parabola collisions

This commit is contained in:
David Rose 2007-10-16 17:02:48 +00:00
parent fb7f90626b
commit f66069aed4
30 changed files with 1390 additions and 26 deletions

View File

@ -26,6 +26,7 @@
collisionLevelStateBase.I collisionLevelStateBase.h \
collisionLevelState.I collisionLevelState.h \
collisionNode.I collisionNode.h \
collisionParabola.I collisionParabola.h \
collisionPlane.I collisionPlane.h \
collisionPolygon.I collisionPolygon.h \
collisionFloorMesh.I collisionFloorMesh.h \
@ -56,6 +57,7 @@
collisionInvSphere.cxx \
collisionLine.cxx \
collisionNode.cxx \
collisionParabola.cxx \
collisionPlane.cxx \
collisionPolygon.cxx \
collisionFloorMesh.cxx \
@ -86,6 +88,7 @@
collisionLevelState.I collisionLevelState.h \
collisionLine.I collisionLine.h \
collisionNode.I collisionNode.h \
collisionParabola.I collisionParabola.h \
collisionPlane.I collisionPlane.h \
collisionPolygon.I collisionPolygon.h \
collisionFloorMesh.I collisionFloorMesh.h \

View File

@ -1,4 +1,5 @@
#include "collisionNode.cxx"
#include "collisionParabola.cxx"
#include "collisionPlane.cxx"
#include "collisionPolygon.cxx"
#include "collisionFloorMesh.cxx"

View File

@ -113,6 +113,7 @@ get_solid(int n) const {
INLINE PT(CollisionSolid) CollisionNode::
modify_solid(int n) {
nassertr(n >= 0 && n < get_num_solids(), NULL);
mark_internal_bounds_stale();
return _solids[n].get_write_pointer();
}

View File

@ -0,0 +1,120 @@
// Filename: collisionParabola.I
// Created by: drose (11Oct07)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001 - 2004, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://etc.cmu.edu/panda3d/docs/license/ .
//
// To contact the maintainers of this program write to
// panda3d-general@lists.sourceforge.net .
//
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::Default Constructor
// Access: Published
// Description: Creates an invalid parabola.
////////////////////////////////////////////////////////////////////
INLINE CollisionParabola::
CollisionParabola() :
_t1(0.0f), _t2(0.0f)
{
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::Constructor
// Access: Published
// Description: Creates a parabola with the endpoints between t1 and
// t2 in the parametric space of the parabola.
////////////////////////////////////////////////////////////////////
INLINE CollisionParabola::
CollisionParabola(const Parabolaf &parabola, float t1, float t2) :
_parabola(parabola),
_t1(t1), _t2(t2)
{
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::Copy Constructor
// Access: Public
// Description:
////////////////////////////////////////////////////////////////////
INLINE CollisionParabola::
CollisionParabola(const CollisionParabola &copy) :
_parabola(copy._parabola),
_t1(copy._t1), _t2(copy._t2)
{
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::set_parabola
// Access: Public
// Description: Replaces the parabola specified by this solid.
////////////////////////////////////////////////////////////////////
INLINE void CollisionParabola::
set_parabola(const Parabolaf &parabola) {
_parabola = parabola;
mark_internal_bounds_stale();
mark_viz_stale();
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::get_parabola
// Access: Public
// Description: Returns the parabola specified by this solid.
////////////////////////////////////////////////////////////////////
INLINE const Parabolaf &CollisionParabola::
get_parabola() const {
return _parabola;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::set_t1
// Access: Public
// Description: Changes the starting point on the parabola.
////////////////////////////////////////////////////////////////////
INLINE void CollisionParabola::
set_t1(float t1) {
_t1 = t1;
mark_internal_bounds_stale();
mark_viz_stale();
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::get_t1
// Access: Public
// Description: Returns the starting point on the parabola.
////////////////////////////////////////////////////////////////////
INLINE float CollisionParabola::
get_t1() const {
return _t1;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::set_t2
// Access: Public
// Description: Changes the ending point on the parabola.
////////////////////////////////////////////////////////////////////
INLINE void CollisionParabola::
set_t2(float t2) {
_t2 = t2;
mark_internal_bounds_stale();
mark_viz_stale();
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::get_t2
// Access: Public
// Description: Returns the ending point on the parabola.
////////////////////////////////////////////////////////////////////
INLINE float CollisionParabola::
get_t2() const {
return _t2;
}

