// Filename: threadSimpleManager.cxx // Created by: drose (19Jun07) // //////////////////////////////////////////////////////////////////// // // PANDA 3D SOFTWARE // Copyright (c) Carnegie Mellon University. All rights reserved. // // All use of this software is subject to the terms of the revised BSD // license. You should have received a copy of this license along // with this source code in a file named "LICENSE." // //////////////////////////////////////////////////////////////////// #include "threadSimpleManager.h" #ifdef THREAD_SIMPLE_IMPL #include "threadSimpleImpl.h" #include "blockerSimple.h" #include "mainThread.h" #ifdef WIN32 #define WIN32_LEAN_AND_MEAN #include #endif bool ThreadSimpleManager::_pointers_initialized; ThreadSimpleManager *ThreadSimpleManager::_global_ptr; //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::Constructor // Access: Private // Description: //////////////////////////////////////////////////////////////////// ThreadSimpleManager:: ThreadSimpleManager() : _simple_thread_epoch_timeslice ("simple-thread-epoch-timeslice", 0.01, PRC_DESC("When SIMPLE_THREADS is defined, this defines the amount of time, " "in seconds, that should be considered the " "typical timeslice for one epoch (to run all threads once).")), _simple_thread_window ("simple-thread-window", 1.0, PRC_DESC("When SIMPLE_THREADS is defined, this defines the amount of time, " "in seconds, over which to average all the threads' runtimes, " "for the purpose of scheduling threads.")), _simple_thread_low_weight ("simple-thread-low-weight", 0.1, PRC_DESC("When SIMPLE_THREADS is defined, this determines the relative " "amount of time that is given to threads with priority TP_low.")), _simple_thread_normal_weight ("simple-thread-normal-weight", 1.0, PRC_DESC("When SIMPLE_THREADS is defined, this determines the relative " "amount of time that is given to threads with priority TP_normal.")), _simple_thread_high_weight ("simple-thread-high-weight", 5.0, PRC_DESC("When SIMPLE_THREADS is defined, this determines the relative " "amount of time that is given to threads with priority TP_high.")), _simple_thread_urgent_weight ("simple-thread-urgent-weight", 10.0, PRC_DESC("When SIMPLE_THREADS is defined, this determines the relative " "amount of time that is given to threads with priority TP_urgent.")) { _tick_scale = 1000000.0; _total_ticks = 0; _current_thread = NULL; _clock = TrueClock::get_global_ptr(); _waiting_for_exit = NULL; #ifdef HAVE_POSIX_THREADS _posix_system_thread_id = pthread_self(); #endif #ifdef WIN32 _win32_system_thread_id = GetCurrentThreadId(); #endif // Install these global pointers so very low-level code (code // defined before the pipeline directory) can yield when necessary. global_thread_yield = &Thread::force_yield; global_thread_consider_yield = &Thread::consider_yield; } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::enqueue_ready // Access: Public // Description: Adds the indicated thread to the ready queue. The // thread will be executed when its turn comes. If the // thread is not the currently executing thread, its // _jmp_context should be filled appropriately. // // If volunteer is true, the thread is volunteering to // sleep before its timeslice has been used up. If // volunteer is false, the thread would still be running // if it could. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: enqueue_ready(ThreadSimpleImpl *thread, bool volunteer) { // We actually add it to _next_ready, so that we can tell when we // have processed every thread in a given epoch. if (!volunteer) { _next_ready.push_back(thread); } else { // Unless it's a volunteer, in which case we actually put it to // sleep for the duration of the timeslice, so it won't interfere // with timeslice accounting for the remaining ready threads. double now = get_current_time(); thread->_wake_time = now + _simple_thread_epoch_timeslice; _volunteers.push_back(thread); push_heap(_volunteers.begin(), _volunteers.end(), CompareStartTime()); } } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::enqueue_sleep // Access: Public // Description: Adds the indicated thread to the sleep queue, until // the indicated number of seconds have elapsed. Then // the thread will be automatically moved to the ready // queue. