handle multiple collisions

This commit is contained in:
Darren Ranalli 2007-08-30 07:01:47 +00:00
parent 901179b901
commit e4243d27d5

View File

@ -141,10 +141,6 @@ handle_entries() {
// make a copy of the original collision entries that we can use to re-test the collisions
Entries SCS(*orig_entries);
// currently we only support spheres as the collider
const CollisionSphere *sphere;
DCAST_INTO_R(sphere, entries.front()->get_from(), 0);
// this is the original position delta for the entire frame, before collision response
LPoint3f M(from_node_path.get_pos_delta(*_root));
if (_horizontal) {
@ -160,6 +156,15 @@ handle_entries() {
collide_cat.info() << "orig_pos: " << orig_pos << endl;
collide_cat.info() << "orig_prev_pos: " << orig_prev_pos << endl;
// currently we only support spheres as the collider
const CollisionSphere *sphere;
DCAST_INTO_R(sphere, entries.front()->get_from(), 0);
from_node_path.set_pos(*_root, 0,0,0);
LPoint3f sphere_offset = (sphere->get_center() *
from_node_path.get_transform(*_root)->get_mat());
from_node_path.set_pos(*_root, orig_pos);
// this will hold the final calculated position at each iteration
LPoint3f candidate_final_pos(orig_pos);
if (_horizontal) {
@ -192,6 +197,7 @@ handle_entries() {
// iterate until the mover runs out of movement or gets stuck
while (true) {
cout << "while (true)" << endl;
const CollisionEntry *C = 0;
// find the first (earliest) collision
Entries::const_iterator cei;
@ -222,12 +228,19 @@ handle_entries() {
<< C->get_into_node_path() << "; no contact point/normal information.\n";
break;
}
uncollided_pos = candidate_final_pos;
candidate_final_pos[0] = contact_point[0];
candidate_final_pos[1] = contact_point[1];
collide_cat.info() << "contact_point: " << contact_point << endl;
contact_point -= sphere_offset;
LVector3f blocked_movement(candidate_final_pos - contact_point);
if (_horizontal) {
blocked_movement[2] = 0.0f;
}
collide_cat.info() << "blocked movement: " << blocked_movement << endl;
uncollided_pos = candidate_final_pos;
candidate_final_pos -= blocked_movement;
LVector3f proj_surface_normal(contact_normal);
if (_horizontal) {
proj_surface_normal[2] = 0.0f;
@ -278,12 +291,6 @@ handle_entries() {
// calculate new position given that you collided with this thing
// project the final position onto the plane of the obstruction
LVector3f blocked_movement(uncollided_pos - contact_point);
if (_horizontal) {
blocked_movement[2] = 0.0f;
}
collide_cat.info() << "blocked movement: " << blocked_movement << endl;
candidate_final_pos += (norm_proj_surface_normal *
-blocked_movement.dot(norm_proj_surface_normal));
@ -311,14 +318,24 @@ handle_entries() {
// calculate new collisions given new movement vector
entries.clear();
// for (cei = SCS.begin(); cei != SCS.end(); ++cei) {
// *cei->reset_collided();
// PT(CollisionEntry) result = (*cei)->get_from()->test_intersection(**cei);
// if (result != (CollisionEntry *)NULL) {
// collide_cat.info() << "new collision" << endl;
// entries.push_back(result);
// }
// }
Entries::iterator ei;
Entries::iterator to_erase = SCS.end();
for (ei = SCS.begin(); ei != SCS.end(); ++ei) {
// remove the one we just collided against
if (*ei == C) {
to_erase = ei;
} else {
(*ei)->reset_collided();
PT(CollisionEntry) result = (*ei)->get_from()->test_intersection(**ei);
if (result != (CollisionEntry *)NULL) {
collide_cat.info() << "new collision" << endl;
entries.push_back(result);
}
}
}
if (to_erase != SCS.end()) {
SCS.erase(to_erase);
}
}
// put things back where they were
@ -346,7 +363,7 @@ handle_entries() {
apply_net_shove(def, net_shove, force_normal);
apply_linear_force(def, force_normal);
//collide_cat.info() << endl;
collide_cat.info() << endl;
}
}