// Filename: texture.cxx // Created by: mike (09Jan97) // //////////////////////////////////////////////////////////////////// // // PANDA 3D SOFTWARE // Copyright (c) Carnegie Mellon University. All rights reserved. // // All use of this software is subject to the terms of the revised BSD // license. You should have received a copy of this license along // with this source code in a file named "LICENSE." // //////////////////////////////////////////////////////////////////// #include "pandabase.h" #include "texture.h" #include "config_gobj.h" #include "config_util.h" #include "texturePool.h" #include "textureContext.h" #include "bamCache.h" #include "bamCacheRecord.h" #include "datagram.h" #include "datagramIterator.h" #include "bamReader.h" #include "bamWriter.h" #include "string_utils.h" #include "preparedGraphicsObjects.h" #include "pnmImage.h" #include "virtualFileSystem.h" #include "datagramInputFile.h" #include "datagramOutputFile.h" #include "bam.h" #include "zStream.h" #include "indent.h" #include "cmath.h" #include "pStatTimer.h" #include "pbitops.h" #include "streamReader.h" #include "texturePeeker.h" #ifdef HAVE_SQUISH #include #endif // HAVE_SQUISH #include ConfigVariableEnum texture_quality_level ("texture-quality-level", Texture::QL_normal, PRC_DESC("This specifies a global quality level for all textures. You " "may specify either fastest, normal, or best. This actually " "affects the meaning of Texture::set_quality_level(QL_default), " "so it may be overridden on a per-texture basis. This generally " "only has an effect when using the tinydisplay software renderer; " "it has little or no effect on normal, hardware-accelerated " "renderers. See Texture::set_quality_level().")); PStatCollector Texture::_texture_read_pcollector("*:Texture:Read"); TypeHandle Texture::_type_handle; AutoTextureScale Texture::_textures_power_2 = ATS_UNSPECIFIED; // Stuff to read and write DDS files. // little-endian, of course #define DDS_MAGIC 0x20534444 // DDS_header.dwFlags #define DDSD_CAPS 0x00000001 #define DDSD_HEIGHT 0x00000002 #define DDSD_WIDTH 0x00000004 #define DDSD_PITCH 0x00000008 #define DDSD_PIXELFORMAT 0x00001000 #define DDSD_MIPMAPCOUNT 0x00020000 #define DDSD_LINEARSIZE 0x00080000 #define DDSD_DEPTH 0x00800000 // DDS_header.sPixelFormat.dwFlags #define DDPF_ALPHAPIXELS 0x00000001 #define DDPF_FOURCC 0x00000004 #define DDPF_INDEXED 0x00000020 #define DDPF_RGB 0x00000040 // DDS_header.sCaps.dwCaps1 #define DDSCAPS_COMPLEX 0x00000008 #define DDSCAPS_TEXTURE 0x00001000 #define DDSCAPS_MIPMAP 0x00400000 // DDS_header.sCaps.dwCaps2 #define DDSCAPS2_CUBEMAP 0x00000200 #define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400 #define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800 #define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000 #define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000 #define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000 #define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000 #define DDSCAPS2_VOLUME 0x00200000 struct DDSPixelFormat { unsigned int pf_size; unsigned int pf_flags; unsigned int four_cc; unsigned int rgb_bitcount; unsigned int r_mask; unsigned int g_mask; unsigned int b_mask; unsigned int a_mask; }; struct DDSCaps2 { unsigned int caps1; unsigned int caps2; unsigned int ddsx; }; struct DDSHeader { unsigned int dds_magic; unsigned int dds_size; unsigned int dds_flags; unsigned int height; unsigned int width; unsigned int pitch; unsigned int depth; unsigned int num_levels; DDSPixelFormat pf; DDSCaps2 caps; }; //////////////////////////////////////////////////////////////////// // Function: Texture::Constructor // Access: Published // Description: Constructs an empty texture. The default is to set // up the texture as an empty 2-d texture; follow up // with one of the variants of setup_texture() if this // is not what you want. //////////////////////////////////////////////////////////////////// Texture:: Texture(const string &name) : Namable(name), _lock(name), _cvar(_lock) { _reloading = false; _primary_file_num_channels = 0; _alpha_file_channel = 0; _magfilter = FT_default; _minfilter = FT_default; _wrap_u = WM_repeat; _wrap_v = WM_repeat; _wrap_w = WM_repeat; _anisotropic_degree = 1; _keep_ram_image = true; _border_color.set(0.0f, 0.0f, 0.0f, 1.0f); _compression = CM_default; _ram_image_compression = CM_off; _render_to_texture = false; _match_framebuffer_format = false; _post_load_store_cache = false; _quality_level = QL_default; _texture_type = TT_2d_texture; _x_size = 0; _y_size = 1; _z_size = 1; do_set_format(F_rgb); do_set_component_type(T_unsigned_byte); _pad_x_size = 0; _pad_y_size = 0; _pad_z_size = 0; _orig_file_x_size = 0; _orig_file_y_size = 0; _loaded_from_image = false; _loaded_from_txo = false; _has_read_pages = false; _has_read_mipmaps = false; _num_mipmap_levels_read = 0; _simple_x_size = 0; _simple_y_size = 0; _simple_ram_image._page_size = 0; } //////////////////////////////////////////////////////////////////// // Function: Texture::Copy Constructor // Access: Protected // Description: Use Texture::make_copy() to make a duplicate copy of // an existing Texture. //////////////////////////////////////////////////////////////////// Texture:: Texture(const Texture ©) : Namable(copy), _lock(copy.get_name()), _cvar(_lock) { _reloading = false; _has_read_pages = false; _has_read_mipmaps = false; _num_mipmap_levels_read = 0; operator = (copy); } //////////////////////////////////////////////////////////////////// // Function: Texture::Copy Assignment Operator // Access: Protected // Description: Use Texture::make_copy() to make a duplicate copy of // an existing Texture. //////////////////////////////////////////////////////////////////// void Texture:: operator = (const Texture ©) { Namable::operator = (copy); MutexHolder holder(_lock); { MutexHolder holder2(copy._lock); do_assign(copy); } ++_properties_modified; ++_image_modified; ++_simple_image_modified; } //////////////////////////////////////////////////////////////////// // Function: Texture::Destructor // Access: Published, Virtual // Description: //////////////////////////////////////////////////////////////////// Texture:: ~Texture() { release_all(); nassertv(!