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: enqueue_sleep(ThreadSimpleImpl *thread, double seconds) { if (thread_cat->is_debug()) { thread_cat.debug() << *_current_thread->_parent_obj << " sleeping for " << seconds << " seconds\n"; } double now = get_current_time(); thread->_wake_time = now + seconds; _sleeping.push_back(thread); push_heap(_sleeping.begin(), _sleeping.end(), CompareStartTime()); } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::enqueue_block // Access: Public // Description: Adds the indicated thread to the blocked queue for // the indicated blocker. The thread will be awoken by // a later call to unblock_one() or unblock_all(). //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: enqueue_block(ThreadSimpleImpl *thread, BlockerSimple *blocker) { _blocked[blocker].push_back(thread); blocker->_flags |= BlockerSimple::F_has_waiters; } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::unblock_one // Access: Public // Description: Unblocks one thread waiting on the indicated blocker, // if any. Returns true if anything was unblocked, // false otherwise. //////////////////////////////////////////////////////////////////// bool ThreadSimpleManager:: unblock_one(BlockerSimple *blocker) { Blocked::iterator bi = _blocked.find(blocker); if (bi != _blocked.end()) { nassertr(blocker->_flags & BlockerSimple::F_has_waiters, false); FifoThreads &threads = (*bi).second; nassertr(!threads.empty(), false); ThreadSimpleImpl *thread = threads.front(); threads.pop_front(); _ready.push_back(thread); if (threads.empty()) { blocker->_flags &= ~BlockerSimple::F_has_waiters; _blocked.erase(bi); } return true; } return false; } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::unblock_all // Access: Public // Description: Unblocks all threads waiting on the indicated // blocker. Returns true if anything was unblocked, // false otherwise. //////////////////////////////////////////////////////////////////// bool ThreadSimpleManager:: unblock_all(BlockerSimple *blocker) { Blocked::iterator bi = _blocked.find(blocker); if (bi != _blocked.end()) { nassertr(blocker->_flags & BlockerSimple::F_has_waiters, false); FifoThreads &threads = (*bi).second; nassertr(!threads.empty(), false); while (!threads.empty()) { ThreadSimpleImpl *thread = threads.front(); threads.pop_front(); _ready.push_back(thread); } blocker->_flags &= ~BlockerSimple::F_has_waiters; _blocked.erase(bi); return true; } return false; } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::enqueue_finished // Access: Public // Description: Adds the indicated thread to the finished queue. // The manager will drop the reference count on the // indicated thread at the next epoch. (A thread can't // drop its own reference count while it is running, // since that might deallocate its own stack.) //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: enqueue_finished(ThreadSimpleImpl *thread) { _finished.push_back(thread); } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::preempt // Access: Public // Description: Moves the indicated thread to the head of the ready // queue. If it is not already on the ready queue, does // nothing. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: preempt(ThreadSimpleImpl *thread) { FifoThreads::iterator ti; ti = find(_ready.begin(), _ready.end(), thread); if (ti != _ready.end()) { _ready.erase(ti); _ready.push_front(thread); } } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::next_context // Access: Public // Description: Switches out the currently executing thread and // chooses a new thread for execution. Before calling // this, the current thread should have already // re-enqueued itself with a call to enqueue(), if it // intends to run again. // // This will fill in the current thread's _jmp_context // member appropriately, and then change the global // current_thread pointer. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: next_context() { // Delete any threads that need it. We can't delete the current // thread, though. while (!