This commit is contained in:
David Rose 2008-05-28 18:43:06 +00:00
parent fb9c56432a
commit f965ed1f43
3 changed files with 570 additions and 0 deletions

View File

@ -3,3 +3,72 @@
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) Carnegie Mellon University. All rights reserved.
//
// All use of this software is subject to the terms of the revised BSD
// license. You should have received a copy of this license along
// with this source code in a file named "LICENSE."
//
////////////////////////////////////////////////////////////////////
template<class Type>
INLINE pallocator_single<Type>::
pallocator_single(TypeHandle type_handle) throw() :
_type_handle(type_handle)
{
}
template<class Type>
INLINE TYPENAME pallocator_single<Type>::pointer pallocator_single<Type>::
allocate(TYPENAME pallocator_single<Type>::size_type n, TYPENAME allocator<void>::const_pointer) {
TAU_PROFILE("pallocator_single:allocate()", " ", TAU_USER);
// This doesn't support allocating arrays.
assert(n == 1);
return StaticDeletedChain<Type>::allocate(sizeof(Type), _type_handle);
}
template<class Type>
INLINE void pallocator_single<Type>::
deallocate(TYPENAME pallocator_single<Type>::pointer p, TYPENAME pallocator_single<Type>::size_type) {
TAU_PROFILE("pallocator_single:deallocate()", " ", TAU_USER);
StaticDeletedChain<Type>::deallocate(p, _type_handle);
}
template<class Type>
INLINE pallocator_array<Type>::
pallocator_array(TypeHandle type_handle) throw() :
_type_handle(type_handle)
{
}
template<class Type>
INLINE TYPENAME pallocator_array<Type>::pointer pallocator_array<Type>::
allocate(TYPENAME pallocator_array<Type>::size_type n, TYPENAME allocator<void>::const_pointer) {
TAU_PROFILE("pallocator_array:allocate()", " ", TAU_USER);
#ifdef DO_MEMORY_USAGE
size_t alloc_size = n * sizeof(Type);
// We also need to store the total number of bytes we allocated.
alloc_size += sizeof(size_t);
_type_handle.inc_memory_usage(TypeHandle::MC_array, (int)alloc_size);
void *ptr = (TYPENAME pallocator_array<Type>::pointer)PANDA_MALLOC_ARRAY(alloc_size);
*((size_t *)ptr) = alloc_size;
return (TYPENAME pallocator_array<Type>::pointer)(((size_t *)ptr) + 1);
#else
return (TYPENAME pallocator_array<Type>::pointer)malloc(n * sizeof(Type));
#endif // DO_MEMORY_USAGE
}
template<class Type>
INLINE void pallocator_array<Type>::
deallocate(TYPENAME pallocator_array<Type>::pointer p, TYPENAME pallocator_array<Type>::size_type) {
TAU_PROFILE("pallocator_array:deallocate()", " ", TAU_USER);
#ifdef DO_MEMORY_USAGE
// Now we need to recover the total number of bytes.
size_t alloc_size = *(((size_t *)p) - 1);
_type_handle.dec_memory_usage(TypeHandle::MC_array, (int)alloc_size);
PANDA_FREE_ARRAY(((size_t *)p) - 1);
#else
free(p);
#endif // DO_MEMORY_USAGE
}

View File

@ -3,3 +3,100 @@
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) Carnegie Mellon University. All rights reserved.
//
// All use of this software is subject to the terms of the revised BSD
// license. You should have received a copy of this license along
// with this source code in a file named "LICENSE."
//
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
// Function: _dcast_get_typehandle
// Description: Returns the TypeHandle associated with the type of
// the parameter, if it can be determined. This is a
// support function for _dcast, below.
////////////////////////////////////////////////////////////////////
template<class WantType>
INLINE TypeHandle
_dcast_get_typehandle(WantType *) {
TAU_PROFILE("_dcast_get_typehandle()", " ", TAU_USER);
TypeHandle handle = WantType::get_class_type();
#ifdef _DEBUG
if (handle == TypeHandle::none()) {
// This type handle is unregistered. Oops!
WantType::init_type();
handle = WantType::get_class_type();
express_cat->warning()
<< "Type " << handle << " was unregistered!\n";
}
#endif
return handle;
}
////////////////////////////////////////////////////////////////////
// Function: _dcast
// Description: The implementation of the DCAST macro, this checks
// the actual type of the pointer before performing a
// downcast operation. In NDEBUG mode, it simply
// downcasts.
//
// This flavor of _dcast works on non-const pointers.
