*** empty log message ***

This commit is contained in:
David Rose 2001-03-10 07:51:42 +00:00
parent cf178c1e18
commit bde4891e3f
2 changed files with 202 additions and 202 deletions

View File

@ -40,11 +40,11 @@ PUBLISHED:
void set(const FLOATNAME(LMatrix3) &m); void set(const FLOATNAME(LMatrix3) &m);
INLINE void set(const FLOATNAME(LMatrix4) &m); INLINE void set(const FLOATNAME(LMatrix4) &m);
INLINE void extract_to_matrix(FLOATNAME(LMatrix3) &m) const; void extract_to_matrix(FLOATNAME(LMatrix3) &m) const;
INLINE void extract_to_matrix(FLOATNAME(LMatrix4) &m) const; void extract_to_matrix(FLOATNAME(LMatrix4) &m) const;
INLINE void set_hpr(const FLOATNAME(LVecBase3) &hpr); void set_hpr(const FLOATNAME(LVecBase3) &hpr);
INLINE FLOATNAME(LVecBase3) get_hpr() const; FLOATNAME(LVecBase3) get_hpr() const;
INLINE FLOATTYPE1 get_r(void) const; INLINE FLOATTYPE1 get_r(void) const;
INLINE FLOATTYPE1 get_i(void) const; INLINE FLOATTYPE1 get_i(void) const;
@ -407,209 +407,13 @@ set(const FLOATNAME(LMatrix4) &m) {
set(m.get_upper_3()); set(m.get_upper_3());
} }
////////////////////////////////////////////////////////////////////
// Function: extract (LMatrix3)
// Access: public
// Description: Do-While Jones paper from cary.
////////////////////////////////////////////////////////////////////
INLINE void FLOATNAME(LQuaternionBase)::
extract_to_matrix(FLOATNAME(LMatrix3) &m) const {
FLOATTYPE1 N = (_r * _r) + (_i * _i) + (_j * _j) + (_k * _k);
FLOATTYPE1 s = (N == 0.) ? 0. : (2. / N);
FLOATTYPE1 xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz;
xs = _i * s; ys = _j * s; zs = _k * s;
wx = _r * xs; wy = _r * ys; wz = _r * zs;
xx = _i * xs; xy = _i * ys; xz = _i * zs;
yy = _j * ys; yz = _j * zs; zz = _k * zs;
m = FLOATNAME(LMatrix3)((1. - (yy + zz)), (xy - wz), (xz + wy),
(xy + wz), (1. - (xx + zz)), (yz - wx),
(xz - wy), (yz + wx), (1. - (xx + yy)));
}
////////////////////////////////////////////////////////////////////
// Function: extract (LMatrix4)
// Access: public
// Description:
////////////////////////////////////////////////////////////////////
INLINE void FLOATNAME(LQuaternionBase)::
extract_to_matrix(FLOATNAME(LMatrix4) &m) const {
FLOATTYPE1 N = (_r * _r) + (_i * _i) + (_j * _j) + (_k * _k);
FLOATTYPE1 s = (N == 0.) ? 0. : (2. / N);
FLOATTYPE1 xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz;
xs = _i * s; ys = _j * s; zs = _k * s;
wx = _r * xs; wy = _r * ys; wz = _r * zs;
xx = _i * xs; xy = _i * ys; xz = _i * zs;
yy = _j * ys; yz = _j * zs; zz = _k * zs;
m = FLOATNAME(LMatrix4)((1. - (yy + zz)), (xy - wz), (xz + wy), 0.,
(xy + wz), (1. - (xx + zz)), (yz - wx), 0.,
(xz - wy), (yz + wx), (1. - (xx + yy)), 0.,
0., 0., 0., 1.);
}
////////////////////////////////////////////////////////////////////
// Function: set_hpr
// Access: public
// Description: Sets the quaternion as the unit quaternion that
// is equivalent to these Euler angles.
// (from Real-time Rendering, p.49)
////////////////////////////////////////////////////////////////////
INLINE void FLOATNAME(LQuaternionBase)::
set_hpr(const FLOATNAME(LVecBase3) &hpr) {
FLOATNAME(LQuaternionBase) quat_h, quat_p, quat_r;
FLOATNAME(LVector3) v = FLOATNAME(LVector3)::up();
FLOATTYPE1 a = deg_2_rad(hpr[0] * 0.5);
FLOATTYPE1 s,c;
csincos(a,&s,&c);
quat_h.set(c, v[0] * s, v[1] * s, v[2] * s);
v = FLOATNAME(LVector3)::right();
a = deg_2_rad(hpr[1] * 0.5);
csincos(a,&s,&c);
s = csin(a);
quat_p.set(c, v[0] * s, v[1] * s, v[2] * s);
v = FLOATNAME(LVector3)::forward();
a = deg_2_rad(hpr[2] * 0.5);
csincos(a,&s,&c);
quat_r.set(c, v[0] * s, v[1] * s, v[2] * s);
(*this) = quat_h * quat_p * quat_r;
}
////////////////////////////////////////////////////////////////////
// Function: get_hpr
// Access: public
// Description: Extracts the equivalent Euler angles from the unit
// quaternion.