View File

@ -0,0 +1,283 @@
// Filename: collisionParabola.cxx
// Created by: drose (11Oct07)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001 - 2004, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://etc.cmu.edu/panda3d/docs/license/ .
//
// To contact the maintainers of this program write to
// panda3d-general@lists.sourceforge.net .
//
////////////////////////////////////////////////////////////////////
#include "collisionParabola.h"
#include "collisionEntry.h"
#include "datagram.h"
#include "datagramIterator.h"
#include "bamReader.h"
#include "bamWriter.h"
#include "geom.h"
#include "geomLinestrips.h"
#include "geomVertexWriter.h"
#include "boundingHexahedron.h"
#include "look_at.h"
PStatCollector CollisionParabola::_volume_pcollector(
"Collision Volumes:CollisionParabola");
PStatCollector CollisionParabola::_test_pcollector(
"Collision Tests:CollisionParabola");
TypeHandle CollisionParabola::_type_handle;
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::get_collision_origin
// Access: Public, Virtual
// Description: Returns the point in space deemed to be the "origin"
// of the solid for collision purposes. The closest
// intersection point to this origin point is considered
// to be the most significant.
////////////////////////////////////////////////////////////////////
LPoint3f CollisionParabola::
get_collision_origin() const {
return _parabola.calc_point(_t1);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::make_copy
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
CollisionSolid *CollisionParabola::
make_copy() {
return new CollisionParabola(*this);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::test_intersection
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionParabola::
test_intersection(const CollisionEntry &entry) const {
return entry.get_into()->test_intersection_from_parabola(entry);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::xform
// Access: Public, Virtual
// Description: Transforms the solid by the indicated matrix.
////////////////////////////////////////////////////////////////////
void CollisionParabola::
xform(const LMatrix4f &mat) {
_parabola.xform(mat);
mark_viz_stale();
mark_internal_bounds_stale();
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::get_volume_pcollector
// Access: Public, Virtual
// Description: Returns a PStatCollector that is used to count the
// number of bounding volume tests made against a solid
// of this type in a given frame.
////////////////////////////////////////////////////////////////////
PStatCollector &CollisionParabola::
get_volume_pcollector() {
return _volume_pcollector;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::get_test_pcollector
// Access: Public, Virtual
// Description: Returns a PStatCollector that is used to count the
// number of intersection tests made against a solid
// of this type in a given frame.
////////////////////////////////////////////////////////////////////
PStatCollector &CollisionParabola::
get_test_pcollector() {
return _test_pcollector;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::output
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
void CollisionParabola::
output(ostream &out) const {
out << _parabola << ", t1 = " << _t1 << ", t2 = " << _t2;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::compute_internal_bounds
// Access: Protected, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(BoundingVolume) CollisionParabola::
compute_internal_bounds() const {
LPoint3f p1 = _parabola.calc_point(get_t1());
LPoint3f p2 = _parabola.calc_point(get_t2());
LVector3f pdelta = p2 - p1;
// If p1 and p2 are sufficiently close, just put a sphere around
// them.
float d2 = pdelta.length_squared();
if (d2 < 10.0f) {
LPoint3f pmid = (p1 + p2) * 0.5f;
return new BoundingSphere(pmid, csqrt(d2) * 0.5f);
}
// OK, the more general bounding volume. We use BoundingHexahedron
// to define a very thin box that roughly bounds the parabola's arc.
// We must use BoundingHexahedron instead of BoundingBox, because
// the box will not be axis-aligned, and might be inflated too large
// if we insist on using the axis-aligned BoundingBox.
// We first define "parabola space" as a coordinate space such that
// the YZ plane of parabola space corresponds to the plane of the
// parabola.
// We have to be explicit about the coordinate system--we
// specifically mean CS_zup_right here, to make the YZ plane.
LMatrix4f from_parabola;
look_at(from_parabola, pdelta, -_parabola.get_a(), CS_zup_right);
from_parabola.set_row(3, p1);
// The matrix that computes from world space to parabola space is
// the inverse of that which we just computed.
LMatrix4f to_parabola;
to_parabola.invert_from(from_parabola);
// Now convert the parabola itself into parabola space.
Parabolaf psp = _parabola;
psp.xform(to_parabola);
LPoint3f pp2 = psp.calc_point(get_t2());
float max_y = pp2[1];
// We compute a few points along the parabola to attempt to get the
// minmax.
float min_z = p1[2];
float max_z = p1[2];
static const int num_points = 4;
for (int i = 0; i < num_points; ++i) {
double t = (double)(i + 1) / (double)(num_points + 1);
LPoint3f p = psp.calc_point(get_t1() + t * (get_t2() - get_t1()));
min_z = min(min_z, p[2]);
max_z = max(max_z, p[2]);
}
// That gives us a simple bounding volume in parabola space.
PT(BoundingHexahedron) volume =
new BoundingHexahedron(LPoint3f(-0.01, max_y, min_z), LPoint3f(0.01, max_y, min_z),
LPoint3f(0.01, max_y, max_z), LPoint3f(-0.01, max_y, max_z),
LPoint3f(-0.01, 0, min_z), LPoint3f(0.01, 0, min_z),
LPoint3f(0.01, 0, max_z), LPoint3f(-0.01, 0, max_z));
// And convert that back into real space.
volume->xform(from_parabola);
return volume.p();
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::fill_viz_geom
// Access: Protected, Virtual
// Description: Fills the _viz_geom GeomNode up with Geoms suitable
// for rendering this solid.
////////////////////////////////////////////////////////////////////
void CollisionParabola::
fill_viz_geom() {
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "Recomputing viz for " << *this << "\n";
}
static const int num_points = 100;
PT(GeomVertexData) vdata = new GeomVertexData
("collision", GeomVertexFormat::get_v3cp(),
Geom::UH_static);
GeomVertexWriter vertex(vdata, InternalName::get_vertex());
GeomVertexWriter color(vdata, InternalName::get_color());
for (int i = 0; i < num_points; i++) {
double t = ((double)i / (double)num_points);
vertex.add_data3f(_parabola.calc_point(_t1 + t * (_t2 - _t1)));
color.add_data4f(Colorf(1.0f, 1.0f, 1.0f, 0.0f) +
t * Colorf(0.0f, 0.0f, 0.0f, 1.0f));
}
PT(GeomLinestrips) line = new GeomLinestrips(Geom::UH_static);
line->add_next_vertices(num_points);
line->close_primitive();
PT(Geom) geom = new Geom(vdata);
geom->add_primitive(line);
_viz_geom->add_geom(geom, get_other_viz_state());
_bounds_viz_geom->add_geom(geom, get_other_bounds_viz_state());
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::register_with_read_factory
// Access: Public, Static
// Description: Factory method to generate a CollisionParabola object
////////////////////////////////////////////////////////////////////
void CollisionParabola::
register_with_read_factory() {
BamReader::get_factory()->register_factory(get_class_type(), make_from_bam);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::write_datagram
// Access: Public
// Description: Function to write the important information in
// the particular object to a Datagram
////////////////////////////////////////////////////////////////////
void CollisionParabola::
write_datagram(BamWriter *manager, Datagram &me) {
CollisionSolid::write_datagram(manager, me);
_parabola.write_datagram(me);
me.add_float32(_t1);
me.add_float32(_t2);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::make_from_bam
// Access: Protected
// Description: Factory method to generate a CollisionParabola object
////////////////////////////////////////////////////////////////////
TypedWritable *CollisionParabola::
make_from_bam(const FactoryParams &params) {
CollisionParabola *me = new CollisionParabola;
DatagramIterator scan;
BamReader *manager;
parse_params(params, scan, manager);
me->fillin(scan, manager);
return me;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionParabola::fillin
// Access: Protected
// Description: Function that reads out of the datagram (or asks
// manager to read) all of the data that is needed to
// re-create this object and stores it in the appropiate
// place
////////////////////////////////////////////////////////////////////
void CollisionParabola::
fillin(DatagramIterator& scan, BamReader* manager) {
CollisionSolid::fillin(scan, manager);
_parabola.read_datagram(scan);
_t1 = scan.get_float32();
_t2 = scan.get_float32();
}