////////////////////////////////////////////////////////////////////
template<class WantType>
INLINE WantType *
_dcast(WantType *, TypedObject *ptr) {
#ifdef DO_DCAST
TAU_PROFILE("_dcast()", " ", TAU_USER);
TypeHandle want_handle = _dcast_get_typehandle((WantType *)0);
if (!_dcast_verify(want_handle, sizeof(WantType), ptr)) {
return (WantType *)NULL;
}
#endif
return (WantType *)ptr;
}
////////////////////////////////////////////////////////////////////
// Function: _dcast
// Description: The implementation of the DCAST macro, this checks
// the actual type of the pointer before performing a
// downcast operation. In NDEBUG mode, it simply
// downcasts.
//
// This flavor of _dcast works on const pointers.
////////////////////////////////////////////////////////////////////
template<class WantType>
INLINE const WantType *
_dcast(WantType *, const TypedObject *ptr) {
#ifdef DO_DCAST
TAU_PROFILE("_dcast()", " ", TAU_USER);
TypeHandle want_handle = _dcast_get_typehandle((WantType *)0);
if (!_dcast_verify(want_handle, sizeof(WantType), ptr)) {
return (const WantType *)NULL;
}
#endif
return (const WantType *)ptr;
}
////////////////////////////////////////////////////////////////////
// Function: _dcast_ref
// Description: Similar to the above, with a pointer reference as the
// first parameter. Just for fiddly compiler reasons;
// the reference isn't used.
////////////////////////////////////////////////////////////////////
template<class WantType>
INLINE WantType *
_dcast_ref(WantType *&, TypedObject *ptr) {
return _dcast((WantType *)NULL, ptr);
}
template<class WantType>
INLINE const WantType *
_dcast_ref(WantType *&, const TypedObject *ptr) {
return _dcast((WantType *)NULL, ptr);
}

View File

@ -3,3 +3,407 @@
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) Carnegie Mellon University. All rights reserved.
//
// All use of this software is subject to the terms of the revised BSD
// license. You should have received a copy of this license along
// with this source code in a file named "LICENSE."
//
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
// Function: ordered_vector::insert_unique
// Access: Public
// Description: Inserts the indicated key into the ordered vector.
// The iterator is a hint to the expected position; if
// this is correct, the insert operation is likely to be
// faster. The return value is the iterator referencing
// the new element.
//
// This flavor of insert does not allow multiple copies
// of the same key to be inserted. If the key is
// already present, it is not inserted, and the iterator
// referencing the original value is returned.
////////////////////////////////////////////////////////////////////
template<class Key, class Compare>
TYPENAME ordered_vector<Key, Compare>::ITERATOR ordered_vector<Key, Compare>::
insert_unique(TYPENAME ordered_vector<Key, Compare>::ITERATOR position,
const TYPENAME ordered_vector<Key, Compare>::VALUE_TYPE &key) {
TAU_PROFILE("ordered_vector::insert_unique(iterator, const value_type &)", " ", TAU_USER);
if (position != end()) {
// If we're not inserting at the end, the element we're
// inserting before should not lexicographically precede this one.
if (_compare(*position, key)) {
return insert_unique(key).first;
} else if (!_compare(key, *position)) {
// Oops, !(*position < key) and !(key < *position). That means
// they're equivalent, and we shouldn't insert a new one.
return position;
}
}
if (position != begin()) {
// If we're not inserting at the beginning, this element should
// not lexicographically precede the one we're inserting after.
if (_compare(key, *(position - 1))) {
return insert_unique(key).first;
} else if (!_compare(*(position - 1), key)) {
// Once again, they're equivalent.
return position - 1;
}
}
// Otherwise, we may insert where the caller requested.
ITERATOR result = _vector.insert(position, key);
return result;
}
////////////////////////////////////////////////////////////////////
// Function: ordered_vector::insert_nonunique
// Access: Public
// Description: Inserts the indicated key into the ordered vector.
// The iterator is a hint to the expected position; if
// this is correct, the insert operation is likely to be
// faster. The return value is the iterator referencing
// the new element.
//
// This flavor of insert allows multiple copies of the
// same key to be inserted.
////////////////////////////////////////////////////////////////////
template<class Key, class Compare>
TYPENAME ordered_vector<Key, Compare>::ITERATOR ordered_vector<Key, Compare>::
insert_nonunique(TYPENAME ordered_vector<Key, Compare>::ITERATOR position,
const TYPENAME ordered_vector<Key, Compare>::VALUE_TYPE &key) {
TAU_PROFILE("ordered_vector::insert_nonunique(iterator, const value_type &)", " ", TAU_USER);
if (position != end()) {
// If we're not inserting at the end, the element we're
// inserting before should not lexicographically precede this one.
if (_compare(*position, key)) {
return insert_nonunique(key);
}
}
if (position != begin()) {
// If we're not inserting at the beginning, this element should
// not lexicographically precede the one we're inserting after.
if (_compare(key, *(position - 1))) {
return insert_nonunique(key);
}
}
// Otherwise, we may insert where the caller requested.