_finished.empty() && _finished.front() != _current_thread) { ThreadSimpleImpl *finished_thread = _finished.front(); _finished.pop_front(); unref_delete(finished_thread->_parent_obj); } // Mark the current thread's resume point. #ifdef HAVE_PYTHON // Save the current Python thread state. _current_thread->_python_state = PyThreadState_Swap(NULL); #endif // HAVE_PYTHON #ifdef DO_PSTATS Thread::PStatsCallback *pstats_callback = _current_thread->_parent_obj->get_pstats_callback(); if (pstats_callback != NULL) { pstats_callback->deactivate_hook(_current_thread->_parent_obj); } #endif // DO_PSTATS save_thread_context(&_current_thread->_context, st_choose_next_context, this); // Pass 2: we have returned into the context, and are now resuming // the current thread. #ifdef DO_PSTATS if (pstats_callback != NULL) { pstats_callback->activate_hook(_current_thread->_parent_obj); } #endif // DO_PSTATS #ifdef HAVE_PYTHON PyThreadState_Swap(_current_thread->_python_state); #endif // HAVE_PYTHON } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::prepare_for_exit // Access: Public // Description: Blocks until all running threads (other than the // current thread) have finished. This only works when // called from the main thread; if called on any other // thread, nothing will happen. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: prepare_for_exit() { if (!_current_thread->_parent_obj->is_exact_type(MainThread::get_class_type())) { return; } nassertv(_waiting_for_exit == NULL); _waiting_for_exit = _current_thread; // At this point, any non-joinable threads on any of the queues are // automatically killed. kill_non_joinable(_ready); Blocked::iterator bi = _blocked.begin(); while (bi != _blocked.end()) { Blocked::iterator bnext = bi; ++bnext; BlockerSimple *blocker = (*bi).first; FifoThreads &threads = (*bi).second; kill_non_joinable(threads); if (threads.empty()) { blocker->_flags &= ~BlockerSimple::F_has_waiters; _blocked.erase(bi); } bi = bnext; } kill_non_joinable(_sleeping); kill_non_joinable(_volunteers); next_context(); // Delete any remaining threads. while (!_finished.empty() && _finished.front() != _current_thread) { ThreadSimpleImpl *finished_thread = _finished.front(); _finished.pop_front(); unref_delete(finished_thread->_parent_obj); } } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::set_current_thread // Access: Public // Description: Sets the initial value of the current_thread pointer, // i.e. the main thread. It is valid to call this // method only exactly once. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: set_current_thread(ThreadSimpleImpl *current_thread) { nassertv(_current_thread == (ThreadSimpleImpl *)NULL); _current_thread = current_thread; } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::remove_thread // Access: Public // Description: Removes the indicated thread from the accounting, for // instance just before the thread destructs. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: remove_thread(ThreadSimpleImpl *thread) { TickRecords new_records; TickRecords::iterator ri; for (ri = _tick_records.begin(); ri != _tick_records.end(); ++ri) { if ((*ri)._thread != thread) { // Keep this record. new_records.push_back(*ri); } else { // Lose this record. nassertv(_total_ticks >= (*ri)._tick_count); _total_ticks -= (*ri)._tick_count; } } _tick_records.swap(new_records); } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::system_sleep // Access: Public, Static // Description: Calls the appropriate system sleep function to sleep // the whole process for the indicated number of // seconds. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: system_sleep(double seconds) { #ifdef WIN32 Sleep((int)(seconds * 1000)); #else struct timespec rqtp; rqtp.tv_sec = time_t(seconds); rqtp.tv_nsec = long((seconds - (double)rqtp.tv_sec) * 1000000000.0); nanosleep(&rqtp, NULL); #endif // WIN32 } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::write_status // Access: Public // Description: Writes a list of threads running and threads blocked. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: write_status(ostream &out) const { out << "Currently running: " << *_current_thread->_parent_obj << "\n"; out << "Ready:"; FifoThreads::const_iterator ti; Sleeping::const_iterator si; for (ti = _ready.begin(); ti != _ready.end(); ++ti) { out << " " << *(*ti)->_parent_obj; } for (ti = _next_ready.begin(); ti != _next_ready.end(); ++ti) { out << " " << *(*ti)->_parent_obj; } for (si = _volunteers.begin(); si != _volunteers.end(); ++si) { out << " " << *(*si)->_parent_obj; } out << "\n"; double now = get_current_time(); out << "Sleeping:"; // Copy and sort for convenience. Sleeping s2 = _sleeping; sort(s2.begin(), s2.end(), CompareStartTime()); for (si = s2.begin(); si != s2.end(); ++si) { out << " " << *(*si)->_parent_obj << "(" << (*si)->_wake_time - now << "s)"; } out << "\n"; Blocked::const_iterator bi; for (bi = _blocked.begin(); bi != _blocked.end(); ++bi) { BlockerSimple *blocker = (*bi).first; const FifoThreads &threads = (*bi).second; out << "On blocker " << blocker << ":\n"; FifoThreads::const_iterator ti; for (ti = threads.begin(); ti != threads.end(); ++ti) { ThreadSimpleImpl *thread = (*ti); out << " " << *thread->_parent_obj; #ifdef DEBUG_THREADS out << " ("; thread->_parent_obj->output_blocker(out); out << ")"; #endif // DEBUG_THREADS } out << "\n"; } } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::system_yield // Access: Public, Static // Description: Calls the appropriate system function to yield // the whole process to any other system processes. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: system_yield() { #ifdef WIN32 Sleep(0); #else struct timespec rqtp; rqtp.tv_sec = 0; rqtp.tv_nsec = 0; nanosleep(&rqtp, NULL); #endif // WIN32 } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::init_pointers // Access: Private, Static // Description: Should be called at startup to initialize the // simple threading system. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: init_pointers() { if (!_pointers_initialized) { _pointers_initialized = true; _global_ptr = new ThreadSimpleManager; Thread::get_main_thread(); #ifdef HAVE_PYTHON // Ensure that the Python threading system is initialized and ready // to go. PyEval_InitThreads(); #endif } } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::st_choose_next_context // Access: Private, Static // Description: Select the next context to run. Continuing the work // of next_context(). //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: st_choose_next_context(void *data) { ThreadSimpleManager *self = (ThreadSimpleManager *)data; self->choose_next_context(); } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::choose_next_context // Access: Private // Description: Select the next context to run. Continuing the work // of next_context(). //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: choose_next_context() { double now = get_current_time(); do_timeslice_accounting(_current_thread, now); _current_thread = NULL; if (!_sleeping.empty() || !_volunteers.empty()) { if (_ready.empty() && _next_ready.empty()) { // All of our threads are currently sleeping. Therefore, wake // the volunteer(s) immediately. wake_all_sleepers(_volunteers); // We should also yield the whole process now, to be polite to // the rest of the system. system_yield(); now = get_current_time(); } wake_sleepers(_sleeping, now); wake_sleepers(_volunteers, now); } bool new_epoch = !_ready.empty() && _next_ready.empty(); // Choose a new thread to execute. while (true) { // If there are no threads, sleep. while (_ready.empty()) { if (!_next_ready.empty()) { // We've finished an epoch. _ready.swap(_next_ready); if (new_epoch && !_tick_records.empty()) { // Pop the oldest timeslice record off when we finish an // epoch without executing any threads, to ensure we don't // get caught in an "all threads reached budget" loop. if (thread_cat->is_debug()) { thread_cat.debug() << "All threads exceeded budget.\n"; } TickRecord &record = _tick_records.front(); _total_ticks -= record._tick_count; nassertv(record._thread->_run_ticks >= record._tick_count); record._thread->_run_ticks -= record._tick_count; _tick_records.pop_front(); } new_epoch = true; } else if (!_volunteers.empty()) { // There are some volunteers. Wake them. Also wake any // sleepers that need it. if (thread_cat->is_debug()) { thread_cat.debug() << "Waking volunteers.\n"; } // We should yield the whole process now, to be polite to the // rest of the system. system_yield(); now = get_current_time(); wake_all_sleepers(_volunteers); wake_sleepers(_sleeping, now); } else if (!