////////////////////////////////////////////////////////////////////
INLINE FLOATNAME(LVecBase3) FLOATNAME(LQuaternionBase)::
get_hpr() const {
FLOATTYPE1 heading, pitch, roll;
FLOATTYPE1 N = (_r * _r) + (_i * _i) + (_j * _j) + (_k * _k);
FLOATTYPE1 s = (N == 0.) ? 0. : (2. / N);
FLOATTYPE1 xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz, c1, c2, c3, c4;
FLOATTYPE1 cr, sr, cp, sp, ch, sh;
xs = _i * s; ys = _j * s; zs = _k * s;
wx = _r * xs; wy = _r * ys; wz = _r * zs;
xx = _i * xs; xy = _i * ys; xz = _i * zs;
yy = _j * ys; yz = _j * zs; zz = _k * zs;
c1 = xz - wy;
c2 = 1. - (xx + yy);
c3 = 1. - (yy + zz);
c4 = xy + wz;
if (c1 == 0.) { // (roll = 0 or 180) or (pitch = +/- 90
if (c2 >= 0.) {
roll = 0.;
ch = c3;
sh = c4;
cp = c2;
} else {
roll = 180.;
ch = -c3;
sh = -c4;
cp = -c2;
}
} else {
// this should work all the time, but the above saves some trig operations
roll = catan2(-c1, c2);
csincos(roll,&sr,&cr);
roll = rad_2_deg(roll);
ch = (cr * c3) + (sr * (xz + wy));
sh = (cr * c4) + (sr * (yz - wx));
cp = (cr * c2) - (sr * c1);
}
sp = yz + wx;
heading = rad_2_deg(catan2(sh, ch));
pitch = rad_2_deg(catan2(sp, cp));
return FLOATNAME(LVecBase3)(heading, pitch, roll);
}
////////////////////////////////////////////////////////////////////
// Function: set
// Access: public
// Description: Do-While Jones.
////////////////////////////////////////////////////////////////////
INLINE void FLOATNAME(LQuaternionBase)::
set(const FLOATNAME(LMatrix3) &m) {
FLOATTYPE1 m00 = m.get_cell(0, 0);
FLOATTYPE1 m01 = m.get_cell(0, 1);
FLOATTYPE1 m02 = m.get_cell(0, 2);
FLOATTYPE1 m10 = m.get_cell(1, 0);
FLOATTYPE1 m11 = m.get_cell(1, 1);
FLOATTYPE1 m12 = m.get_cell(1, 2);
FLOATTYPE1 m20 = m.get_cell(2, 0);
FLOATTYPE1 m21 = m.get_cell(2, 1);
FLOATTYPE1 m22 = m.get_cell(2, 2);
FLOATTYPE1 T = m00 + m11 + m22 + 1.;
if (T > 0.) {
// the easy case
FLOATTYPE1 S = 0.5 / csqrt(T);
_r = 0.25 / S;
_i = (m21 - m12) * S;
_j = (m02 - m20) * S;
_k = (m10 - m01) * S;
} else {
// figure out which column to take as root
int c = 0;
if (cabs(m00) > cabs(m11)) {
if (cabs(m00) > cabs(m22))
c = 0;
else
c = 2;
} else if (cabs(m11) > cabs(m22))
c = 1;
else
c = 2;
FLOATTYPE1 S;
switch (c) {
case 0:
S = csqrt(1. + m00 - m11 - m22) * 2.;
_r = (m12 + m21) / S;
_i = 0.5 / S;
_j = (m01 + m10) / S;
_k = (m02 + m20) / S;
break;
case 1:
S = csqrt(1. + m11 - m00 - m22) * 2.;
_r = (m02 + m20) / S;
_i = (m01 + m10) / S;
_j = 0.5 / S;
_k = (m12 + m21) / S;
break;
case 2:
S = csqrt(1. + m22 - m00 - m11) * 2.;
_r = (m01 + m10) / S;
_i = (m02 + m20) / S;
_j = (m12 + m21) / S;
_k = 0.5 / S;
break;
}
}
}
//////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////
// Function: operator *(Matrix3, Quat) // Function: operator *(Matrix3, Quat)
// Access: public // Access: public
// Description: // Description:
//////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////
FLOATNAME(LMatrix3) operator *(const FLOATNAME(LMatrix3) &m, INLINE FLOATNAME(LMatrix3) operator *(const FLOATNAME(LMatrix3) &m,
const FLOATNAME(LQuaternionBase) &q) { const FLOATNAME(LQuaternionBase) &q) {
FLOATNAME(LMatrix3) q_matrix; FLOATNAME(LMatrix3) q_matrix;
q.extract_to_matrix(q_matrix); q.extract_to_matrix(q_matrix);
@ -623,7 +427,7 @@ FLOATNAME(LMatrix3) operator *(const FLOATNAME(LMatrix3) &m,
// Description: // Description:
