 'z-ring':
|
||||
self.zRingGroup.reparentTo(hidden)
|
||||
elif handle == 'z-disc':
|
||||
self.zDiscGroup.reparentTo(hidden)
|
||||
|
||||
def showAllHandles(self):
|
||||
self.xPost.show()
|
||||
self.xRing.show()
|
||||
self.xDisc.show()
|
||||
self.yPost.show()
|
||||
self.yRing.show()
|
||||
self.yDisc.show()
|
||||
self.zPost.show()
|
||||
self.zRing.show()
|
||||
self.zDisc.show()
|
||||
|
||||
def hideAllHandles(self):
|
||||
self.xPost.hide()
|
||||
self.xRing.hide()
|
||||
self.xDisc.hide()
|
||||
self.yPost.hide()
|
||||
self.yRing.hide()
|
||||
self.yDisc.hide()
|
||||
self.zPost.hide()
|
||||
self.zRing.hide()
|
||||
self.zDisc.hide()
|
||||
|
||||
def showHandle(self, handle):
|
||||
if handle == 'x-post':
|
||||
self.xPost.show()
|
||||
elif handle == 'x-ring':
|
||||
self.xRing.show()
|
||||
elif handle == 'x-disc':
|
||||
self.xDisc.show()
|
||||
elif handle == 'y-post':
|
||||
self.yPost.show()
|
||||
elif handle == 'y-ring':
|
||||
self.yRing.show()
|
||||
elif handle == 'y-disc':
|
||||
self.yDisc.show()
|
||||
elif handle == 'z-post':
|
||||
self.zPost.show()
|
||||
elif handle == 'z-ring':
|
||||
self.zRing.show()
|
||||
elif handle == 'z-disc':
|
||||
self.zDisc.show()
|
||||
|
||||
def showGuides(self):
|
||||
self.guideLines.show()
|
||||
|
||||
def hideGuides(self):
|
||||
self.guideLines.hide()
|
||||
|
||||
def setScalingFactor(self, scaleFactor):
|
||||
self.ohScalingFactor = scaleFactor
|
||||
self.scalingNode.setScale(self.ohScalingFactor)
|
||||
|
||||
def getScalingFactor(self):
|
||||
return self.scalingNode.getScale()
|
||||
|
||||
def transferObjectHandlesScale(self):
|
||||
# see how much object handles have been scaled
|
||||
ohs = self.getScale()
|
||||
sns = self.scalingNode.getScale()
|
||||
# Transfer this to the scaling node
|
||||
self.scalingNode.setScale(
|
||||
ohs[0] * sns[0],
|
||||
ohs[1] * sns[1],
|
||||
ohs[2] * sns[2])
|
||||
self.setScale(1)
|
||||
|
||||
def multiplyScalingFactorBy(self, factor):
|
||||
taskMgr.removeTasksNamed('resizeObjectHandles')
|
||||
sf = self.ohScalingFactor = self.ohScalingFactor * factor
|
||||
self.scalingNode.lerpScale(sf,sf,sf, 0.5,
|
||||
blendType = 'easeInOut',
|
||||
task = 'resizeObjectHandles')
|
||||
|
||||
def growToFit(self):
|
||||
taskMgr.removeTasksNamed('resizeObjectHandles')
|
||||
# Increase handles scale until they cover 30% of the min dimension
|
||||
pos = self.direct.widget.getPos(self.direct.camera)
|
||||
minDim = min(self.direct.chan.nearWidth, self.direct.chan.nearHeight)
|
||||
sf = 0.15 * minDim * (pos[1]/self.direct.chan.near)
|
||||
self.ohScalingFactor = sf
|
||||
self.scalingNode.lerpScale(sf,sf,sf, 0.5,
|
||||
blendType = 'easeInOut',
|
||||
task = 'resizeObjectHandles')
|
||||
|
||||
def createObjectHandleLines(self):
|
||||
# X post
|
||||
self.xPost = self.xPostGroup.attachNewNode(NamedNode('x-post-visible'))
|
||||
lines = LineNodePath(self.xPost)
|
||||
lines.setColor(VBase4(1,0,0,1))
|
||||
lines.setThickness(5)
|
||||
lines.moveTo(0,0,0)
|
||||
lines.drawTo(1.5,0,0)
|
||||
lines.create()
|
||||
lines = LineNodePath(self.xPost)
|
||||
lines.setColor(VBase4(1,0,0,1))
|
||||
lines.setThickness(1.5)
|
||||
lines.moveTo(0,0,0)
|
||||
lines.drawTo(-1.5,0,0)
|
||||
lines.create()
|
||||
|
||||
# X ring
|
||||
self.xRing = self.xRingGroup.attachNewNode(NamedNode('x-ring-visible'))
|
