Cull improvements: tighter sphere generation

This commit is contained in:
rdb 2015-01-08 23:17:06 +01:00
parent c04cd29246
commit b9899ba747
8 changed files with 310 additions and 108 deletions

View File

@ -386,7 +386,8 @@ calc_tight_bounds(LPoint3 &min_point, LPoint3 &max_point,
Thread *current_thread) const {
CDReader cdata(_cycler, current_thread);
do_calc_tight_bounds(min_point, max_point, found_any,
PN_stdfloat sq_radius;
do_calc_tight_bounds(min_point, max_point, sq_radius, found_any,
vertex_data, got_mat, mat,
InternalName::get_vertex(),
cdata, current_thread);
@ -408,6 +409,7 @@ calc_tight_bounds(LPoint3 &min_point, LPoint3 &max_point,
INLINE void Geom::
calc_tight_bounds(LPoint3 &min_point, LPoint3 &max_point,
bool &found_any, Thread *current_thread) const {
calc_tight_bounds(min_point, max_point, found_any,
get_vertex_data(current_thread), false,
LMatrix4::ident_mat(),
@ -429,7 +431,8 @@ calc_tight_bounds(LPoint3 &min_point, LPoint3 &max_point,
Thread *current_thread) const {
CDReader cdata(_cycler, current_thread);
do_calc_tight_bounds(min_point, max_point, found_any,
PN_stdfloat sq_radius;
do_calc_tight_bounds(min_point, max_point, sq_radius, found_any,
vertex_data, got_mat, mat,
column_name, cdata, current_thread);
}