//////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////
FLOATNAME(LMatrix4) operator *(const FLOATNAME(LMatrix4) &m, INLINE FLOATNAME(LMatrix4) operator *(const FLOATNAME(LMatrix4) &m,
const FLOATNAME(LQuaternionBase) &q) { const FLOATNAME(LQuaternionBase) &q) {
FLOATNAME(LMatrix4) q_matrix; FLOATNAME(LMatrix4) q_matrix;
q.extract_to_matrix(q_matrix); q.extract_to_matrix(q_matrix);

View File

@ -22,6 +22,202 @@ pure_imaginary(const FLOATNAME(LVector3) &v) {
return FLOATNAME(LQuaternionBase)(0, v[0], v[1], v[2]); return FLOATNAME(LQuaternionBase)(0, v[0], v[1], v[2]);
} }
////////////////////////////////////////////////////////////////////
// Function: extract (LMatrix3)
// Access: public
// Description: Do-While Jones paper from cary.
////////////////////////////////////////////////////////////////////
void FLOATNAME(LQuaternionBase)::
extract_to_matrix(FLOATNAME(LMatrix3) &m) const {
FLOATTYPE1 N = (_r * _r) + (_i * _i) + (_j * _j) + (_k * _k);
FLOATTYPE1 s = (N == 0.) ? 0. : (2. / N);
FLOATTYPE1 xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz;
xs = _i * s; ys = _j * s; zs = _k * s;
wx = _r * xs; wy = _r * ys; wz = _r * zs;
xx = _i * xs; xy = _i * ys; xz = _i * zs;
yy = _j * ys; yz = _j * zs; zz = _k * zs;
m = FLOATNAME(LMatrix3)((1. - (yy + zz)), (xy - wz), (xz + wy),
(xy + wz), (1. - (xx + zz)), (yz - wx),
(xz - wy), (yz + wx), (1. - (xx + yy)));
}
////////////////////////////////////////////////////////////////////
// Function: extract (LMatrix4)
// Access: public
// Description:
////////////////////////////////////////////////////////////////////
void FLOATNAME(LQuaternionBase)::
extract_to_matrix(FLOATNAME(LMatrix4) &m) const {
FLOATTYPE1 N = (_r * _r) + (_i * _i) + (_j * _j) + (_k * _k);
FLOATTYPE1 s = (N == 0.) ? 0. : (2. / N);
FLOATTYPE1 xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz;
xs = _i * s; ys = _j * s; zs = _k * s;
wx = _r * xs; wy = _r * ys; wz = _r * zs;
xx = _i * xs; xy = _i * ys; xz = _i * zs;
yy = _j * ys; yz = _j * zs; zz = _k * zs;
m = FLOATNAME(LMatrix4)((1. - (yy + zz)), (xy - wz), (xz + wy), 0.,
(xy + wz), (1. - (xx + zz)), (yz - wx), 0.,
(xz - wy), (yz + wx), (1. - (xx + yy)), 0.,
0., 0., 0., 1.);
}
////////////////////////////////////////////////////////////////////
// Function: set_hpr
// Access: public
// Description: Sets the quaternion as the unit quaternion that
// is equivalent to these Euler angles.
// (from Real-time Rendering, p.49)
////////////////////////////////////////////////////////////////////
void FLOATNAME(LQuaternionBase)::
set_hpr(const FLOATNAME(LVecBase3) &hpr) {
FLOATNAME(LQuaternionBase) quat_h, quat_p, quat_r;
FLOATNAME(LVector3) v = FLOATNAME(LVector3)::up();
FLOATTYPE1 a = deg_2_rad(hpr[0] * 0.5);
FLOATTYPE1 s,c;
csincos(a,&s,&c);
quat_h.set(c, v[0] * s, v[1] * s, v[2] * s);
v = FLOATNAME(LVector3)::right();
a = deg_2_rad(hpr[1] * 0.5);
csincos(a,&s,&c);
s = csin(a);
quat_p.set(c, v[0] * s, v[1] * s, v[2] * s);
v = FLOATNAME(LVector3)::forward();
a = deg_2_rad(hpr[2] * 0.5);
csincos(a,&s,&c);
quat_r.set(c, v[0] * s, v[1] * s, v[2] * s);
(*this) = quat_h * quat_p * quat_r;
}
////////////////////////////////////////////////////////////////////
// Function: get_hpr
// Access: public
// Description: Extracts the equivalent Euler angles from the unit
// quaternion.