ITERATOR result = _vector.insert(position, key);
return result;
}
////////////////////////////////////////////////////////////////////
// Function: ordered_vector::verify_list_unique
// Access: Public
// Description: Ensures that the indicated range of elements is
// sorted correctly. Returns true if this is the case;
// otherwise, returns false.
////////////////////////////////////////////////////////////////////
template<class Key, class Compare>
bool ordered_vector<Key, Compare>::
verify_list_unique() const {
TAU_PROFILE("ordered_vector::verify_list_unique()", " ", TAU_USER);
if (!empty()) {
CONST_ITERATOR prev = begin();
CONST_ITERATOR i = begin();
++i;
while (i < end()) {
bool ordered_correctly = _compare(*prev, *i);
if (!ordered_correctly) {
return true;
}
prev = i;
++i;
}
}
return true;
}
////////////////////////////////////////////////////////////////////
// Function: ordered_vector::verify_list_nonunique
// Access: Public
// Description: Ensures that the indicated range of elements is
// sorted correctly. Returns true if this is the case;
// otherwise, returns false.
////////////////////////////////////////////////////////////////////
template<class Key, class Compare>
bool ordered_vector<Key, Compare>::
verify_list_nonunique() const {
TAU_PROFILE("ordered_vector::verify_list_nonunique()", " ", TAU_USER);
if (!empty()) {
CONST_ITERATOR prev = begin();
CONST_ITERATOR i = begin();
++i;
while (i < end()) {
bool ordered_correctly = !_compare(*i, *prev);
if (!ordered_correctly) {
return true;
}
prev = i;
++i;
}
}
return true;
}
////////////////////////////////////////////////////////////////////
// Function: ordered_vector::r_find_insert_position
// Access: Private
// Description: The recursive implementation of
// find_insert_position().
////////////////////////////////////////////////////////////////////
template<class Key, class Compare>
TYPENAME ordered_vector<Key, Compare>::ITERATOR ordered_vector<Key, Compare>::
r_find_insert_position(TYPENAME ordered_vector<Key, Compare>::ITERATOR first,
TYPENAME ordered_vector<Key, Compare>::ITERATOR last,
const TYPENAME ordered_vector<Key, Compare>::KEY_TYPE &key) {
if (first == last) {
// The list is empty; the insert position is the last of the list.
return last;
}
ITERATOR center = first + (last - first) / 2;
nassertr(center < last, last);
if (_compare(key, *center)) {
// Insert before the center.
return r_find_insert_position(first, center, key);
} else {
// Insert after the center.
return r_find_insert_position(center + 1, last, key);
}
}
////////////////////////////////////////////////////////////////////
// Function: ordered_vector::r_find
// Access: Private
// Description: The recursive implementation of find().
////////////////////////////////////////////////////////////////////
template<class Key, class Compare>
TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR ordered_vector<Key, Compare>::
r_find(TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR first,
TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR last,
TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR not_found,
const TYPENAME ordered_vector<Key, Compare>::KEY_TYPE &key) const {
if (first == last) {
// The list is empty; the key is not on the list.
return not_found;
}
CONST_ITERATOR center = first + (last - first) / 2;
nassertr(center < last, last);
if (_compare(key, *center)) {
// It must be before the center.
return r_find(first, center, not_found, key);
} else if (_compare(*center, key)) {
// It must be after the center.
return r_find(center + 1, last, not_found, key);
} else {
// Here it is!
return center;
}
}
////////////////////////////////////////////////////////////////////
// Function: ordered_vector::r_find_particular
// Access: Private
// Description: The recursive implementation of find_particular().
////////////////////////////////////////////////////////////////////
template<class Key, class Compare>
TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR ordered_vector<Key, Compare>::
r_find_particular(TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR first,
TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR last,
TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR not_found,
const TYPENAME ordered_vector<Key, Compare>::KEY_TYPE &key) const {
if (first == last) {
// The list is empty; the key is not on the list.
return not_found;
}
CONST_ITERATOR center = first + (last - first) / 2;
nassertr(center < last, last);
if (_compare(key, *center)) {
// It must be before the center.
return r_find_particular(first, center, not_found, key);
} else if (_compare(*center, key)) {
// It must be after the center.
return r_find_particular(center + 1, last, not_found, key);
} else {
// The center's sort matches the key's sort. It could be either
// before or after the center. First try after.