View File

@ -1304,10 +1304,11 @@ compute_internal_bounds(Geom::CData *cdata, Thread *current_thread) const {
// Now actually compute the bounding volume. We do this by using
// calc_tight_bounds to determine our box first.
LPoint3 min, max;
LPoint3 pmin, pmax;
PN_stdfloat sq_center_dist;
bool found_any = false;
do_calc_tight_bounds(min, max, found_any, vertex_data,
false, LMatrix4::ident_mat(),
do_calc_tight_bounds(pmin, pmax, sq_center_dist, found_any,
vertex_data, false, LMatrix4::ident_mat(),
InternalName::get_vertex(),
cdata, current_thread);
@ -1318,18 +1319,79 @@ compute_internal_bounds(Geom::CData *cdata, Thread *current_thread) const {
if (found_any) {
// Then we put the bounding volume around both of those points.
if (btype == BoundingVolume::BT_sphere) {
// The user specifically requested a BoundingSphere, so oblige.
BoundingBox box(min, max);
box.local_object();
PN_stdfloat avg_box_area;
switch (btype) {
case BoundingVolume::BT_best:
case BoundingVolume::BT_fastest:
case BoundingVolume::BT_default:
{
// When considering a box, calculate (roughly) the average area
// of the sides. We will use this to determine whether a sphere
// or box is a better fit.
PN_stdfloat min_extent = min(pmax[0] - pmin[0],
min(pmax[1] - pmin[1],
pmax[2] - pmin[2]));
PN_stdfloat max_extent = max(pmax[0] - pmin[0],
max(pmax[1] - pmin[1],
pmax[2] - pmin[2]));
avg_box_area = ((min_extent * min_extent) + (max_extent * max_extent)) / 2;
}
// Fall through
case BoundingVolume::BT_sphere:
{
// Determine the best radius for a bounding sphere.
LPoint3 aabb_center = (pmin + pmax) * 0.5f;
PN_stdfloat best_sq_radius = (pmax - aabb_center).length_squared();
PT(BoundingSphere) sphere = new BoundingSphere;
sphere->extend_by(&box);
cdata->_internal_bounds = sphere;
if (btype != BoundingVolume::BT_fastest &&
aabb_center.length_squared() / best_sq_radius >= (0.2f * 0.2f)) {
// Hmm, this is an off-center model. Maybe we can do a better
// job by calculating the bounding sphere from the AABB center.
} else {
// The user requested a BoundingBox, or did not specify.
cdata->_internal_bounds = new BoundingBox(min, max);
PN_stdfloat better_sq_radius;
bool found_any = false;
do_calc_sphere_radius(aabb_center, better_sq_radius, found_any,
vertex_data, cdata, current_thread);
if (found_any && better_sq_radius <= best_sq_radius) {
// Great. This is as good a sphere as we're going to get.
if (btype == BoundingVolume::BT_best &&
avg_box_area < better_sq_radius * MathNumbers::pi) {
// But the box is better, anyway. Use that instead.
cdata->_internal_bounds = new BoundingBox(pmin, pmax);
break;
}
cdata->_internal_bounds =
new BoundingSphere(aabb_center, csqrt(better_sq_radius));
break;
}
}
if (btype != BoundingVolume::BT_sphere &&
avg_box_area < sq_center_dist * MathNumbers::pi) {
// A box is probably a tighter fit.
cdata->_internal_bounds = new BoundingBox(pmin, pmax);
break;
} else if (sq_center_dist <= best_sq_radius) {
// No, but a sphere centered on the origin is apparently
// still better than a sphere around the bounding box.
cdata->_internal_bounds =
new BoundingSphere(LPoint3::origin(), csqrt(sq_center_dist));
break;
} else if (btype == BoundingVolume::BT_sphere) {
// This is the worst sphere we can make, which is why we will only
// do it when the user specifically requests a sphere.
cdata->_internal_bounds =
new BoundingSphere(aabb_center, csqrt(best_sq_radius));
break;
}
}
// Fall through.
case BoundingVolume::BT_box:
cdata->_internal_bounds = new BoundingBox(pmin, pmax);
}
Primitives::const_iterator pi;
@ -1360,7 +1422,7 @@ compute_internal_bounds(Geom::CData *cdata, Thread *current_thread) const {
////////////////////////////////////////////////////////////////////
void Geom::
do_calc_tight_bounds(LPoint3 &min_point, LPoint3 &max_point,
bool &found_any,
PN_stdfloat &sq_center_dist, bool &found_any,
const GeomVertexData *vertex_data,
bool got_mat, const LMatrix4 &mat,
const InternalName *column_name,
@ -1370,8 +1432,28 @@ do_calc_tight_bounds(LPoint3 &min_point, LPoint3 &max_point,
pi != cdata->_primitives.end();
++pi) {
CPT(GeomPrimitive) prim = (*pi).get_read_pointer();
prim->calc_tight_bounds(min_point, max_point, found_any, vertex_data,
got_mat, mat, column_name, current_thread);
prim->calc_tight_bounds(min_point, max_point, sq_center_dist,
found_any, vertex_data, got_mat, mat,
column_name, current_thread);
}
}
////////////////////////////////////////////////////////////////////
// Function: Geom::do_calc_sphere_radius
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
void Geom::
do_calc_sphere_radius(const LPoint3 &center, PN_stdfloat &sq_radius,
bool &found_any, const GeomVertexData *vertex_data,
const CData *cdata, Thread *current_thread) const {
Primitives::const_iterator pi;
for (pi = cdata->_primitives.begin();
pi != cdata->_primitives.end();
++pi) {
CPT(GeomPrimitive) prim = (*pi).get_read_pointer();
prim->calc_sphere_radius(center, sq_radius, found_any,
vertex_data, current_thread);
}
}

View File

@ -174,12 +174,17 @@ private:
void compute_internal_bounds(CData *cdata, Thread *current_thread) const;
void do_calc_tight_bounds(LPoint3 &min_point, LPoint3 &max_point,
bool &found_any,
PN_stdfloat &sq_center_dist, bool &found_any,
const GeomVertexData *vertex_data,
bool got_mat, const LMatrix4 &mat,
const InternalName *column_name,
const CData *cdata, Thread *current_thread) const;
void do_calc_sphere_radius(const LPoint3 &center,
PN_stdfloat &sq_radius, bool &found_any,
const GeomVertexData *vertex_data,
const CData *cdata, Thread *current_thread) const;
void clear_prepared(PreparedGraphicsObjects *prepared_objects);
bool check_will_be_valid(const GeomVertexData *vertex_data) const;

