"""DistributedSmoothNode module: contains the DistributedSmoothNode class""" from PandaModules import * from ClockDelta import * import DistributedNode import Task globalClock = ClockObject.getGlobalClock() # This number defines our tolerance for out-of-sync telemetry packets. # If a packet appears to have originated from more than MaxFuture # seconds in the future, assume we're out of sync with the other # avatar and suggest a resync for both. MaxFuture = base.config.GetFloat("smooth-max-future", 0.1) # These flags indicate whether global smoothing and/or prediction is # allowed or disallowed. EnableSmoothing = base.config.GetBool("smooth-enable-smoothing", 1) EnablePrediction = base.config.GetBool("smooth-enable-prediction", 1) # These values represent the amount of time, in seconds, to delay the # apparent position of other avatars, when non-predictive and # predictive smoothing is in effect, respectively. Lag = base.config.GetDouble("smooth-lag", 0.2) PredictionLag = base.config.GetDouble("smooth-prediction-lag", 0.0) def activateSmoothing(smoothing, prediction): """ Enables or disables the smoothing of other avatars' motion. This is a global flag that controls the behavior of all SmoothMovers in the world. If smoothing is off, no kind of smoothing will be performed, regardless of the setting of prediction. This is not necessarily predictive smoothing; if predictive smoothing is off, avatars will be lagged by a certain factor to achieve smooth motion. Otherwise, if predictive smoothing is on, avatars will be drawn as nearly as possible in their current position, by extrapolating from old position reports. This assumes you have a client repository that knows its localToonDoId -- stored in self.cr.localToonDoId """ if smoothing and EnableSmoothing: if prediction and EnablePrediction: # Prediction and smoothing. SmoothMover.setSmoothMode(SmoothMover.SMOn) SmoothMover.setPredictionMode(SmoothMover.PMOn) SmoothMover.setDelay(PredictionLag) else: # Smoothing, but no prediction. SmoothMover.setSmoothMode(SmoothMover.SMOn) SmoothMover.setPredictionMode(SmoothMover.PMOff) SmoothMover.setDelay(Lag) else: # No smoothing, no prediction. SmoothMover.setSmoothMode(SmoothMover.SMOff) SmoothMover.setPredictionMode(SmoothMover.PMOff) SmoothMover.setDelay(0.0) class DistributedSmoothNode(DistributedNode.DistributedNode): """DistributedSmoothNode class: This specializes DistributedNode to add functionality to smooth motion over time, via the SmoothMover C++ object defined in DIRECT. """ def __init__(self, cr): try: self.DistributedSmoothNode_initialized except: self.DistributedSmoothNode_initialized = 1 DistributedNode.DistributedNode.__init__(self, cr) self.smoother = SmoothMover() self.smoothStarted = 0 return None ### Methods to handle computing and updating of the smoothed ### position. def smoothPosition(self): """smoothPosition(self) This function updates the position of the node to its computed smoothed position. This may be overridden by a derived class to specialize the behavior. """ if self.smoother.computeSmoothPosition(): self.setMat(self.smoother.getSmoothMat()) def doSmoothTask(self, task): self.smoothPosition() return Task.cont def startSmooth(self): """startSmooth(self) This function starts the task that ensures the node is positioned correctly every frame. However, while the task is running, you won't be able to lerp the node or directly position it. """ if self.isLocal(): # If we've just finished banging on localToon, reload the # drive interface's concept of our position. base.drive.node().setPos(self.getPos()) base.drive.node().setHpr(self.getHpr()) elif not self.smoothStarted: taskName = self.taskName("smooth") taskMgr.removeTasksNamed(taskName) self.reloadPosition() taskMgr.spawnMethodNamed(self.doSmoothTask, taskName) self.smoothStarted = 1 return def stopSmooth(self): """startSmooth(self) This function stops the task spawned by startSmooth(), and allows show code to move the node around directly. """ if self.smoothStarted: taskName = self.taskName("smooth") taskMgr.removeTasksNamed(taskName) self.forceToTruePosition() self.smoothStarted = 0 return def forceToTruePosition(self): """forceToTruePosition(self) This forces the node to reposition itself to its latest known position. This may result in a pop as the node skips the last of its lerp points. """ if (not self.isLocal()) and \ self.smoother.getLatestPosition(): self.setMat(self.smoother.getSmoothMat()) self.smoother.clearPositions(1) def reloadPosition(self): """reloadPosition(self) This function re-reads the position from the node itself and clears any old position reports for the node. This should be used whenever show code bangs on the node position and expects it to stick. """ self.smoother.clearPositions(0) self.smoother.setMat(self.getMat()) self.smoother.setTimestamp() self.smoother.markPosition() ### distributed set pos and hpr functions ### ### These functions send the distributed update to set the ### appropriate values on the remote side. These are ### composite fields, with all the likely combinations ### defined; each function maps (via the