_sleeping.empty()) { // All threads are sleeping. double wait = _sleeping.front()->_wake_time - now; if (wait > 0.0) { if (thread_cat->is_debug()) { thread_cat.debug() << "Sleeping all threads " << wait << " seconds\n"; } system_sleep(wait); } now = get_current_time(); wake_sleepers(_sleeping, now); wake_sleepers(_volunteers, now); } else { // No threads are ready! if (!_blocked.empty()) { thread_cat->error() << "Deadlock! All threads blocked.\n"; report_deadlock(); abort(); } // All threads have finished execution. if (_waiting_for_exit != NULL) { // And one thread--presumably the main thread--was waiting for // that. _ready.push_back(_waiting_for_exit); _waiting_for_exit = NULL; break; } // No threads are queued anywhere. This is some kind of // internal error, since normally the main thread, at least, // should be queued somewhere. thread_cat->error() << "All threads disappeared!\n"; exit(0); } } ThreadSimpleImpl *chosen_thread = _ready.front(); _ready.pop_front(); double timeslice = determine_timeslice(chosen_thread); if (timeslice > 0.0) { // This thread is ready to roll. Break out of the loop. chosen_thread->_start_time = now; chosen_thread->_stop_time = now + timeslice; _current_thread = chosen_thread; break; } // This thread is not ready to wake up yet. Put it back for next // epoch. It doesn't count as a volunteer, though--its timeslice // was used up. _next_ready.push_back(chosen_thread); } // All right, the thread is ready to roll. Begin. if (thread_cat->is_debug()) { size_t blocked_count = 0; Blocked::const_iterator bi; for (bi = _blocked.begin(); bi != _blocked.end(); ++bi) { const FifoThreads &threads = (*bi).second; blocked_count += threads.size(); } double timeslice = _current_thread->_stop_time - _current_thread->_start_time; thread_cat.debug() << "Switching to " << *_current_thread->_parent_obj << " for " << timeslice << " s (" << _ready.size() << " + " << _next_ready.size() << " + " << _volunteers.size() << " other threads ready, " << blocked_count << " blocked, " << _sleeping.size() << " sleeping)\n"; } switch_to_thread_context(&_current_thread->_context); // Shouldn't get here. nassertv(false); abort(); } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::do_timeslice_accounting // Access: Private // Description: Records the amount of time the indicated thread has // run, and updates the moving average. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: do_timeslice_accounting(ThreadSimpleImpl *thread, double now) { double elapsed = now - thread->_start_time; if (thread_cat.is_debug()) { thread_cat.debug() << *thread->_parent_obj << " ran for " << elapsed << " s of " << thread->_stop_time - thread->_start_time << " requested.\n"; } nassertv(elapsed >= 0.0); unsigned int ticks = (unsigned int)(elapsed * _tick_scale + 0.5); thread->_run_ticks += ticks; // Now remove any old records. unsigned int ticks_window = (unsigned int)(_simple_thread_window * _tick_scale + 0.5); while (_total_ticks > ticks_window) { nassertv(!_tick_records.empty()); TickRecord &record = _tick_records.front(); _total_ticks -= record._tick_count; nassertv(record._thread->_run_ticks >= record._tick_count); record._thread->_run_ticks -= record._tick_count; _tick_records.pop_front(); } // Finally, record the new record. TickRecord record; record._tick_count = ticks; record._thread = thread; _tick_records.push_back(record); _total_ticks += ticks; } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::wake_sleepers // Access: Private // Description: Moves any threads due to wake up from the sleeping // queue to the ready queue. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: wake_sleepers(ThreadSimpleManager::Sleeping &sleepers, double now) { while (!sleepers.empty() && sleepers.front()->_wake_time <= now) { ThreadSimpleImpl *thread = sleepers.front(); pop_heap(sleepers.begin(), sleepers.end(), CompareStartTime()); sleepers.pop_back(); _ready.push_back(thread); } } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::wake_all_sleepers // Access: Private // Description: Moves all threads from the indicated sleeping queue // to the ready queue, regardless of wake time. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: wake_all_sleepers(ThreadSimpleManager::Sleeping &sleepers) { while (!sleepers.empty()) { ThreadSimpleImpl *thread = sleepers.front(); pop_heap(sleepers.begin(), sleepers.end(), CompareStartTime()); sleepers.pop_back(); _ready.push_back(thread); } } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::report_deadlock // Access: Private // Description: //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: report_deadlock() { Blocked::const_iterator bi; for (bi = _blocked.begin(); bi != _blocked.end(); ++bi) { BlockerSimple *blocker = (*bi).first; const FifoThreads &threads = (*bi).second; thread_cat.info() << "On blocker " << blocker << ":\n"; FifoThreads::const_iterator ti; for (ti = threads.begin(); ti != threads.end(); ++ti) { ThreadSimpleImpl *thread = (*ti); thread_cat.info() << " " << *thread->_parent_obj; #ifdef DEBUG_THREADS thread_cat.info(false) << " ("; thread->_parent_obj->output_blocker(thread_cat.info(false)); thread_cat.info(false) << ")"; #endif // DEBUG_THREADS thread_cat.info(false) << "\n"; } } } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::determine_timeslice // Access: Private // Description: Determines the amount of time that should be // allocated to the next timeslice of this thread, based // on its priority weight and the amount of time it has // run recently relative to other threads. //////////////////////////////////////////////////////////////////// double ThreadSimpleManager:: determine_timeslice(ThreadSimpleImpl *chosen_thread) { if (_ready.empty() && _next_ready.empty()) { // This is the only ready thread. It gets the full timeslice. return _simple_thread_epoch_timeslice; } // Count up the total runtime and weight of all ready threads. unsigned int total_ticks = chosen_thread->_run_ticks; double total_weight = chosen_thread->_priority_weight; FifoThreads::const_iterator ti; for (ti = _ready.begin(); ti != _ready.end(); ++ti) { total_ticks += (*ti)->_run_ticks; total_weight += (*ti)->_priority_weight; } for (ti = _next_ready.begin(); ti != _next_ready.end(); ++ti) { total_ticks += (*ti)->_run_ticks; total_weight += (*ti)->_priority_weight; } nassertr(total_weight != 0.0, 0.0); double budget_ratio = chosen_thread->_priority_weight / total_weight; if (total_ticks == 0) { // This must be the first thread. Special case. return budget_ratio * _simple_thread_epoch_timeslice; } double run_ratio = (double)chosen_thread->_run_ticks / (double)total_ticks; double remaining_ratio = budget_ratio - run_ratio; if (thread_cat->is_debug()) { thread_cat.debug() << *chosen_thread->_parent_obj << " accrued " << chosen_thread->_run_ticks / _tick_scale << " s of " << total_ticks / _tick_scale << "; budget is " << budget_ratio * total_ticks / _tick_scale << ".\n"; if (remaining_ratio <= 0.0) { thread_cat.debug() << "Exceeded budget.\n"; } } return remaining_ratio * _simple_thread_epoch_timeslice; } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::kill_non_joinable // Access: Private // Description: Removes any non-joinable threads from the indicated // queue and marks them killed. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: kill_non_joinable(ThreadSimpleManager::FifoThreads &threads) { FifoThreads new_threads; FifoThreads::iterator ti; for (ti = threads.begin(); ti != threads.end(); ++ti) { ThreadSimpleImpl *thread = (*ti); if (thread->_joinable) { new_threads.push_back(thread); } else { if (thread_cat->is_debug()) { thread_cat.debug() << "Killing " << *thread->_parent_obj << "\n"; } thread->_status = ThreadSimpleImpl::S_killed; enqueue_finished(thread); } } threads.swap(new_threads); } //////////////////////////////////////////////////////////////////// // Function: ThreadSimpleManager::kill_non_joinable // Access: Private // Description: Removes any non-joinable threads from the indicated // queue and marks them killed. //////////////////////////////////////////////////////////////////// void ThreadSimpleManager:: kill_non_joinable(ThreadSimpleManager::Sleeping &threads) { Sleeping new_threads; Sleeping::iterator ti; for (ti = threads.begin(); ti != threads.end(); ++ti) { ThreadSimpleImpl *thread = (*ti); if (thread->_joinable) { new_threads.push_back(thread); } else { if (thread_cat->is_debug()) { thread_cat.debug() << "Killing " << *thread->_parent_obj << "\n"; } thread->_status = ThreadSimpleImpl::S_killed; enqueue_finished(thread); } } make_heap(new_threads.begin(), new_threads.end(), CompareStartTime()); threads.swap(new_threads); } #endif // THREAD_SIMPLE_IMPL