||||
lines = LineNodePath(self.xRing)
|
||||
lines.setColor(VBase4(1,0,0,1))
|
||||
lines.setThickness(3)
|
||||
lines.moveTo(0,1,0)
|
||||
for ang in range(15, 370, 15):
|
||||
lines.drawTo(0,
|
||||
math.cos(deg2Rad(ang)),
|
||||
math.sin(deg2Rad(ang)))
|
||||
lines.create()
|
||||
|
||||
# Y post
|
||||
self.yPost = self.yPostGroup.attachNewNode(NamedNode('y-post-visible'))
|
||||
lines = LineNodePath(self.yPost)
|
||||
lines.setColor(VBase4(0,1,0,1))
|
||||
lines.setThickness(5)
|
||||
lines.moveTo(0,0,0)
|
||||
lines.drawTo(0,1.5,0)
|
||||
lines.create()
|
||||
lines = LineNodePath(self.yPost)
|
||||
lines.setColor(VBase4(0,1,0,1))
|
||||
lines.setThickness(1.5)
|
||||
lines.moveTo(0,0,0)
|
||||
lines.drawTo(0,-1.5,0)
|
||||
lines.create()
|
||||
|
||||
# Y ring
|
||||
self.yRing = self.yRingGroup.attachNewNode(NamedNode('y-ring-visible'))
|
||||
lines = LineNodePath(self.yRing)
|
||||
lines.setColor(VBase4(0,1,0,1))
|
||||
lines.setThickness(3)
|
||||
lines.moveTo(1,0,0)
|
||||
for ang in range(15, 370, 15):
|
||||
lines.drawTo(math.cos(deg2Rad(ang)),
|
||||
0,
|
||||
math.sin(deg2Rad(ang)))
|
||||
lines.create()
|
||||
|
||||
# Z post
|
||||
self.zPost = self.zPostGroup.attachNewNode(NamedNode('z-post-visible'))
|
||||
lines = LineNodePath(self.zPost)
|
||||
lines.setColor(VBase4(0,0,1,1))
|
||||
lines.setThickness(5)
|
||||
lines.moveTo(0,0,0)
|
||||
lines.drawTo(0,0,1.5)
|
||||
lines.create()
|
||||
lines = LineNodePath(self.zPost)
|
||||
lines.setColor(VBase4(0,0,1,1))
|
||||
lines.setThickness(1.5)
|
||||
lines.moveTo(0,0,0)
|
||||
lines.drawTo(0,0,-1.5)
|
||||
lines.create()
|
||||
|
||||
# Z ring
|
||||
self.zRing = self.zRingGroup.attachNewNode(NamedNode('z-ring-visible'))
|
||||
lines = LineNodePath(self.zRing)
|
||||
lines.setColor(VBase4(0,0,1,1))
|
||||
lines.setThickness(3)
|
||||
lines.moveTo(1,0,0)
|
||||
for ang in range(15, 370, 15):
|
||||
lines.drawTo(math.cos(deg2Rad(ang)),
|
||||
math.sin(deg2Rad(ang)),
|
||||
0)
|
||||
lines.create()
|
||||
|
||||
def createGuideLines(self):
|
||||
self.guideLines = self.attachNewNode(NamedNode('guideLines'))
|
||||
# X guide lines
|
||||
lines = LineNodePath(self.guideLines)
|
||||
lines.setColor(VBase4(1,0,0,1))
|
||||
lines.setThickness(0.5)
|
||||
lines.moveTo(-500,0,0)
|
||||
lines.drawTo(500,0,0)
|
||||
lines.create()
|
||||
lines.node().setName('x-guide')
|
||||
|
||||
# Y guide lines
|
||||
lines = LineNodePath(self.guideLines)
|
||||
lines.setColor(VBase4(0,1,0,1))
|
||||
lines.setThickness(0.5)
|
||||
lines.moveTo(0,-500,0)
|
||||
lines.drawTo(0,500,0)
|
||||
lines.create()
|
||||
lines.node().setName('y-guide')
|
||||
|
||||
# Z guide lines
|
||||
lines = LineNodePath(self.guideLines)
|
||||
lines.setColor(VBase4(0,0,1,1))
|
||||
lines.setThickness(0.5)
|
||||
lines.moveTo(0,0,-500)
|
||||
lines.drawTo(0,0,500)
|
||||
lines.create()
|
||||
lines.node().setName('z-guide')
|
||||
|
||||
def getAxisIntersectPt(self, axis):
|
||||
# Calc the xfrom from camera to widget
|
||||
mCam2Widget = self.direct.camera.getMat(self.direct.widget)
|
||||
lineDir = Vec3(mCam2Widget.xformVec(self.direct.chan.nearVec))
|
||||
lineDir.normalize()
|
||||
# And determine where the viewpoint is relative to widget
|
||||
lineOrigin = VBase3(0)
|
||||
decomposeMatrix(mCam2Widget, VBase3(0), VBase3(0), lineOrigin,
|
||||
getDefaultCoordinateSystem())