dc file) to one or ### more component operations on the remote client. def d_setSmStop(self): self.sendUpdate("setSmStop", [globalClockDelta.getFrameNetworkTime()]) def setSmStop(self, timestamp): self.setComponentTLive(timestamp) def d_setSmH(self, h): self.sendUpdate("setSmH", [h, globalClockDelta.getFrameNetworkTime()]) def setSmH(self, h, timestamp): self.setComponentH(h) self.setComponentTLive(timestamp) def d_setSmXY(self, x, y): self.sendUpdate("setSmXY", [x, y, globalClockDelta.getFrameNetworkTime()]) def setSmXY(self, x, y, timestamp): self.setComponentX(x) self.setComponentY(y) self.setComponentTLive(timestamp) def d_setSmXZ(self, x, z): self.sendUpdate("setSmXZ", [x, z, globalClockDelta.getFrameNetworkTime()]) def setSmXZ(self, x, z, timestamp): self.setComponentX(x) self.setComponentZ(z) self.setComponentTLive(timestamp) def d_setSmPos(self, x, y, z): self.sendUpdate("setSmPos", [x, y, z, globalClockDelta.getFrameNetworkTime()]) def setSmPos(self, x, y, z, timestamp): self.setComponentX(x) self.setComponentY(y) self.setComponentZ(z) self.setComponentTLive(timestamp) def d_setSmHpr(self, h, p, r): self.sendUpdate("setSmHpr", [h, p, r, globalClockDelta.getFrameNetworkTime()]) def setSmHpr(self, h, p, r, timestamp): self.setComponentH(h) self.setComponentP(p) self.setComponentR(r) self.setComponentTLive(timestamp) def d_setSmXYH(self, x, y, h): self.sendUpdate("setSmXYH", [x, y, h, globalClockDelta.getFrameNetworkTime()]) def setSmXYH(self, x, y, h, timestamp): self.setComponentX(x) self.setComponentY(y) self.setComponentH(h) self.setComponentTLive(timestamp) def d_setSmXYZH(self, x, y, z, h): self.sendUpdate("setSmXYZH", [x, y, z, h, globalClockDelta.getFrameNetworkTime()]) def setSmXYZH(self, x, y, z, h, timestamp): self.setComponentX(x) self.setComponentY(y) self.setComponentZ(z) self.setComponentH(h) self.setComponentTLive(timestamp) def d_setSmPosHpr(self, x, y, z, h, p, r): self.sendUpdate("setSmPosHpr", [x, y, z, h, p, r, globalClockDelta.getFrameNetworkTime()]) def setSmPosHpr(self, x, y, z, h, p, r, timestamp): self.setComponentX(x) self.setComponentY(y) self.setComponentZ(z) self.setComponentH(h) self.setComponentP(p) self.setComponentR(r) self.setComponentTLive(timestamp) return ### component set pos and hpr functions ### ### These are the component functions that are invoked ### remotely by the above composite functions. def setComponentX(self, x): self.smoother.setX(x) def setComponentY(self, y): self.smoother.setY(y) def setComponentZ(self, z): self.smoother.setZ(z) def setComponentH(self, h): self.smoother.setH(h) def setComponentP(self, p): self.smoother.setP(p) def setComponentR(self, r): self.smoother.setR(r) def setComponentT(self, timestamp): # This is a little bit hacky. If *this* function is called, # it must have been called directly by the server, for # instance to update the values previously set for some avatar # that was already into the zone as we entered. (A live # update would have gone through the function called # setComponentTLive, below.) # Since we know this update came through the server, it may # reflect very old data. Thus, we can't accurately decode the # network timestamp (since the network time encoding can only # represent a time up to about 5 minutes in the past), but we # don't really need to know the timestamp anyway. We'll just # arbitrarily place it at right now. now = globalClock.getFrameTime() self.smoother.setTimestamp(now) self.smoother.clearPositions(1) self.smoother.markPosition() def setComponentTLive(self, timestamp): # This is the variant of setComponentT() that will be called # whenever we receive a live update directly from the other # client. This is because the component functions, above, # call this function explicitly instead of setComponentT(). now = globalClock.getFrameTime() local = globalClockDelta.networkToLocalTime(timestamp, now) chug = globalClock.getRealTime() - now # Sanity check the timestamp from the other avatar. It should # be just slightly in the past, but it might be off by as much # as this frame's amount of time forward or back. howFarFuture = local - now if howFarFuture - chug >= MaxFuture: # Too far off; resync both of us. if self.cr.timeManager != None: self.cr.timeManager.synchronize("Packets from %d off by %.1f s" % (self.doId, howFarFuture)) self.d_suggestResync(self.cr.localToonDoId) self.smoother.setTimestamp(local) self.smoother.markPosition() def b_clearSmoothing(self): self.d_clearSmoothing() self.clearSmoothing() def d_clearSmoothing(self): self.sendUpdate("clearSmoothing", [0]) def clearSmoothing(self, bogus = None): # Call this to invalidate all the old position reports # (e.g. just before popping to a new position). self.smoother.clearPositions(1) def wrtReparentTo(self, parent): # We override this NodePath method to force it to # automatically reset the smoothing position when we call it. if self.smoothStarted: self.forceToTruePosition() NodePath.wrtReparentTo(self, parent) self.reloadPosition() else: NodePath.wrtReparentTo(self, parent) def isLocal(self): # Local toon will override this to return true return 0