View File

@ -0,0 +1,113 @@
// Filename: collisionParabola.h
// Created by: drose (11Oct07)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001 - 2004, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://etc.cmu.edu/panda3d/docs/license/ .
//
// To contact the maintainers of this program write to
// panda3d-general@lists.sourceforge.net .
//
////////////////////////////////////////////////////////////////////
#ifndef COLLISIONPARABOLA_H
#define COLLISIONPARABOLA_H
#include "pandabase.h"
#include "collisionSolid.h"
#include "parabola.h"
class LensNode;
////////////////////////////////////////////////////////////////////
// Class : CollisionParabola
// Description : This defines a parabolic arc, or subset of an arc,
// similar to the path of a projectile or falling
// object. It is finite, having a specific beginning
// and end, but it is infinitely thin.
//
// Think of it as a wire bending from point t1 to point
// t2 along the path of a pre-defined parabola.
////////////////////////////////////////////////////////////////////
class EXPCL_PANDA_COLLIDE CollisionParabola : public CollisionSolid {
PUBLISHED:
INLINE CollisionParabola();
INLINE CollisionParabola(const Parabolaf &parabola, float t1, float t2);
virtual LPoint3f get_collision_origin() const;
public:
INLINE CollisionParabola(const CollisionParabola &copy);
virtual CollisionSolid *make_copy();
virtual PT(CollisionEntry)
test_intersection(const CollisionEntry &entry) const;
virtual void xform(const LMatrix4f &mat);
virtual PStatCollector &get_volume_pcollector();
virtual PStatCollector &get_test_pcollector();
virtual void output(ostream &out) const;
PUBLISHED:
INLINE void set_parabola(const Parabolaf &parabola);
INLINE const Parabolaf &get_parabola() const;
INLINE void set_t1(float t1);
INLINE float get_t1() const;
INLINE void set_t2(float t2);
INLINE float get_t2() const;
protected:
virtual PT(BoundingVolume) compute_internal_bounds() const;
protected:
virtual void fill_viz_geom();
private:
Parabolaf _parabola;
float _t1, _t2;
static PStatCollector _volume_pcollector;
static PStatCollector _test_pcollector;
public:
static void register_with_read_factory();
virtual void write_datagram(BamWriter *manager, Datagram &dg);
protected:
static TypedWritable *make_from_bam(const FactoryParams &params);
void fillin(DatagramIterator &scan, BamReader *manager);
public:
static TypeHandle get_class_type() {
return _type_handle;
}
static void init_type() {
CollisionSolid::init_type();
register_type(_type_handle, "CollisionParabola",
CollisionSolid::get_class_type());
}
virtual TypeHandle get_type() const {
return get_class_type();
}
virtual TypeHandle force_init_type() {init_type(); return get_class_type();}
private:
static TypeHandle _type_handle;
};
#include "collisionParabola.I"
#endif

View File

@ -183,8 +183,15 @@ test_intersection_from_line(const CollisionEntry &entry) const {
float t;
if (!_plane.intersects_line(t, from_origin, from_direction)) {
// No intersection.
return NULL;
// No intersection. The line is parallel to the plane.
if (_plane.dist_to_plane(from_origin) > 0.0f) {
// The line is entirely in front of the plane.
return NULL;
}
// The line is entirely behind the plane.
t = 0.0f;
}
if (collide_cat.is_debug()) {
@ -222,14 +229,23 @@ test_intersection_from_ray(const CollisionEntry &entry) const {
LVector3f from_direction = ray->get_direction() * wrt_mat;
float t;
if (!_plane.intersects_line(t, from_origin, from_direction)) {
// No intersection.
return NULL;
}
if (t < 0.0f) {
// The intersection point is before the start of the ray.
return NULL;
if (_plane.dist_to_plane(from_origin) < 0.0f) {
// The origin of the ray is behind the plane, so we don't need to
// test further.
t = 0.0f;
} else {
if (!_plane.intersects_line(t, from_origin, from_direction)) {
// No intersection. The ray is parallel to the plane.
return NULL;
}
if (t < 0.0f) {
// The intersection point is before the start of the ray, and so
// the ray is entirely in front of the plane.
return NULL;
}
}
if (collide_cat.is_debug()) {
@ -268,15 +284,23 @@ test_intersection_from_segment(const CollisionEntry &entry) const {
LVector3f from_direction = from_b - from_a;
float t;
if (!_plane.intersects_line(t, from_a, from_direction)) {
// No intersection.
return NULL;
}
if (_plane.dist_to_plane(from_a) < 0.0f) {
// The first point of the line segment is behind the plane, so we
// don't need to test further.
t = 0.0f;
if (t < 0.0f || t > 1.0f) {
// The intersection point is before the start of the segment or
// after the end of the segment.
return NULL;
} else {
if (!_plane.intersects_line(t, from_a, from_direction)) {
// No intersection. The line segment is parallel to the plane.
return NULL;
}
if (t < 0.0f || t > 1.0f) {
// The intersection point is before the start of the segment or
// after the end of the segment. Therefore, the line segment is
// entirely in front of the plane.
return NULL;
}
}
if (collide_cat.is_debug()) {
@ -296,6 +320,69 @@ test_intersection_from_segment(const CollisionEntry &entry) const {
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionPlane::test_intersection_from_parabola
// Access: Public, Virtual
// Description: This is part of the double-dispatch implementation of
// test_intersection(). It is called when the "from"
// object is a parabola.
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionPlane::
test_intersection_from_parabola(const CollisionEntry &entry) const {
const CollisionParabola *parabola;
DCAST_INTO_R(parabola, entry.get_from(), 0);
const LMatrix4f &wrt_mat = entry.get_wrt_mat();
// Convert the parabola into local coordinate space.
Parabolaf local_p(parabola->get_parabola());
local_p.xform(wrt_mat);
float t;
if (_plane.dist_to_plane(local_p.calc_point(parabola->get_t1())) < 0.0f) {
// The first point in the parabola is behind the plane, so we
// don't need to test further.
t = parabola->get_t1();
} else {
float t1, t2;
if (!get_plane().intersects_parabola(t1, t2, local_p)) {
// No intersection. The infinite parabola is entirely in front
// of the plane.
return NULL;
}
if (t2 < parabola->get_t1() || t1 > parabola->get_t2()) {
// The intersection points are before the start of the parabola
// or after the end of the parabola. The finite subset of the
// parabola is entirely in front of the plane.
return NULL;
}
// Choose one of the intersecting points.
t = t1;
if (t < parabola->get_t1()) {
t = t2;
}
}
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << entry.get_from_node_path()
<< " into " << entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
LPoint3f into_intersection_point = local_p.calc_point(t);
LVector3f normal = (has_effective_normal() && parabola->get_respect_effective_normal()) ? get_effective_normal() : get_normal();
new_entry->set_surface_normal(normal);
new_entry->set_surface_point(into_intersection_point);
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionPlane::fill_viz_geom
// Access: Protected, Virtual