CONST_ITERATOR i = center;
while (i < last && !_compare(key, *i)) {
if ((*i) == key) {
return i;
}
++i;
}
// No, try before.
i = center;
--i;
while (i >= first && !_compare(key, *i)) {
if ((*i) == key) {
return i;
}
--i;
}
// No such key!
return not_found;
}
}
////////////////////////////////////////////////////////////////////
// Function: ordered_vector::r_count
// Access: Private
// Description: The recursive implementation of count().
////////////////////////////////////////////////////////////////////
template<class Key, class Compare>
TYPENAME ordered_vector<Key, Compare>::SIZE_TYPE ordered_vector<Key, Compare>::
r_count(TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR first,
TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR last,
const TYPENAME ordered_vector<Key, Compare>::KEY_TYPE &key) const {
typedef pair<TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR, TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR> pair_type;
if (first == last) {
// The list is empty; the key is not on the list.
return 0;
}
CONST_ITERATOR center = first + (last - first) / 2;
nassertr(center < last, 0);
if (_compare(key, *center)) {
// It must be before the center.
return r_count(first, center, key);
} else if (_compare(*center, key)) {
// It must be after the center.
return r_count(center + 1, last, key);
} else {
// The center matches the key; the range is here.
size_type lower = r_count(first, center, key);
size_type upper = r_count(center + 1, last, key);
return lower + 1 + upper;
}
}
////////////////////////////////////////////////////////////////////
// Function: ordered_vector::r_lower_bound
// Access: Private
// Description: The recursive implementation of lower_bound().
////////////////////////////////////////////////////////////////////
template<class Key, class Compare>
TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR ordered_vector<Key, Compare>::
r_lower_bound(TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR first,
TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR last,
const TYPENAME ordered_vector<Key, Compare>::KEY_TYPE &key) const {
if (first == last) {
// The list is empty; the key is not on the list.
return last;
}
CONST_ITERATOR center = first + (last - first) / 2;
nassertr(center < last, last);
if (_compare(key, *center)) {
// It must be before the center.
return r_lower_bound(first, center, key);
} else if (_compare(*center, key)) {
// It must be after the center.
return r_lower_bound(center + 1, last, key);
} else {
// The center matches the key; thus, the first element not less
// than key is at or before the center.
return r_lower_bound(first, center, key);
}
}
////////////////////////////////////////////////////////////////////
// Function: ordered_vector::r_upper_bound
// Access: Private
// Description: The recursive implementation of upper_bound().
////////////////////////////////////////////////////////////////////
template<class Key, class Compare>
TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR ordered_vector<Key, Compare>::
r_upper_bound(TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR first,
TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR last,
const TYPENAME ordered_vector<Key, Compare>::KEY_TYPE &key) const {
if (first == last) {
// The list is empty; the key is not on the list.
return last;
}
const_iterator center = first + (last - first) / 2;
nassertr(center < last, last);
if (_compare(key, *center)) {
// It must be before the center.
return r_upper_bound(first, center, key);
} else if (_compare(*center, key)) {
// It must be after the center.
return r_upper_bound(center + 1, last, key);
} else {
// The center matches the key; thus, the first element greater
// than key is after the center.
return r_upper_bound(center + 1, last, key);
}
}
////////////////////////////////////////////////////////////////////
// Function: ordered_vector::r_equal_range
// Access: Private
// Description: The recursive implementation of equal_range().
////////////////////////////////////////////////////////////////////
template<class Key, class Compare>
pair<TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR, TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR> ordered_vector<Key, Compare>::
r_equal_range(TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR first,
TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR last,
const TYPENAME ordered_vector<Key, Compare>::KEY_TYPE &key) const {
typedef pair<TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR, TYPENAME ordered_vector<Key, Compare>::CONST_ITERATOR> pair_type;
if (first == last) {
// The list is empty; the key is not on the list.
return pair_type(last, last);
}
CONST_ITERATOR center = first + (last - first) / 2;
nassertr(center < last, pair_type(last, last));
if (_compare(key, *center)) {
// It must be before the center.
return r_equal_range(first, center, key);
} else if (_compare(*center, key)) {
// It must be after the center.
return r_equal_range(center + 1, last, key);
} else {
// The center matches the key; the range is here.
CONST_ITERATOR lower = r_lower_bound(first, center, key);
CONST_ITERATOR upper = r_upper_bound(center + 1, last, key);
return pair_type(lower, upper);
}
}