_reloading); } //////////////////////////////////////////////////////////////////// // Function: Texture::generate_normalization_cube_map // Access: Published // Description: Generates a special cube map image in the texture // that can be used to apply bump mapping effects: for // each texel in the cube map that is indexed by the 3-d // texture coordinates (x, y, z), the resulting value is // the normalized vector (x, y, z) (compressed from // -1..1 into 0..1). //////////////////////////////////////////////////////////////////// void Texture:: generate_normalization_cube_map(int size) { MutexHolder holder(_lock); do_setup_texture(TT_cube_map, size, size, 6, T_unsigned_byte, F_rgb); PTA_uchar image = do_make_ram_image(); _keep_ram_image = true; ++_image_modified; ++_properties_modified; float half_size = (float)size * 0.5f; float center = half_size - 0.5f; LMatrix4f scale (127.5f, 0.0f, 0.0f, 0.0f, 0.0f, 127.5f, 0.0f, 0.0f, 0.0f, 0.0f, 127.5f, 0.0f, 127.5f, 127.5f, 127.5f, 1.0f); unsigned char *p = image; int xi, yi; // Page 0: positive X. for (yi = 0; yi < size; ++yi) { for (xi = 0; xi < size; ++xi) { LVector3f vec(half_size, center - yi, center - xi); vec.normalize(); vec = scale.xform_point(vec); *p++ = (unsigned char)vec[2]; *p++ = (unsigned char)vec[1]; *p++ = (unsigned char)vec[0]; } } // Page 1: negative X. for (yi = 0; yi < size; ++yi) { for (xi = 0; xi < size; ++xi) { LVector3f vec(-half_size, center - yi, xi - center); vec.normalize(); vec = scale.xform_point(vec); *p++ = (unsigned char)vec[2]; *p++ = (unsigned char)vec[1]; *p++ = (unsigned char)vec[0]; } } // Page 2: positive Y. for (yi = 0; yi < size; ++yi) { for (xi = 0; xi < size; ++xi) { LVector3f vec(xi - center, half_size, yi - center); vec.normalize(); vec = scale.xform_point(vec); *p++ = (unsigned char)vec[2]; *p++ = (unsigned char)vec[1]; *p++ = (unsigned char)vec[0]; } } // Page 3: negative Y. for (yi = 0; yi < size; ++yi) { for (xi = 0; xi < size; ++xi) { LVector3f vec(xi - center, -half_size, center - yi); vec.normalize(); vec = scale.xform_point(vec); *p++ = (unsigned char)vec[2]; *p++ = (unsigned char)vec[1]; *p++ = (unsigned char)vec[0]; } } // Page 4: positive Z. for (yi = 0; yi < size; ++yi) { for (xi = 0; xi < size; ++xi) { LVector3f vec(xi - center, center - yi, half_size); vec.normalize(); vec = scale.xform_point(vec); *p++ = (unsigned char)vec[2]; *p++ = (unsigned char)vec[1]; *p++ = (unsigned char)vec[0]; } } // Page 5: negative Z. for (yi = 0; yi < size; ++yi) { for (xi = 0; xi < size; ++xi) { LVector3f vec(center - xi, center - yi, -half_size); vec.normalize(); vec = scale.xform_point(vec); *p++ = (unsigned char)vec[2]; *p++ = (unsigned char)vec[1]; *p++ = (unsigned char)vec[0]; } } } //////////////////////////////////////////////////////////////////// // Function: Texture::generate_alpha_scale_map // Access: Published // Description: Generates a special 256x1 1-d texture that can be // used to apply an arbitrary alpha scale to objects by // judicious use of texture matrix. The texture is a // gradient, with an alpha of 0 on the left (U = 0), and // 255 on the right (U = 1). //////////////////////////////////////////////////////////////////// void Texture:: generate_alpha_scale_map() { MutexHolder holder(_lock); do_setup_texture(TT_1d_texture, 256, 1, 1, T_unsigned_byte, F_alpha); _wrap_u = WM_clamp; _minfilter = FT_nearest; _magfilter = FT_nearest; _compression = CM_off; ++_image_modified; ++_properties_modified; PTA_uchar image = do_make_ram_image(); _keep_ram_image = true; unsigned char *p = image; for (int xi = 0; xi < 256; ++xi) { *p++ = xi; } } //////////////////////////////////////////////////////////////////// // Function: Texture::read // Access: Published // Description: Reads the named filename into the texture. //////////////////////////////////////////////////////////////////// bool Texture:: read(const Filename &fullpath, const LoaderOptions &options) { MutexHolder holder(_lock); do_clear(); ++_properties_modified; ++_image_modified; return do_read(fullpath, Filename(), 0, 0, 0, 0, false, false, options, NULL); } //////////////////////////////////////////////////////////////////// // Function: Texture::read // Access: Published // Description: Combine a 3-component image with a grayscale image // to get a 4-component image. // // See the description of the full-parameter read() // method for the meaning of the // primary_file_num_channels and alpha_file_channel // parameters. //////////////////////////////////////////////////////////////////// bool Texture:: read(const Filename &fullpath, const Filename &alpha_fullpath, int primary_file_num_channels, int alpha_file_channel, const LoaderOptions &options) { MutexHolder holder(_lock); do_clear(); ++_properties_modified; ++_image_modified; return do_read(fullpath, alpha_fullpath, primary_file_num_channels, alpha_file_channel, 0, 0, false, false, options, NULL); } //////////////////////////////////////////////////////////////////// // Function: Texture::read // Access: Published // Description: Reads a single file into a single page or mipmap // level, or automatically reads a series of files into // a series of pages and/or mipmap levels. // // See the description of the full-parameter read() // method for the meaning of the various parameters. //////////////////////////////////////////////////////////////////// bool Texture:: read(const Filename &fullpath, int z, int n, bool read_pages, bool read_mipmaps, const LoaderOptions &options) { MutexHolder holder(_lock); ++_properties_modified; ++_image_modified; return