View File

@ -1699,10 +1699,14 @@ get_strip_cut_index(NumericType index_type) {
// points are found. It is the caller's responsibility
// to initialize min_point, max_point, and found_any
// before calling this function.
// It also sets sq_center_dist, which is the square of
// the maximum distance of the points to the center.
// This can be useful when deciding whether a sphere
// volume might be more appropriate.
////////////////////////////////////////////////////////////////////
void GeomPrimitive::
calc_tight_bounds(LPoint3 &min_point, LPoint3 &max_point,
bool &found_any,
PN_stdfloat &sq_center_dist, bool &found_any,
const GeomVertexData *vertex_data,
bool got_mat, const LMatrix4 &mat,
const InternalName *column_name,
@ -1714,54 +1718,84 @@ calc_tight_bounds(LPoint3 &min_point, LPoint3 &max_point,
}
CDReader cdata(_cycler, current_thread);
int i = 0;
if (cdata->_vertices.is_null()) {
// Nonindexed case.
nassertv(cdata->_num_vertices != -1);
if (cdata->_num_vertices == 0) {
return;
}
if (got_mat) {
for (int i = 0; i < cdata->_num_vertices; i++) {
if (!found_any) {
reader.set_row_unsafe(cdata->_first_vertex);
LPoint3 first_vertex = mat.xform_point(reader.get_data3());
min_point = first_vertex;
max_point = first_vertex;
sq_center_dist = first_vertex.length_squared();
found_any = true;
++i;
}
for (; i < cdata->_num_vertices; ++i) {
reader.set_row_unsafe(cdata->_first_vertex + i);
LPoint3 vertex = mat.xform_point(reader.get_data3());
if (found_any) {
min_point.set(min(min_point[0], vertex[0]),
min(min_point[1], vertex[1]),
min(min_point[2], vertex[2]));
max_point.set(max(max_point[0], vertex[0]),
max(max_point[1], vertex[1]),
max(max_point[2], vertex[2]));
sq_center_dist = max(sq_center_dist, vertex.length_squared());
}
} else {
min_point = vertex;
max_point = vertex;
if (!found_any) {
reader.set_row_unsafe(cdata->_first_vertex);
const LVecBase3 &first_vertex = reader.get_data3();
min_point = first_vertex;
max_point = first_vertex;
sq_center_dist = first_vertex.length_squared();
found_any = true;
++i;
}
}
} else {
for (int i = 0; i < cdata->_num_vertices; i++) {
for (; i < cdata->_num_vertices; ++i) {
reader.set_row_unsafe(cdata->_first_vertex + i);
const LVecBase3 &vertex = reader.get_data3();
if (found_any) {
min_point.set(min(min_point[0], vertex[0]),
min(min_point[1], vertex[1]),
min(min_point[2], vertex[2]));
max_point.set(max(max_point[0], vertex[0]),
max(max_point[1], vertex[1]),
max(max_point[2], vertex[2]));
} else {
min_point = vertex;
max_point = vertex;
found_any = true;
}
sq_center_dist = max(sq_center_dist, vertex.length_squared());
}
}
} else {
// Indexed case.
GeomVertexReader index(cdata->_vertices.get_read_pointer(), 0, current_thread);
if (index.is_at_end()) {
return;
}
int strip_cut_index = get_strip_cut_index(cdata->_index_type);
if (got_mat) {
if (!found_any) {
int first_index = index.get_data1i();
nassertv(first_index != strip_cut_index);
reader.set_row_unsafe(first_index);
LPoint3 first_vertex = mat.xform_point(reader.get_data3());
min_point = first_vertex;
max_point = first_vertex;
sq_center_dist = first_vertex.length_squared();
found_any = true;
}
while (!index.is_at_end()) {
int ii = index.get_data1i();
if (ii == strip_cut_index) {
@ -1770,20 +1804,26 @@ calc_tight_bounds(LPoint3 &min_point, LPoint3 &max_point,
reader.set_row_unsafe(ii);
LPoint3 vertex = mat.xform_point(reader.get_data3());
if (found_any) {
min_point.set(min(min_point[0], vertex[0]),
min(min_point[1], vertex[1]),
min(min_point[2], vertex[2]));
max_point.set(max(max_point[0], vertex[0]),
max(max_point[1], vertex[1]),
max(max_point[2], vertex[2]));
sq_center_dist = max(sq_center_dist, vertex.length_squared());
}
} else {
min_point = vertex;
max_point = vertex;
if (!found_any) {
int first_index = index.get_data1i();
nassertv(first_index != strip_cut_index);
reader.set_row_unsafe(first_index);
const LVecBase3 &first_vertex = reader.get_data3();
min_point = first_vertex;
max_point = first_vertex;
sq_center_dist = first_vertex.length_squared();
found_any = true;
}
}
} else {
while (!index.is_at_end()) {
int ii = index.get_data1i();
if (ii == strip_cut_index) {
@ -1792,19 +1832,77 @@ calc_tight_bounds(LPoint3 &min_point, LPoint3 &max_point,
reader.set_row_unsafe(ii);
const LVecBase3 &vertex = reader.get_data3();
if (found_any) {
min_point.set(min(min_point[0], vertex[0]),
min(min_point[1], vertex[1]),
min(min_point[2], vertex[2]));
max_point.set(max(max_point[0], vertex[0]),
max(max_point[1], vertex[1]),
max(max_point[2], vertex[2]));
} else {
min_point = vertex;
max_point = vertex;
sq_center_dist = max(sq_center_dist, vertex.length_squared());
}
}
}
}
////////////////////////////////////////////////////////////////////
// Function: GeomPrimitive::calc_sphere_radius
// Access: Public, Virtual
// Description: Expands radius so that a sphere with the given
// center point fits all of the vertices.
//
// The center point is assumed to already have been
// transformed by the matrix, if one is given.
////////////////////////////////////////////////////////////////////
void GeomPrimitive::
calc_sphere_radius(const LPoint3 &center, PN_stdfloat &sq_radius,
bool &found_any, const GeomVertexData *vertex_data,
Thread *current_thread) const {
GeomVertexReader reader(vertex_data, InternalName::get_vertex(), current_thread);
if (!reader.has_column()) {
// No vertex data.
return;
}
if (!found_any) {
sq_radius = 0.0;
}
CDReader cdata(_cycler, current_thread);
if (cdata->_vertices.is_null()) {
// Nonindexed case.
nassertv(cdata->_num_vertices != -1);
if (cdata->_num_vertices == 0) {
return;
}
found_any = true;
for (int i = 0; i < cdata->_num_vertices; ++i) {
reader.set_row_unsafe(cdata->_first_vertex + i);
const LVecBase3 &vertex = reader.get_data3();
sq_radius = max(sq_radius, (vertex - center).length_squared());
}
} else {
// Indexed case.
GeomVertexReader index(cdata->_vertices.get_read_pointer(), 0, current_thread);
if (index.is_at_end()) {
return;
}
found_any = true;
int strip_cut_index = get_strip_cut_index(cdata->_index_type);
while (!index.is_at_end()) {
int ii = index.get_data1i();
if (ii == strip_cut_index) {
continue;
}
reader.set_row_unsafe(ii);
const LVecBase3 &vertex = reader.get_data3();
sq_radius = max(sq_radius, (vertex - center).length_squared());
}
}
}