////////////////////////////////////////////////////////////////////
FLOATNAME(LVecBase3) FLOATNAME(LQuaternionBase)::
get_hpr() const {
FLOATTYPE1 heading, pitch, roll;
FLOATTYPE1 N = (_r * _r) + (_i * _i) + (_j * _j) + (_k * _k);
FLOATTYPE1 s = (N == 0.) ? 0. : (2. / N);
FLOATTYPE1 xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz, c1, c2, c3, c4;
FLOATTYPE1 cr, sr, cp, sp, ch, sh;
xs = _i * s; ys = _j * s; zs = _k * s;
wx = _r * xs; wy = _r * ys; wz = _r * zs;
xx = _i * xs; xy = _i * ys; xz = _i * zs;
yy = _j * ys; yz = _j * zs; zz = _k * zs;
c1 = xz - wy;
c2 = 1. - (xx + yy);
c3 = 1. - (yy + zz);
c4 = xy + wz;
if (c1 == 0.) { // (roll = 0 or 180) or (pitch = +/- 90
if (c2 >= 0.) {
roll = 0.;
ch = c3;
sh = c4;
cp = c2;
} else {
roll = 180.;
ch = -c3;
sh = -c4;
cp = -c2;
}
} else {
// this should work all the time, but the above saves some trig operations
roll = catan2(-c1, c2);
csincos(roll,&sr,&cr);
roll = rad_2_deg(roll);
ch = (cr * c3) + (sr * (xz + wy));
sh = (cr * c4) + (sr * (yz - wx));
cp = (cr * c2) - (sr * c1);
}
sp = yz + wx;
heading = rad_2_deg(catan2(sh, ch));
pitch = rad_2_deg(catan2(sp, cp));
return FLOATNAME(LVecBase3)(heading, pitch, roll);
}
////////////////////////////////////////////////////////////////////
// Function: set
// Access: public
// Description: Do-While Jones.
////////////////////////////////////////////////////////////////////
void FLOATNAME(LQuaternionBase)::
set(const FLOATNAME(LMatrix3) &m) {
FLOATTYPE1 m00 = m.get_cell(0, 0);
FLOATTYPE1 m01 = m.get_cell(0, 1);
FLOATTYPE1 m02 = m.get_cell(0, 2);
FLOATTYPE1 m10 = m.get_cell(1, 0);
FLOATTYPE1 m11 = m.get_cell(1, 1);
FLOATTYPE1 m12 = m.get_cell(1, 2);
FLOATTYPE1 m20 = m.get_cell(2, 0);
FLOATTYPE1 m21 = m.get_cell(2, 1);
FLOATTYPE1 m22 = m.get_cell(2, 2);
FLOATTYPE1 T = m00 + m11 + m22 + 1.;
if (T > 0.) {
// the easy case
FLOATTYPE1 S = 0.5 / csqrt(T);
_r = 0.25 / S;
_i = (m21 - m12) * S;
_j = (m02 - m20) * S;
_k = (m10 - m01) * S;
} else {
// figure out which column to take as root
int c = 0;
if (cabs(m00) > cabs(m11)) {
if (cabs(m00) > cabs(m22))
c = 0;
else
c = 2;
} else if (cabs(m11) > cabs(m22))
c = 1;
else
c = 2;
FLOATTYPE1 S;
switch (c) {
case 0:
S = csqrt(1. + m00 - m11 - m22) * 2.;
_r = (m12 + m21) / S;
_i = 0.5 / S;
_j = (m01 + m10) / S;
_k = (m02 + m20) / S;
break;
case 1:
S = csqrt(1. + m11 - m00 - m22) * 2.;
_r = (m02 + m20) / S;
_i = (m01 + m10) / S;
_j = 0.5 / S;
_k = (m12 + m21) / S;
break;
case 2:
S = csqrt(1. + m22 - m00 - m11) * 2.;
_r = (m01 + m10) / S;
_i = (m02 + m20) / S;
_j = (m12 + m21) / S;
_k = 0.5 / S;
break;
}
}
}
//////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////
// Function: FLOATNAME(LQuaternionBase)::ident_quat // Function: FLOATNAME(LQuaternionBase)::ident_quat
// Access: public // Access: public