View File

@ -71,6 +71,8 @@ protected:
test_intersection_from_ray(const CollisionEntry &entry) const;
virtual PT(CollisionEntry)
test_intersection_from_segment(const CollisionEntry &entry) const;
virtual PT(CollisionEntry)
test_intersection_from_parabola(const CollisionEntry &entry) const;
virtual void fill_viz_geom();

View File

@ -803,6 +803,96 @@ test_intersection_from_segment(const CollisionEntry &entry) const {
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionPolygon::test_intersection_from_parabola
// Access: Public, Virtual
// Description: This is part of the double-dispatch implementation of
// test_intersection(). It is called when the "from"
// object is a parabola.
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionPolygon::
test_intersection_from_parabola(const CollisionEntry &entry) const {
if (_points.size() < 3) {
return NULL;
}
const CollisionParabola *parabola;
DCAST_INTO_R(parabola, entry.get_from(), 0);
const LMatrix4f &wrt_mat = entry.get_wrt_mat();
// Convert the parabola into local coordinate space.
Parabolaf local_p(parabola->get_parabola());
local_p.xform(wrt_mat);
float t1, t2;
if (!get_plane().intersects_parabola(t1, t2, local_p)) {
// No intersection.
return NULL;
}
// No guarantee that t1 < t2. Enforce this.
if (t2 < t1) {
float tx = t1;
t1 = t2;
t2 = tx;
}
if (t2 < parabola->get_t1() || t1 > parabola->get_t2()) {
// The intersection points are before the start of the parabola
// or after the end of the parabola.
return NULL;
}
float t = t1;
if (t < parabola->get_t1()) {
t = t2;
}
LPoint3f plane_point = local_p.calc_point(t);
LPoint2f p = to_2d(plane_point);
const ClipPlaneAttrib *cpa = entry.get_into_clip_planes();
if (cpa != (ClipPlaneAttrib *)NULL) {
// We have a clip plane; apply it.
Points new_points;
if (apply_clip_plane(new_points, cpa, entry.get_into_node_path().get_net_transform())) {
// All points are behind the clip plane.
if (!point_is_inside(p, _points)) {
return NULL;
}
} else {
if (new_points.size() < 3) {
return NULL;
}
if (!point_is_inside(p, new_points)) {
return NULL;
}
}
} else {
// No clip plane is in effect. Do the default test.
if (!point_is_inside(p, _points)) {
return NULL;
}
}
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << entry.get_from_node_path()
<< " into " << entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
LVector3f normal = (has_effective_normal() && parabola->get_respect_effective_normal()) ? get_effective_normal() : get_normal();
new_entry->set_surface_normal(normal);
new_entry->set_surface_point(plane_point);
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionPolygon::fill_viz_geom
// Access: Protected, Virtual

View File

@ -90,6 +90,8 @@ protected:
test_intersection_from_ray(const CollisionEntry &entry) const;
virtual PT(CollisionEntry)
test_intersection_from_segment(const CollisionEntry &entry) const;
virtual PT(CollisionEntry)
test_intersection_from_parabola(const CollisionEntry &entry) const;
virtual void fill_viz_geom();

View File

@ -22,6 +22,7 @@
#include "collisionLine.h"
#include "collisionRay.h"
#include "collisionSegment.h"
#include "collisionParabola.h"
#include "collisionEntry.h"
#include "boundingSphere.h"
#include "datagram.h"
@ -298,6 +299,20 @@ test_intersection_from_segment(const CollisionEntry &) const {
return NULL;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSolid::test_intersection_from_parabola
// Access: Protected, Virtual
// Description: This is part of the double-dispatch implementation of
// test_intersection(). It is called when the "from"
// object is a parabola.
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionSolid::
test_intersection_from_parabola(const CollisionEntry &) const {
report_undefined_intersection_test(CollisionParabola::get_class_type(),
get_type());
return NULL;
}
#ifndef NDEBUG
class CollisionSolidUndefinedPair {
public:

View File

@ -112,6 +112,8 @@ protected:
test_intersection_from_ray(const CollisionEntry &entry) const;
virtual PT(CollisionEntry)
test_intersection_from_segment(const CollisionEntry &entry) const;
virtual PT(CollisionEntry)
test_intersection_from_parabola(const CollisionEntry &entry) const;
static void report_undefined_intersection_test(TypeHandle from_type,
TypeHandle into_type);
@ -178,6 +180,7 @@ private:
friend class CollisionLine;
friend class CollisionRay;
friend class CollisionSegment;
friend class CollisionParabola;
friend class CollisionHandlerFluidPusher;
};