|
||||
# Now see where this hits the plane containing the 1D motion axis.
|
||||
# Pick the intersection plane most normal to the intersection ray
|
||||
# by comparing lineDir with plane normals. The plane with the
|
||||
# largest dotProduct is most "normal"
|
||||
if axis == 'x':
|
||||
if (abs(lineDir.dot(Y_AXIS)) > abs(lineDir.dot(Z_AXIS))):
|
||||
self.hitPt.assign(
|
||||
planeIntersect(lineOrigin, lineDir, ORIGIN, Y_AXIS))
|
||||
else:
|
||||
self.hitPt.assign(
|
||||
planeIntersect(lineOrigin, lineDir, ORIGIN, Z_AXIS))
|
||||
# We really only care about the nearest point on the axis
|
||||
self.hitPt.setY(0)
|
||||
self.hitPt.setZ(0)
|
||||
elif axis == 'y':
|
||||
if (abs(lineDir.dot(X_AXIS)) > abs(lineDir.dot(Z_AXIS))):
|
||||
self.hitPt.assign(
|
||||
planeIntersect(lineOrigin, lineDir, ORIGIN, X_AXIS))
|
||||
else:
|
||||
self.hitPt.assign(
|
||||
planeIntersect(lineOrigin, lineDir, ORIGIN, Z_AXIS))
|
||||
# We really only care about the nearest point on the axis
|
||||
self.hitPt.setX(0)
|
||||
self.hitPt.setZ(0)
|
||||
elif axis == 'z':
|
||||
if (abs(lineDir.dot(X_AXIS)) > abs(lineDir.dot(Y_AXIS))):
|
||||
self.hitPt.assign(
|
||||
planeIntersect(lineOrigin, lineDir, ORIGIN, X_AXIS))
|
||||
else:
|
||||
self.hitPt.assign(
|
||||
planeIntersect(lineOrigin, lineDir, ORIGIN, Y_AXIS))
|
||||
# We really only care about the nearest point on the axis
|
||||
self.hitPt.setX(0)
|
||||
self.hitPt.setY(0)
|
||||
return self.hitPt
|
||||
|
||||
def getWidgetIntersectPt(self, nodePath, plane):
|
||||
# Find out the point of interection of the ray passing though the mouse
|
||||
# with the plane containing the 2D xlation or 1D rotation widgets
|
||||
|
||||
# Calc the xfrom from camera to the nodePath
|
||||
mCam2NodePath = self.direct.camera.getMat(nodePath)
|
||||
|
||||
# And determine where the viewpoint is relative to widget
|
||||
lineOrigin = VBase3(0)
|
||||
decomposeMatrix(mCam2NodePath, VBase3(0), VBase3(0), lineOrigin,
|
||||
getDefaultCoordinateSystem())
|
||||
|
||||
# Next we find the vector from viewpoint to the widget through
|
||||
# the mouse's position on near plane.
|
||||
# This defines the intersection ray
|
||||
lineDir = Vec3(mCam2NodePath.xformVec(self.direct.chan.nearVec))
|
||||
lineDir.normalize()
|
||||
# Find the hit point
|
||||
if plane == 'x':
|
||||
self.hitPt.assign(planeIntersect(
|
||||
lineOrigin, lineDir, ORIGIN, X_AXIS))
|
||||
elif plane == 'y':
|
||||
self.hitPt.assign(planeIntersect(
|
||||
lineOrigin, lineDir, ORIGIN, Y_AXIS))
|
||||
elif plane == 'z':
|
||||
self.hitPt.assign(planeIntersect(
|
||||
lineOrigin, lineDir, ORIGIN, Z_AXIS))
|
||||
return self.hitPt
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user