do_read(fullpath, Filename(), 0, 0, z, n, read_pages, read_mipmaps, options, NULL); } //////////////////////////////////////////////////////////////////// // Function: Texture::read // Access: Published // Description: Reads the texture from the indicated filename. If // primary_file_num_channels is not 0, it specifies the // number of components to downgrade the image to if it // is greater than this number. // // If the filename has the extension .txo, this // implicitly reads a texture object instead of a // filename (which replaces all of the texture // properties). In this case, all the rest of the // parameters are ignored, and the filename should not // contain any hash marks; just the one named file will // be read, since a single .txo file can contain all // pages and mipmaps necessary to define a texture. // // If alpha_fullpath is not empty, it specifies the name // of a file from which to retrieve the alpha. In this // case, alpha_file_channel represents the numeric // channel of this image file to use as the resulting // texture's alpha channel; usually, this is 0 to // indicate the grayscale combination of r, g, b; or it // may be a one-based channel number, e.g. 1 for the red // channel, 2 for the green channel, and so on. // // If read pages is false, then z indicates the page // number into which this image will be assigned. // Normally this is 0 for the first (or only) page of // the texture. 3-D textures have one page for each // level of depth, and cube map textures always have six // pages. // // If read_pages is true, multiple images will be read // at once, one for each page of a cube map or a 3-D // texture. In this case, the filename should contain a // sequence of one or more hash marks ("#") which will // be filled in with the z value of each page, // zero-based. In this case, the z parameter indicates // the maximum z value that will be loaded, or 0 to load // all filenames that exist. // // If read_mipmaps is false, then n indicates the mipmap // level to which this image will be assigned. Normally // this is 0 for the base texture image, but it is // possible to load custom mipmap levels into the later // images. After the base texture image is loaded (thus // defining the size of the texture), you can call // get_expected_num_mipmap_levels() to determine the // maximum sensible value for n. // // If read_mipmaps is true, multiple images will be read // as above, but this time the images represent the // different mipmap levels of the texture image. In // this case, the n parameter indicates the maximum n // value that will be loaded, or 0 to load all filenames // that exist (up to the expected number of mipmap // levels). // // If both read_pages and read_mipmaps is true, then // both sequences will be read; the filename should // contain two sequences of hash marks, separated by // some character such as a hyphen, underscore, or dot. // The first hash mark sequence will be filled in with // the mipmap level, while the second hash mark sequence // will be the page index. // // This method implicitly sets keep_ram_image to false. //////////////////////////////////////////////////////////////////// bool Texture:: read(const Filename &fullpath, const Filename &alpha_fullpath, int primary_file_num_channels, int alpha_file_channel, int z, int n, bool read_pages, bool read_mipmaps, BamCacheRecord *record, const LoaderOptions &options) { MutexHolder holder(_lock); ++_properties_modified; ++_image_modified; return do_read(fullpath, alpha_fullpath, primary_file_num_channels, alpha_file_channel, z, n, read_pages, read_mipmaps, options, record); } //////////////////////////////////////////////////////////////////// // Function: Texture::estimate_texture_memory // Access: Published // Description: Estimates the amount of texture memory that will be // consumed by loading this texture. This returns a // value that is not specific to any particular graphics // card or driver; it tries to make a reasonable // assumption about how a driver will load the texture. // It does not account for texture compression or // anything fancy. This is mainly useful for debugging // and reporting purposes. // // Returns a value in bytes. //////////////////////////////////////////////////////////////////// size_t Texture:: estimate_texture_memory() const { MutexHolder holder(_lock); size_t pixels = _x_size * _y_size; size_t bpp = 4; switch (_format) { case Texture::F_rgb332: bpp = 1; break; case Texture::F_alpha: case Texture::F_red: case Texture::F_green: case Texture::F_blue: case Texture::F_luminance: case Texture::F_luminance_alpha: case Texture::F_luminance_alphamask: bpp = 4; break; case Texture::F_rgba: case Texture::F_rgba4: case Texture::F_rgbm: case Texture::F_rgb: case Texture::F_rgb5: case Texture::F_rgba5: bpp = 4; break; case Texture::F_color_index: case Texture::F_rgb8: case Texture::F_rgba8: bpp = 4; break; case Texture::F_depth_stencil: bpp = 32; break; case Texture::F_rgba12: case Texture::F_rgb12: bpp = 6; break; case Texture::F_rgba16: bpp = 8; break; case Texture::F_rgba32: bpp = 16; break; } size_t bytes = pixels * bpp; if (is_mipmap(_minfilter)) { bytes = (bytes * 4) / 3; } return bytes; } //////////////////////////////////////////////////////////////////// // Function: Texture::set_aux_data // Access: Published // Description: Records an arbitrary object in the Texture, // associated with a specified key. The object may // later be retrieved by calling get_aux_data() with the // same key. // // These data objects are not recorded to a bam or txo // file. //////////////////////////////////////////////////////////////////// void Texture:: set_aux_data(const string &key, TypedReferenceCount *aux_data) { MutexHolder holder(_lock); _aux_data[key] = aux_data; } //////////////////////////////////////////////////////////////////// // Function: Texture::clear_aux_data // Access: Published // Description: Removes a record previously recorded via // set_aux_data(). //////////////////////////////////////////////////////////////////// void Texture:: clear_aux_data(const string &key) { MutexHolder holder(_lock); _aux_data.erase(key); } //////////////////////////////////////////////////////////////////// // Function: Texture::get_aux_data // Access: Published // Description: Returns a record previously recorded via // set_aux_data(). Returns NULL if there was no record // associated with the indicated key. //////////////////////////////////////////////////////////////////// TypedReferenceCount *Texture:: get_aux_data(const string &key) const { MutexHolder holder(_lock); AuxData::const_iterator di; di = _aux_data.find(key); if (di != _aux_data.end()) { return (*di).second; } return NULL; } //////////////////////////////////////////////////////////////////// // Function: Texture::read_txo // Access: Published // Description: Reads the texture from a Panda texture object. This // defines the complete Texture specification, including // the image data as well as all texture properties. // // The filename is just for reference. //////////////////////////////////////////////////////////////////// bool Texture:: read_txo(istream &in, const string &filename) { MutexHolder holder(_lock); ++_properties_modified; ++_image_modified; return do_read_txo(in, filename); } //////////////////////////////////////////////////////////////////// // Function: Texture::write_txo // Access: Published // Description: Writes the texture to a Panda texture object. This // defines the complete Texture specification, including // the image data as well as all texture properties. // // The filename is just for reference. //////////////////////////////////////////////////////////////////// bool Texture:: write_txo(ostream &out, const string &filename) const { MutexHolder holder(_lock); return do_write_txo(out, filename); } //////////////////////////////////////////////////////////////////// // Function: Texture::read_dds // Access: Published // Description: Reads the texture from a DDS file object. This is a // Microsoft-defined file format; it is similar in // principle to a txo object, in that it is designed to // contain the texture image in a form as similar as // possible to its runtime image, and it can contain // mipmaps, pre-compressed textures, and so on. // // As with read_txo, the filename is just for reference. //////////////////////////////////////////////////////////////////// bool Texture:: read_dds(istream &in, const string &filename, bool header_only) { MutexHolder holder(_lock); ++_properties_modified; ++_image_modified; return do_read_dds(in, filename, header_only); } //////////////////////////////////////////////////////////////////// // Function: Texture::reload // Access: Published // Description: Re-reads the Texture from its disk file. Useful when // you know the image on disk has recently changed, and // you want to update the Texture image. // // Returns true on success, false on failure (in which // case, the Texture may or may not still be valid). //////////////////////////////////////////////////////////////////// bool Texture:: reload() { MutexHolder holder(_lock); if (_loaded_from_image && !_fullpath.empty()) { do_clear_ram_image(); do_unlock_and_reload_ram_image(true); return do_has_ram_image(); } // We don't have a filename to load from. return false; } //////////////////////////////////////////////////////////////////// // Function: Texture::load_related // Access: Published // Description: Loads a texture whose filename is derived by // concatenating a suffix to the filename of this // texture. May return NULL, for example, if this // texture doesn't have a filename. //////////////////////////////////////////////////////////////////// Texture *Texture:: load_related(const InternalName *suffix) const { MutexHolder holder(_lock); RelatedTextures::const_iterator ti; ti = _related_textures.find(suffix); if (ti != _related_textures.end()) { return (*ti).second; } if (_fullpath.empty()) { return (Texture*)NULL; } Filename main = _fullpath; main.set_basename_wo_extension(main.get_basename_wo_extension() + suffix->get_name()); PT(Texture) res; if (!_alpha_fullpath.empty()) { Filename alph = _alpha_fullpath; alph.set_basename_wo_extension(alph.get_basename_wo_extension() + suffix->get_name()); VirtualFileSystem *vfs = VirtualFileSystem::get_global_ptr(); if (vfs->exists(alph)) { // The alpha variant of the filename, with the suffix, exists. // Use it to load the texture. res = TexturePool::load_texture(main, alph, _primary_file_num_channels, _alpha_file_channel, false); } else { // If the alpha variant of the filename doesn't exist, just go // ahead and load the related texture without alpha. res = TexturePool::load_texture(main); } } else { // No alpha filename--just load the single file. It doesn't // necessarily have the same number of channels as this one. res = TexturePool::load_texture(main); } // I'm casting away the const-ness of 'this' because this // field is only a cache. ((Texture *)this)->_related_textures.insert(RelatedTextures::value_type(suffix, res)); return res; } //////////////////////////////////////////////////////////////////// // Function: Texture::set_ram_image // Access: Published // Description: Replaces the current system-RAM image with the new // data. If compression is not CM_off, it indicates // that the new data is already pre-compressed in the // indicated format. // // This does *not* affect keep_ram_image. //////////////////////////////////////////////////////////////////// void Texture:: set_ram_image(PTA_uchar image, Texture::CompressionMode compression, size_t page_size) { MutexHolder holder(_lock); nassertv(compression != CM_default); nassertv(compression != CM_off || image.size() == do_get_expected_ram_image_size()); if (_ram_images.empty()) { _ram_images.push_back(RamImage()); } else { do_clear_ram_mipmap_images(); } if (page_size == 0) { page_size = image.size(); } if (_ram_images[0]._image != image || _ram_images[0]._page_size != page_size || _ram_image_compression != compression) { _ram_images[0]._image = image; _ram_images[0]._page_size = page_size; _ram_image_compression = compression; ++_image_modified; } } //////////////////////////////////////////////////////////////////// // Function: Texture::get_keep_ram_image // Access: Published, Virtual // Description: Returns the flag that indicates whether this Texture // is eligible to have its main RAM copy of the texture // memory dumped when the texture is prepared for // rendering. See set_keep_ram_image(). //////////////////////////////////////////////////////////////////// bool Texture:: get_keep_ram_image() const { return _keep_ram_image; } //////////////////////////////////////////////////////////////////// // Function: Texture::get_num_loadable_ram_mipmap_images // Access: Published // Description: Returns the number of contiguous mipmap levels that // exist in RAM, up until the first gap in the sequence. // It is guaranteed that at least mipmap levels [0, // get_num_ram_mipmap_images()) exist. // // The number returned will never exceed the number of // required mipmap images based on the size of the // texture and its filter mode. // // This method is different from // get_num_ram_mipmap_images() in that it returns only // the number of mipmap levels that can actually be // usefully loaded, regardless of the actual number that // may be stored. //////////////////////////////////////////////////////////////////// int Texture:: get_num_loadable_ram_mipmap_images() const { MutexHolder holder(_lock); if (_ram_images.empty() || _ram_images[0]._image.empty()) { // If we don't even have a base image, the answer is none. return 0; } if (!is_mipmap(_minfilter)) { // If we have a base image and don't require mipmapping, the // answer is 1. return 1; } // Check that we have enough mipmap levels to meet the size // requirements. int size = max(_x_size, max(_y_size, _z_size)); int n = 0; int x = 1; while (x < size) { x = (x << 1); ++n; if (n >= (int)_ram_images.size() || _ram_images[n]._image.empty()) { return n; } } ++n; return n; } //////////////////////////////////////////////////////////////////// // Function: Texture::has_all_ram_mipmap_images // Access: Published // Description: Returns true if all expected mipmap levels have been // defined and exist in the system RAM, or false if even // one mipmap level is missing. //////////////////////////////////////////////////////////////////// bool Texture:: has_all_ram_mipmap_images() const { MutexHolder holder(_lock); if (_ram_images.empty() || _ram_images[0]._image.empty()) { // If we don't even have a base image, the answer is no. return false; } if (!is_mipmap(_minfilter)) { // If we have a base image and don't require mipmapping, the // answer is yes. return true; } // Check that we have enough mipmap levels to meet the size // requirements. int size = max(_x_size, max(_y_size, _z_size)); int n = 0; int x = 1; while (x < size) { x = (x << 1); ++n; if (n >= (int)_ram_images.size() || _ram_images[n]._image.empty()) { return false; } } return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::get_ram_mipmap_image // Access: Published // Description: Returns the system-RAM image data associated with the // nth mipmap level, if present. Returns NULL if the // nth mipmap level is not present. //////////////////////////////////////////////////////////////////// CPTA_uchar Texture:: get_ram_mipmap_image(int n) { MutexHolder holder(_lock); if (n < (int)_ram_images.size() && !_ram_images[n]._image.empty()) { return _ram_images[n]._image; } return CPTA_uchar(get_class_type()); } //////////////////////////////////////////////////////////////////// // Function: Texture::set_ram_mipmap_image // Access: Published // Description: Replaces the current system-RAM image for the // indicated mipmap level with the new data. If // compression is not CM_off, it indicates that the new // data is already pre-compressed in the indicated // format. // // This does *not* affect keep_ram_image. //////////////////////////////////////////////////////////////////// void Texture:: set_ram_mipmap_image(int n, PTA_uchar image, size_t page_size) { MutexHolder holder(_lock); nassertv(_ram_image_compression != CM_off || image.size() == do_get_expected_ram_mipmap_image_size(n)); while (n >= (int)_ram_images.size()) { _ram_images.push_back(RamImage()); _ram_images.back()._page_size = 0; } if (page_size == 0) { page_size = image.size(); } if (_ram_images[n]._image != image || _ram_images[n]._page_size != page_size) { _ram_images[n]._image = image; _ram_images[n]._page_size = page_size; ++_image_modified; } } //////////////////////////////////////////////////////////////////// // Function: Texture::clear_ram_mipmap_image // Access: Published // Description: Discards the current system-RAM image for the nth // mipmap level. //////////////////////////////////////////////////////////////////// void Texture:: clear_ram_mipmap_image(int n) { MutexHolder holder(_lock); if (n >= (int)_ram_images.size()) { return; } _ram_images[n]._image.clear(); _ram_images[n]._page_size = 0; } //////////////////////////////////////////////////////////////////// // Function: Texture::generate_ram_mipmap_images // Access: Published // Description: Automatically fills in the n mipmap levels of the // Texture, based on the texture's source image. This // requires the texture's ram image to be available in // system memory. // // This call is not normally necessary, since the mipmap // levels will be generated automatically if needed. // But there may be certain cases in which you would // like to call this explicitly. //////////////////////////////////////////////////////////////////// void