View File

@ -561,6 +561,51 @@ test_intersection_from_segment(const CollisionEntry &entry) const {
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::test_intersection_from_parabola
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionSphere::
test_intersection_from_parabola(const CollisionEntry &entry) const {
const CollisionParabola *parabola;
DCAST_INTO_R(parabola, entry.get_from(), 0);
const LMatrix4f &wrt_mat = entry.get_wrt_mat();
// Convert the parabola into local coordinate space.
Parabolaf local_p(parabola->get_parabola());
local_p.xform(wrt_mat);
double t;
if (!intersects_parabola(t, local_p, parabola->get_t1(), parabola->get_t2(),
local_p.calc_point(parabola->get_t1()),
local_p.calc_point(parabola->get_t2()))) {
// No intersection.
return NULL;
}
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << entry.get_from_node_path()
<< " into " << entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
LPoint3f into_intersection_point = local_p.calc_point(t);
new_entry->set_surface_point(into_intersection_point);
if (has_effective_normal() && parabola->get_respect_effective_normal()) {
new_entry->set_surface_normal(get_effective_normal());
} else {
LVector3f normal = into_intersection_point - get_center();
normal.normalize();
new_entry->set_surface_normal(normal);
}
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::fill_viz_geom
// Access: Protected, Virtual
@ -631,7 +676,7 @@ intersects_line(double &t1, double &t2,
// A sphere with radius r about point c is defined as all P such
// that r^2 = (P - c)^2.
// Subsituting P in the above we have:
// Substituting P in the above we have:
// r^2 = (f + td - c)^2 =
// (f^2 + ftd - fc + ftd + t^2d^2 - tdc - fc - tdc + c^2) =
@ -682,6 +727,71 @@ intersects_line(double &t1, double &t2,
return true;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::intersects_parabola
// Access: Protected
// Description: Determine a point of intersection of a parametric
// parabola with the sphere.
//
// We only consider the segment of the parabola between
// t1 and t2, which has already been computed as
// corresponding to points p1 and p2. If there is an
// intersection, t is set to the parametric point of
// intersection, and true is returned; otherwise, false
// is returned.
////////////////////////////////////////////////////////////////////
bool CollisionSphere::
intersects_parabola(double &t, const Parabolaf &parabola,
double t1, double t2,
const LPoint3f &p1, const LPoint3f &p2) const {
if (t1 == t2) {
// Special case: a single point.
if ((p1 - _center).length_squared() > _radius * _radius) {
// No intersection.
return false;
}
t = t1;
return true;
}
// To directly test for intersection between a parabola (quadratic)
// and a sphere (also quadratic) requires solving a quartic
// equation. Doable, but hard, and I'm a programmer, not a
// mathematician. So I'll solve it the programmer's way instead, by
// approximating the parabola with a series of line segments.
// Hence, this function works by recursively subdividing the
// parabola as necessary.
// First, see if the line segment (p1 - p2) comes sufficiently close
// to the parabola. Do this by computing the parametric intervening
// point and comparing its distance from the linear intervening
// point.
double tmid = (t1 + t2) * 0.5;
LPoint3f pmid = parabola.calc_point(tmid);
LPoint3f pmid2 = (p1 + p2) * 0.5f;
if ((pmid - pmid2).length_squared() > 0.001f) {
// Subdivide.
if (intersects_parabola(t, parabola, t1, tmid, p1, pmid)) {
return true;
}
return intersects_parabola(t, parabola, tmid, t2, pmid, p2);
}
// The line segment is sufficiently close; compare the segment itself.
double t1a, t2a;
if (!intersects_line(t1a, t2a, p1, p2 - p1, 0.0f)) {
return false;
}
if (t2a < 0.0 || t1a > 1.0) {
return false;
}
t = max(t1a, 0.0);
return true;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::compute_point
// Access: Protected

View File

@ -20,8 +20,8 @@
#define COLLISIONSPHERE_H
#include "pandabase.h"
#include "collisionSolid.h"
#include "parabola.h"
////////////////////////////////////////////////////////////////////
// Class : CollisionSphere
@ -74,6 +74,8 @@ protected:
test_intersection_from_ray(const CollisionEntry &entry) const;
virtual PT(CollisionEntry)
test_intersection_from_segment(const CollisionEntry &entry) const;
virtual PT(CollisionEntry)
test_intersection_from_parabola(const CollisionEntry &entry) const;
virtual void fill_viz_geom();
@ -81,6 +83,9 @@ protected:
bool intersects_line(double &t1, double &t2,
const LPoint3f &from, const LVector3f &delta,
float inflate_radius) const;
bool intersects_parabola(double &t, const Parabolaf &parabola,
double t1, double t2,
const LPoint3f &p1, const LPoint3f &p2) const;
Vertexf compute_point(float latitude, float longitude) const;
private:

View File

@ -1268,6 +1268,14 @@ compare_collider_to_solid(CollisionEntry &entry,
#ifdef DO_PSTATS
((CollisionSolid *)entry.get_into())->get_volume_pcollector().add_level(1);
#endif // DO_PSTATS
#ifndef NDEBUG
if (collide_cat.is_spam()) {
collide_cat.spam(false)
<< "Comparing to solid: " << *from_node_gbv
<< " to " << *solid_gbv << ", within_solid_bounds = "
<< within_solid_bounds << "\n";
}
#endif // NDEBUG
}
if (within_solid_bounds) {
Colliders::const_iterator ci;

View File

@ -414,6 +414,59 @@ test_intersection_from_segment(const CollisionEntry &entry) const {
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::test_intersection_from_parabola
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionTube::
test_intersection_from_parabola(const CollisionEntry &entry) const {
const CollisionParabola *parabola;
DCAST_INTO_R(parabola, entry.get_from(), 0);
const LMatrix4f &wrt_mat = entry.get_wrt_mat();
// Convert the parabola into local coordinate space.
Parabolaf local_p(parabola->get_parabola());
local_p.xform(wrt_mat);
double t;
if (!intersects_parabola(t, local_p, parabola->get_t1(), parabola->get_t2(),
local_p.calc_point(parabola->get_t1()),
local_p.calc_point(parabola->get_t2()))) {
// No intersection.
return NULL;
}
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << entry.get_from_node_path()
<< " into " << entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
LPoint3f into_intersection_point = local_p.calc_point(t);
set_intersection_point(new_entry, into_intersection_point, 0.0);
if (has_effective_normal() && parabola->get_respect_effective_normal()) {
new_entry->set_surface_normal(get_effective_normal());
} else {
LVector3f normal = into_intersection_point * _inv_mat;
if (normal[1] > _length) {
// The point is within the top endcap.
normal[1] -= _length;
} else if (normal[1] > 0.0f) {
// The point is within the cylinder body.
normal[1] = 0;
}
normal = normalize(normal * _mat);
new_entry->set_surface_normal(normal);
}
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::fill_viz_geom
// Access: Protected, Virtual
@ -773,6 +826,58 @@ sphere_intersects_line(double &t1, double &t2, float center_y,
return true;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::intersects_parabola
// Access: Protected
// Description: Determine a point of intersection of a parametric
// parabola with the tube.
//
// We only consider the segment of the parabola between
// t1 and t2, which has already been computed as
// corresponding to points p1 and p2. If there is an
// intersection, t is set to the parametric point of
// intersection, and true is returned; otherwise, false
// is returned.
////////////////////////////////////////////////////////////////////
bool CollisionTube::
intersects_parabola(double &t, const Parabolaf &parabola,
double t1, double t2,
const LPoint3f &p1, const LPoint3f &p2) const {
// I don't even want to think about the math to do this calculation
// directly--it's even worse than sphere-parabola. So I'll use the
// recursive subdivision solution again, just like I did for
// sphere-parabola.
// First, see if the line segment (p1 - p2) comes sufficiently close
// to the parabola. Do this by computing the parametric intervening
// point and comparing its distance from the linear intervening
// point.
double tmid = (t1 + t2) * 0.5;
LPoint3f pmid = parabola.calc_point(tmid);
LPoint3f pmid2 = (p1 + p2) * 0.5f;
if ((pmid - pmid2).length_squared() > 0.001f) {
// Subdivide.
if (intersects_parabola(t, parabola, t1, tmid, p1, pmid)) {
return true;
}
return intersects_parabola(t, parabola, tmid, t2, pmid, p2);
}
// The line segment is sufficiently close; compare the segment itself.
double t1a, t2a;
if (!intersects_line(t1a, t2a, p1, p2 - p1, 0.0f)) {
return false;
}
if (t2a < 0.0 || t1a > 1.0) {
return false;
}
t = max(t1a, 0.0);
return true;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::calculate_surface_point_and_normal
// Access: Private