View File

@ -207,12 +207,17 @@ public:
bool force) const=0;
void calc_tight_bounds(LPoint3 &min_point, LPoint3 &max_point,
bool &found_any,
PN_stdfloat &sq_center_dist, bool &found_any,
const GeomVertexData *vertex_data,
bool got_mat, const LMatrix4 &mat,
const InternalName *column_name,
Thread *current_thread) const;
void calc_sphere_radius(const LPoint3 &center,
PN_stdfloat &sq_radius, bool &found_any,
const GeomVertexData *vertex_data,
Thread *current_thread) const;
protected:
virtual CPT(GeomPrimitive) decompose_impl() const;
virtual CPT(GeomVertexArrayData) rotate_impl() const;

View File

@ -182,6 +182,9 @@ string_bounds_type(const string &str) {
} else if (strcmp(str.c_str(), "best") == 0) {
return BT_best;
} else if (strcmp(str.c_str(), "fastest") == 0) {
return BT_fastest;
} else if (strcmp(str.c_str(), "sphere") == 0) {
return BT_sphere;
@ -521,6 +524,9 @@ operator << (ostream &out, BoundingVolume::BoundsType type) {
case BoundingVolume::BT_best:
return out << "best";
case BoundingVolume::BT_fastest:
return out << "fastest";
case BoundingVolume::BT_sphere:
return out << "sphere";

View File

@ -106,6 +106,7 @@ PUBLISHED:
BT_best,
BT_sphere,
BT_box,
BT_fastest,
};
public:

View File

@ -50,7 +50,9 @@ ConfigVariableEnum<BoundingVolume::BoundsType> bounds_type
("bounds-type", BoundingVolume::BT_sphere,
PRC_DESC("Specify the type of bounding volume that is created automatically "
"by Panda to enclose geometry. Use 'sphere' or 'box', or use "
"'best' to let Panda decide which is most appropriate."));
"'best' to let Panda decide which is most appropriate. You can "
"also use 'fastest' if you don't want Panda to waste much time "
"computing the most optimal bounding volume."));
////////////////////////////////////////////////////////////////////
// Function: init_libmathutil