Texture:: generate_ram_mipmap_images() { MutexHolder holder(_lock); nassertv(do_has_ram_image()); nassertv(_ram_image_compression == CM_off); nassertv(_component_type != T_float); do_clear_ram_mipmap_images(); if (gobj_cat.is_debug()) { gobj_cat.debug() << "Generating mipmap levels for " << *this << "\n"; } if (_texture_type == Texture::TT_3d_texture && _z_size != 1) { // Eek, a 3-D texture. int x_size = _x_size; int y_size = _y_size; int z_size = _z_size; int n = 0; while (x_size > 1 || y_size > 1 || z_size > 1) { _ram_images.push_back(RamImage()); filter_3d_mipmap_level(_ram_images[n + 1], _ram_images[n], x_size, y_size, z_size); x_size = max(x_size >> 1, 1); y_size = max(y_size >> 1, 1); z_size = max(z_size >> 1, 1); ++n; } } else { // A 1-D, 2-D, or cube map texture. int x_size = _x_size; int y_size = _y_size; int n = 0; while (x_size > 1 || y_size > 1) { _ram_images.push_back(RamImage()); filter_2d_mipmap_pages(_ram_images[n + 1], _ram_images[n], x_size, y_size); x_size = max(x_size >> 1, 1); y_size = max(y_size >> 1, 1); ++n; } } } //////////////////////////////////////////////////////////////////// // Function: Texture::modify_simple_ram_image // Access: Published // Description: Returns a modifiable pointer to the internal "simple" // texture image. See set_simple_ram_image(). //////////////////////////////////////////////////////////////////// PTA_uchar Texture:: modify_simple_ram_image() { MutexHolder holder(_lock); _simple_image_date_generated = (PN_int32)time(NULL); return _simple_ram_image._image; } //////////////////////////////////////////////////////////////////// // Function: Texture::new_simple_ram_image // Access: Published // Description: Creates an empty array for the simple ram image of // the indicated size, and returns a modifiable pointer // to the new array. See set_simple_ram_image(). //////////////////////////////////////////////////////////////////// PTA_uchar Texture:: new_simple_ram_image(int x_size, int y_size) { MutexHolder holder(_lock); nassertr(_texture_type == TT_2d_texture, PTA_uchar()); size_t expected_page_size = (size_t)(x_size * y_size * 4); _simple_x_size = x_size; _simple_y_size = y_size; _simple_ram_image._image = PTA_uchar::empty_array(expected_page_size); _simple_ram_image._page_size = expected_page_size; _simple_image_date_generated = (PN_int32)time(NULL); ++_simple_image_modified; return _simple_ram_image._image; } //////////////////////////////////////////////////////////////////// // Function: Texture::generate_simple_ram_image // Access: Published // Description: Computes the "simple" ram image by loading the main // RAM image, if it is not already available, and // reducing it to 16x16 or smaller. This may be an // expensive operation. //////////////////////////////////////////////////////////////////// void Texture:: generate_simple_ram_image() { MutexHolder holder(_lock); if (_texture_type != TT_2d_texture || _ram_image_compression != CM_off) { return; } PNMImage pnmimage; if (!do_store_one(pnmimage, 0, 0)) { return; } // Start at the suggested size from the config file. int x_size = simple_image_size.get_word(0); int y_size = simple_image_size.get_word(1); // Limit it to no larger than the source image, and also make it a // power of two. x_size = down_to_power_2(min(x_size, _x_size)); y_size = down_to_power_2(min(y_size, _y_size)); // Generate a reduced image of that size. PNMImage scaled(x_size, y_size, pnmimage.get_num_channels()); scaled.quick_filter_from(pnmimage); // Make sure the reduced image has 4 components, by convention. if (!scaled.has_alpha()) { scaled.add_alpha(); scaled.alpha_fill(1.0); } scaled.set_num_channels(4); // Now see if we can go even smaller. bool did_anything; do { did_anything = false; // Try to reduce X. if (x_size > 1) { int new_x_size = (x_size >> 1); PNMImage smaller(new_x_size, y_size, 4); smaller.quick_filter_from(scaled); PNMImage bigger(x_size, y_size, 4); bigger.quick_filter_from(smaller); if (compare_images(scaled, bigger)) { scaled.take_from(smaller); x_size = new_x_size; did_anything = true; } } // Try to reduce Y. if (y_size > 1) { int new_y_size = (y_size >> 1); PNMImage smaller(x_size, new_y_size, 4); smaller.quick_filter_from(scaled); PNMImage bigger(x_size, y_size, 4); bigger.quick_filter_from(smaller); if (compare_images(scaled, bigger)) { scaled.take_from(smaller); y_size = new_y_size; did_anything = true; } } } while (did_anything); size_t expected_page_size = (size_t)(x_size * y_size * 4); PTA_uchar image = PTA_uchar::empty_array(expected_page_size, get_class_type()); convert_from_pnmimage(image, expected_page_size, 0, scaled, 4, 1); do_set_simple_ram_image(image, x_size, y_size); _simple_image_date_generated = (PN_int32)time(NULL); } //////////////////////////////////////////////////////////////////// // Function: Texture::peek // Access: Published // Description: Returns a TexturePeeker object that can be used to // examine the individual texels stored within this // Texture by (u, v) coordinate. // // If the texture has a ram image resident, that image // is used. If it does not have a full ram image but // does have a simple_ram_image resident, that image is // used instead. If neither image is resident the full // image is reloaded. // // Returns NULL if the texture cannot find an image to // load, or the texture format is incompatible. //////////////////////////////////////////////////////////////////// PT(TexturePeeker) Texture:: peek() { MutexHolder holder(_lock); PT(TexturePeeker) peeker = new TexturePeeker(this); if (peeker->is_valid()) { return peeker; } return NULL; } //////////////////////////////////////////////////////////////////// // Function: Texture::prepare // Access: Published // Description: Indicates that the texture should be enqueued to be // prepared in the indicated prepared_objects at the // beginning of the next frame. This will ensure the // texture is already loaded into texture memory if it // is expected to be rendered soon. // // Use this function instead of prepare_now() to preload // textures from a user interface standpoint. //////////////////////////////////////////////////////////////////// void Texture:: prepare(PreparedGraphicsObjects *prepared_objects) { prepared_objects->enqueue_texture(this); } //////////////////////////////////////////////////////////////////// // Function: Texture::is_prepared // Access: Published // Description: Returns true if the texture has already been prepared // or enqueued for preparation on the indicated GSG, // false otherwise. //////////////////////////////////////////////////////////////////// bool Texture:: is_prepared(PreparedGraphicsObjects *prepared_objects) const { MutexHolder holder(_lock); Contexts::const_iterator ci; ci = _contexts.find(prepared_objects); if (ci != _contexts.end()) { return true; } return prepared_objects->is_texture_queued(this); } //////////////////////////////////////////////////////////////////// // Function: Texture::was_image_modified // Access: Published // Description: Returns true if the texture needs to be re-loaded // onto the indicated GSG, either because its image data // is out-of-date, or because it's not fully prepared // now. //////////////////////////////////////////////////////////////////// bool Texture:: was_image_modified(PreparedGraphicsObjects *prepared_objects) const { MutexHolder holder(_lock); Contexts::const_iterator ci; ci = _contexts.find(prepared_objects); if (ci != _contexts.end()) { TextureContext *tc = (*ci).second; return tc->was_image_modified(); } return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::release // Access: Published // Description: Frees the texture context only on the indicated object, // if it exists there. Returns true if it was released, // false if it had not been prepared. //////////////////////////////////////////////////////////////////// bool Texture:: release(PreparedGraphicsObjects *prepared_objects) { MutexHolder holder(_lock); Contexts::iterator ci; ci = _contexts.find(prepared_objects); if (ci != _contexts.end()) { TextureContext *tc = (*ci).second; if (tc != (TextureContext *)NULL) { prepared_objects->release_texture(tc); } else { _contexts.erase(ci); } return true; } // Maybe it wasn't prepared yet, but it's about to be. return prepared_objects->dequeue_texture(this); } //////////////////////////////////////////////////////////////////// // Function: Texture::release_all // Access: Published // Description: Frees the context allocated on all objects for which // the texture has been declared. Returns the number of // contexts which have been freed. //////////////////////////////////////////////////////////////////// int Texture:: release_all() { MutexHolder holder(_lock); // We have to traverse a copy of the _contexts list, because the // PreparedGraphicsObjects object will call clear_prepared() in response // to each release_texture(), and we don't want to be modifying the // _contexts list while we're traversing it. Contexts temp = _contexts; int num_freed = (int)_contexts.size(); Contexts::const_iterator ci; for (ci = temp.begin(); ci != temp.end(); ++ci) { PreparedGraphicsObjects *prepared_objects = (*ci).first; TextureContext *tc = (*ci).second; if (tc != (TextureContext *)NULL) { prepared_objects->release_texture(tc); } } // There might still be some outstanding contexts in the map, if // there were any NULL pointers there. Eliminate them. _contexts.clear(); return num_freed; } //////////////////////////////////////////////////////////////////// // Function: Texture::write // Access: Published // Description: Not to be confused with write(Filename), this method // simply describes the texture properties. //////////////////////////////////////////////////////////////////// void Texture:: write(ostream &out, int indent_level) const { MutexHolder holder(_lock); indent(out, indent_level) << _texture_type << " " << get_name(); if (!_filename.empty()) { out << " (from " << _filename << ")"; } out << "\n"; indent(out, indent_level + 2); switch (_texture_type) { case TT_1d_texture: out << "1-d, " << _x_size; break; case TT_2d_texture: out << "2-d, " << _x_size << " x " << _y_size; break; case TT_3d_texture: out << "3-d, " << _x_size << " x " << _y_size << " x " << _z_size; break; case TT_cube_map: out << "cube map, " << _x_size << " x " << _y_size; break; } out << " pixels, each " << _num_components; switch (_component_type) { case T_unsigned_byte: out << " bytes"; break; case T_unsigned_short: out << " shorts"; break; case T_float: out << " floats"; break; } out << ", "; switch (_format) { case F_color_index: out << "color_index"; break; case F_depth_stencil: out << "depth_stencil"; break; case F_rgba: out << "rgba"; break; case F_rgbm: out << "rgbm"; break; case F_rgba32: out << "rgba32"; break; case F_rgba16: out << "rgba16"; break; case F_rgba12: out << "rgba12"; break; case F_rgba8: out << "rgba8"; break; case F_rgba4: out << "rgba4"; break; case F_rgb: out << "rgb"; break; case F_rgb12: out << "rgb12"; break; case F_rgb8: out << "rgb8"; break; case F_rgb5: out << "rgb5"; break; case F_rgba5: out << "rgba5"; break; case F_rgb332: out << "rgb332"; break; case F_red: out << "red"; break; case F_green: out << "green"; break; case F_blue: out << "blue"; break; case F_alpha: out << "alpha"; break; case F_luminance: out << "luminance"; break; case F_luminance_alpha: out << "luminance_alpha"; break; case F_luminance_alphamask: out << "luminance_alphamask"; break; } if (_compression != CM_default) { out << ", compression " << _compression; } out << "\n"; indent(out, indent_level + 2); switch (_texture_type) { case TT_1d_texture: out << _wrap_u << ", "; break; case TT_2d_texture: out << _wrap_u << " x " << _wrap_v << ", "; break; case TT_3d_texture: out << _wrap_u << " x " << _wrap_v << " x " << _wrap_w << ", "; break; case TT_cube_map: break; } out << "min " << _minfilter << ", mag " << _magfilter << ", aniso " << _anisotropic_degree << ", border " << _border_color << "\n"; if (do_has_ram_image()) { indent(out, indent_level + 2) << do_get_ram_image_size() << " bytes in ram, compression " << _ram_image_compression << "\n"; if (_ram_images.size() > 1) { int count = 0; size_t total_size = 0; for (size_t n = 1; n < _ram_images.size(); ++n) { if (!