View File

@ -20,8 +20,8 @@
#define COLLISIONTUBE_H
#include "pandabase.h"
#include "collisionSolid.h"
#include "parabola.h"
////////////////////////////////////////////////////////////////////
// Class : CollisionTube
@ -81,6 +81,8 @@ protected:
test_intersection_from_ray(const CollisionEntry &entry) const;
virtual PT(CollisionEntry)
test_intersection_from_segment(const CollisionEntry &entry) const;
virtual PT(CollisionEntry)
test_intersection_from_parabola(const CollisionEntry &entry) const;
virtual void fill_viz_geom();
@ -97,6 +99,9 @@ private:
bool sphere_intersects_line(double &t1, double &t2, float center_y,
const LPoint3f &from, const LVector3f &delta,
float inflate_radius) const;
bool intersects_parabola(double &t, const Parabolaf &parabola,
double t1, double t2,
const LPoint3f &p1, const LPoint3f &p2) const;
void calculate_surface_point_and_normal(const LPoint3f &surface_point,
double extra_radius,
LPoint3f &result_point,

View File

@ -31,6 +31,7 @@
#include "collisionLine.h"
#include "collisionLevelStateBase.h"
#include "collisionNode.h"
#include "collisionParabola.h"
#include "collisionPlane.h"
#include "collisionPolygon.h"
#include "collisionFloorMesh.h"
@ -120,6 +121,7 @@ init_libcollide() {
CollisionLine::init_type();
CollisionLevelStateBase::init_type();
CollisionNode::init_type();
CollisionParabola::init_type();
CollisionPlane::init_type();
CollisionPolygon::init_type();
CollisionFloorMesh::init_type();
@ -139,6 +141,7 @@ init_libcollide() {
CollisionInvSphere::register_with_read_factory();
CollisionLine::register_with_read_factory();
CollisionNode::register_with_read_factory();
CollisionParabola::register_with_read_factory();
CollisionPlane::register_with_read_factory();
CollisionPolygon::register_with_read_factory();
CollisionFloorMesh::register_with_read_factory();

View File

@ -27,11 +27,11 @@
mersenne.h \
omniBoundingVolume.I \
omniBoundingVolume.h \
parabola.h parabola_src.I parabola_src.cxx parabola_src.h \
perlinNoise.h perlinNoise.I \
perlinNoise2.h perlinNoise2.I \
perlinNoise3.h perlinNoise3.I \
plane.h plane_src.I plane_src.cxx \
plane_src.h \
plane.h plane_src.I plane_src.cxx plane_src.h \
randomizer.h randomizer.I \
rotate_to.h rotate_to_src.cxx \
stackedPerlinNoise2.h stackedPerlinNoise2.I \
@ -49,14 +49,16 @@
linmath_events.cxx \
mersenne.cxx \
omniBoundingVolume.cxx \
parabola.cxx \
perlinNoise.cxx \
perlinNoise2.cxx \
perlinNoise3.cxx \
plane.cxx \
randomizer.cxx \
rotate_to.cxx \
stackedPerlinNoise2.cxx \
stackedPerlinNoise3.cxx \
triangulator.cxx \
plane.cxx rotate_to.cxx
triangulator.cxx
#define INSTALL_HEADERS \
boundingHexahedron.I boundingHexahedron.h boundingLine.I \
@ -71,11 +73,11 @@
linmath_events.h \
mersenne.h \
omniBoundingVolume.I omniBoundingVolume.h \
parabola.h parabola_src.I parabola_src.cxx parabola_src.h \
perlinNoise.h perlinNoise.I \
perlinNoise2.h perlinNoise2.I \
perlinNoise3.h perlinNoise3.I \
plane.h plane_src.I plane_src.cxx \
plane_src.h \
plane.h plane_src.I plane_src.cxx plane_src.h \
randomizer.h randomizer.I \
rotate_to.h rotate_to_src.cxx \
stackedPerlinNoise2.h stackedPerlinNoise2.I \

View File

@ -235,3 +235,38 @@ int BoundingPlane::
contains_plane(const BoundingPlane *plane) const {
return IF_possible;
}
////////////////////////////////////////////////////////////////////
// Function: BoundingPlane::contains_hexahedron
// Access: Protected, Virtual
// Description: Double-dispatch support: called by contains_other()
// when the type we're testing for intersection is known
// to be a hexahedron.
////////////////////////////////////////////////////////////////////
int BoundingPlane::
contains_hexahedron(const BoundingHexahedron *hexahedron) const {
nassertr(!is_empty() && !is_infinite(), 0);
nassertr(!hexahedron->is_empty() && !hexahedron->is_infinite(), 0);
int result = IF_possible | IF_some | IF_all;
bool all_in = true;
bool all_out = true;
for (int i = 0; i < 8 && (all_in || all_out) ; ++i) {
if (_plane.dist_to_plane(hexahedron->get_point(i)) < 0.0f) {
// This point is inside the plane.
all_out = false;
} else {
// This point is outside the plane.
all_in = false;
}
}
if (all_out) {
return IF_no_intersection;
} else if (!all_in) {
result &= ~IF_all;
}
return result;
}

View File

@ -65,6 +65,7 @@ protected:
virtual int contains_box(const BoundingBox *box) const;
virtual int contains_line(const BoundingLine *line) const;
virtual int contains_plane(const BoundingPlane *plane) const;
virtual int contains_hexahedron(const BoundingHexahedron *hexahedron) const;
private:
Planef _plane;

View File

@ -7,4 +7,5 @@
#include "finiteBoundingVolume.cxx"
#include "geometricBoundingVolume.cxx"
#include "omniBoundingVolume.cxx"
#include "parabola.cxx"
#include "config_mathutil.cxx"

View File

@ -0,0 +1,25 @@
// Filename: parabola.cxx
// Created by: drose (10Oct07)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001 - 2004, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://etc.cmu.edu/panda3d/docs/license/ .
//
// To contact the maintainers of this program write to
// panda3d-general@lists.sourceforge.net .
//
////////////////////////////////////////////////////////////////////
#include "parabola.h"
#include "fltnames.h"
#include "parabola_src.cxx"
#include "dblnames.h"
#include "parabola_src.cxx"

View File

@ -0,0 +1,33 @@
// Filename: parabola.h
// Created by: drose (10Oct07)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001 - 2004, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://etc.cmu.edu/panda3d/docs/license/ .
//
// To contact the maintainers of this program write to
// panda3d-general@lists.sourceforge.net .
//
////////////////////////////////////////////////////////////////////
#ifndef PARABOLA_H
#define PARABOLA_H
#include "pandabase.h"
#include "luse.h"
#include "indent.h"
#include "fltnames.h"
#include "parabola_src.h"
#include "dblnames.h"
#include "parabola_src.h"
#endif

View File

@ -0,0 +1,123 @@
// Filename: parabola_src.I
// Created by: drose (10Oct07)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001 - 2004, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://etc.cmu.edu/panda3d/docs/license/ .
//
// To contact the maintainers of this program write to
// panda3d-general@lists.sourceforge.net .
//
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
// Function: Parabola::Default Constructor
// Access: Published
// Description: Constructs a meaningless degenerate parabola.
////////////////////////////////////////////////////////////////////
INLINE_MATHUTIL FLOATNAME(Parabola)::
FLOATNAME(Parabola)() :
_a(FLOATNAME(LVecBase3)::zero()),
_b(FLOATNAME(LVecBase3)::zero()),
_c(FLOATNAME(LVecBase3)::zero())
{
}
////////////////////////////////////////////////////////////////////
// Function: Parabola::Constructor
// Access: Published
// Description: Constructs a parabola given the three points of the
// parametric equation: the acceleration, initial
// velocity, and start point.
////////////////////////////////////////////////////////////////////
INLINE_MATHUTIL FLOATNAME(Parabola)::
FLOATNAME(Parabola)(const FLOATNAME(LVecBase3) &a,
const FLOATNAME(LVecBase3) &b,
const FLOATNAME(LVecBase3) &c) :
_a(a), _b(b), _c(c)
{
}
////////////////////////////////////////////////////////////////////
// Function: Parabola::Copy Constructor
// Access: Published
// Description:
////////////////////////////////////////////////////////////////////
INLINE_MATHUTIL FLOATNAME(Parabola)::
FLOATNAME(Parabola)(const FLOATNAME(Parabola) &copy) :
_a(copy._a),
_b(copy._b),
_c(copy._c)
{
}
////////////////////////////////////////////////////////////////////
// Function: Parabola::Copy Assignment Operator
// Access: Published
// Description:
////////////////////////////////////////////////////////////////////
INLINE_MATHUTIL void FLOATNAME(Parabola)::
operator = (const FLOATNAME(Parabola) &copy) {
_a = copy._a;
_b = copy._b;
_c = copy._c;
}
////////////////////////////////////////////////////////////////////
// Function: Parabola::Destructor
// Access: Published
// Description:
////////////////////////////////////////////////////////////////////
INLINE_MATHUTIL FLOATNAME(Parabola)::
~FLOATNAME(Parabola)() {
}
////////////////////////////////////////////////////////////////////
// Function: Parabola::get_a
// Access: Published
// Description: Returns the first point of the parabola's parametric
// equation: the acceleration.
////////////////////////////////////////////////////////////////////
INLINE_MATHUTIL const FLOATNAME(LVecBase3) &FLOATNAME(Parabola)::
get_a() const {
return _a;
}
////////////////////////////////////////////////////////////////////
// Function: Parabola::get_b
// Access: Published
// Description: Returns the second point of the parabola's parametric
// equation: the initial velocity.
////////////////////////////////////////////////////////////////////
INLINE_MATHUTIL const FLOATNAME(LVecBase3) &FLOATNAME(Parabola)::
get_b() const {
return _b;
}
////////////////////////////////////////////////////////////////////
// Function: Parabola::get_c
// Access: Published
// Description: Returns the third point of the parabola's parametric
// equation: the start point.
////////////////////////////////////////////////////////////////////
INLINE_MATHUTIL const FLOATNAME(LVecBase3) &FLOATNAME(Parabola)::
get_c() const {
return _c;
}
////////////////////////////////////////////////////////////////////
// Function: Parabola::calc_point
// Access: Published
// Description: Computes the point on the parabola at time t.
////////////////////////////////////////////////////////////////////
INLINE_MATHUTIL FLOATNAME(LPoint3) FLOATNAME(Parabola)::
calc_point(FLOATTYPE t) const {
return _a * t * t + _b * t + _c;
}

View File

@ -0,0 +1,75 @@
// Filename: parabola_src.cxx
// Created by: drose (10Oct07)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001 - 2004, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://etc.cmu.edu/panda3d/docs/license/ .
//
// To contact the maintainers of this program write to
// panda3d-general@lists.sourceforge.net .
//
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
// Function: Parabola::xform
// Access: Published
// Description: Transforms the parabola by the indicated matrix.
////////////////////////////////////////////////////////////////////
void FLOATNAME(Parabola)::
xform(const FLOATNAME(LMatrix4) &mat) {
// I'm not really sure if this is the right thing to do here.
_a = mat.xform_vec_general(_a);
_b = mat.xform_vec_general(_b);
_c = mat.xform_point(_c);
}
////////////////////////////////////////////////////////////////////
// Function: Parabola::output
// Access: Published
// Description:
////////////////////////////////////////////////////////////////////
void FLOATNAME(Parabola)::
output(ostream &out) const {
out << "Parabola(" << _a << ", " << _b << ", " << _c << ")";
}
////////////////////////////////////////////////////////////////////
// Function: Parabola::write
// Access: Published
// Description:
////////////////////////////////////////////////////////////////////
void FLOATNAME(Parabola)::
write(ostream &out, int indent_level) const {
indent(out, indent_level) << *this << "\n";
}
////////////////////////////////////////////////////////////////////
// Function: Parabola::write_datagram
// Access: Public
// Description: Function to write itself into a datagram
////////////////////////////////////////////////////////////////////
void FLOATNAME(Parabola)::
write_datagram(Datagram &destination) const {
_a.write_datagram(destination);
_b.write_datagram(destination);
_c.write_datagram(destination);
}
////////////////////////////////////////////////////////////////////
// Function: LVecBase4::read_datagram
// Access: Public
// Description: Function to read itself from a datagramIterator
////////////////////////////////////////////////////////////////////
void FLOATNAME(Parabola)::
read_datagram(DatagramIterator &source) {
_a.read_datagram(source);
_b.read_datagram(source);
_c.read_datagram(source);
}

View File

@ -0,0 +1,63 @@
// Filename: parabola_src.h
// Created by: drose (10Oct07)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001 - 2004, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://etc.cmu.edu/panda3d/docs/license/ .
//
// To contact the maintainers of this program write to
// panda3d-general@lists.sourceforge.net .
//
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
// Class : Parabola
// Description : An abstract mathematical description of a parabola,
// particularly useful for describing arcs of
// projectiles.
//
// The parabolic equation, given parametrically here, is
// P = At^2 + Bt + C.
////////////////////////////////////////////////////////////////////
class EXPCL_PANDA_MATHUTIL FLOATNAME(Parabola) {
PUBLISHED:
INLINE_MATHUTIL FLOATNAME(Parabola)();
INLINE_MATHUTIL FLOATNAME(Parabola)(const FLOATNAME(LVecBase3) &a,
const FLOATNAME(LVecBase3) &b,
const FLOATNAME(LVecBase3) &c);
INLINE_MATHUTIL FLOATNAME(Parabola)(const FLOATNAME(Parabola) &copy);
INLINE_MATHUTIL void operator = (const FLOATNAME(Parabola) &copy);
INLINE_MATHUTIL ~FLOATNAME(Parabola)();
void xform(const FLOATNAME(LMatrix4) &mat);
INLINE_MATHUTIL const FLOATNAME(LVecBase3) &get_a() const;
INLINE_MATHUTIL const FLOATNAME(LVecBase3) &get_b() const;
INLINE_MATHUTIL const FLOATNAME(LVecBase3) &get_c() const;
INLINE_MATHUTIL FLOATNAME(LPoint3) calc_point(FLOATTYPE t) const;
void output(ostream &out) const;
void write(ostream &out, int indent_level = 0) const;
public:
void write_datagram(Datagram &destination) const;
void read_datagram(DatagramIterator &source);
private:
FLOATNAME(LVecBase3) _a, _b, _c;
};
inline ostream &
operator << (ostream &out, const FLOATNAME(Parabola) &p) {
p.output(out);
return out;
}
#include "parabola_src.I"

View File

@ -25,6 +25,7 @@
#include "indent.h"
#include "nearly_zero.h"
#include "cmath.h"
#include "parabola.h"
class Datagram;
class DatagramIterator;

View File

@ -103,6 +103,52 @@ intersects_plane(FLOATNAME(LPoint3) &from,
return true;
}
////////////////////////////////////////////////////////////////////
// Function: Plane::intersects_parabola
// Access: Published
// Description: Determines whether and where the indicated parabola
// intersects with the plane.
//
// If there is no intersection with the plane, the
// function returns false and leaves t1 and t2
// undefined. If there is an intersection with the
// plane, the function returns true and sets t1 and t2
// to the parametric value that defines the two points
// of intersection. If the parabola is exactly tangent
// to the plane, then t1 == t2.
////////////////////////////////////////////////////////////////////
bool FLOATNAME(Plane)::
intersects_parabola(FLOATTYPE &t1, FLOATTYPE &t2,
const FLOATNAME(Parabola) &parabola) const {
//
// The parabola intersects the plane wherever:
//
// a * t^2 + b * t + c == 0
//
// where a = normal dot parabola.get_a(),
// b = normal dot parabola.get_b(),
// c = normal dot parabola.get_c() + d.
//
FLOATNAME(LVector3) normal = get_normal();
FLOATTYPE a = normal.dot(parabola.get_a());
FLOATTYPE b = normal.dot(parabola.get_b());
FLOATTYPE c = normal.dot(parabola.get_c()) + _v.v._3;
// Now use the quadratic equation to solve for t.
FLOATTYPE discriminant = b * b - 4.0 * a * c;
if (discriminant < 0.0f) {
// No intersection.
return false;
}
FLOATTYPE sqrd = csqrt(discriminant);
t1 = (-b - sqrd) / (2.0 * a);
t2 = (-b + sqrd) / (2.0 * a);
return true;
}
////////////////////////////////////////////////////////////////////
// Function: Plane::output
// Access: Published

View File

@ -59,6 +59,9 @@ PUBLISHED:
FLOATNAME(LVector3) &delta,
const FLOATNAME(Plane) &other) const;
bool intersects_parabola(FLOATTYPE &t1, FLOATTYPE &t2,
const FLOATNAME(Parabola) &parabola) const;
void output(ostream &out) const;
void write(ostream &out, int indent_level = 0) const;
};