_ram_images[n]._image.empty()) { ++count; total_size += _ram_images[n]._image.size(); } else { // Stop at the first gap. break; } } indent(out, indent_level + 2) << count << " mipmap levels also present in ram (" << total_size << " bytes).\n"; } } else { indent(out, indent_level + 2) << "no ram image\n"; } if (!_simple_ram_image._image.empty()) { indent(out, indent_level + 2) << "simple image: " << _simple_x_size << " x " << _simple_y_size << ", " << _simple_ram_image._image.size() << " bytes\n"; } } //////////////////////////////////////////////////////////////////// // Function: Texture::set_size_padded // Access: Published // Description: Changes the size of the texture, padding // if necessary, and setting the pad region // as well. //////////////////////////////////////////////////////////////////// void Texture:: set_size_padded(int x, int y, int z) { MutexHolder holder(_lock); if (get_textures_power_2() != ATS_none) { do_set_x_size(up_to_power_2(x)); do_set_y_size(up_to_power_2(y)); do_set_z_size(up_to_power_2(z)); } else { do_set_x_size(x); do_set_y_size(y); do_set_z_size(z); } do_set_pad_size(_x_size - x, _y_size - y, _z_size - z); } //////////////////////////////////////////////////////////////////// // Function: Texture::set_orig_file_size // Access: Published // Description: Specifies the size of the texture as it exists in its // original disk file, before any Panda scaling. //////////////////////////////////////////////////////////////////// void Texture:: set_orig_file_size(int x, int y, int z) { MutexHolder holder(_lock); _orig_file_x_size = x; _orig_file_y_size = y; nassertv(z == _z_size); } //////////////////////////////////////////////////////////////////// // Function: Texture::is_mipmap // Access: Published, Static // Description: Returns true if the indicated filter type requires // the use of mipmaps, or false if it does not. //////////////////////////////////////////////////////////////////// bool Texture:: is_mipmap(FilterType filter_type) { switch (filter_type) { case FT_nearest_mipmap_nearest: case FT_linear_mipmap_nearest: case FT_nearest_mipmap_linear: case FT_linear_mipmap_linear: return true; default: return false; } } //////////////////////////////////////////////////////////////////// // Function: Texture::prepare_now // Access: Published // Description: Creates a context for the texture on the particular // GSG, if it does not already exist. Returns the new // (or old) TextureContext. This assumes that the // GraphicsStateGuardian is the currently active // rendering context and that it is ready to accept new // textures. If this is not necessarily the case, you // should use prepare() instead. // // Normally, this is not called directly except by the // GraphicsStateGuardian; a texture does not need to be // explicitly prepared by the user before it may be // rendered. //////////////////////////////////////////////////////////////////// TextureContext *Texture:: prepare_now(PreparedGraphicsObjects *prepared_objects, GraphicsStateGuardianBase *gsg) { MutexHolder holder(_lock); Contexts::const_iterator ci; ci = _contexts.find(prepared_objects); if (ci != _contexts.end()) { return (*ci).second; } TextureContext *tc = prepared_objects->prepare_texture_now(this, gsg); _contexts[prepared_objects] = tc; return tc; } //////////////////////////////////////////////////////////////////// // Function: Texture::texture_uploaded // Access: Public // Description: This method is called by the GraphicsStateGuardian // after a texture has been successfully uploaded to // graphics memory. It is intended as a callback so the // texture can release its RAM image, if _keep_ram_image // is false. // // Normally, this is not called directly except by the // GraphicsStateGuardian. It will be called in the draw // thread. //////////////////////////////////////////////////////////////////// void Texture:: texture_uploaded(GraphicsStateGuardianBase *gsg) { MutexHolder holder(_lock); if (!keep_texture_ram && !_keep_ram_image) { // Once we have prepared the texture, we can generally safely // remove the pixels from main RAM. The GSG is now responsible // for remembering what it looks like. if (gobj_cat.is_debug()) { gobj_cat.debug() << "Dumping RAM for texture " << get_name() << "\n"; } do_clear_ram_image(); } } //////////////////////////////////////////////////////////////////// // Function: Texture::has_cull_callback // Access: Public, Virtual // Description: Should be overridden by derived classes to return // true if cull_callback() has been defined. Otherwise, // returns false to indicate cull_callback() does not // need to be called for this node during the cull // traversal. //////////////////////////////////////////////////////////////////// bool Texture:: has_cull_callback() const { return false; } //////////////////////////////////////////////////////////////////// // Function: Texture::cull_callback // Access: Public, Virtual // Description: If has_cull_callback() returns true, this function // will be called during the cull traversal to perform // any additional operations that should be performed at // cull time. // // This is called each time the Texture is discovered // applied to a Geom in the traversal. It should return // true if the Geom is visible, false if it should be // omitted. //////////////////////////////////////////////////////////////////// bool Texture:: cull_callback(CullTraverser *, const CullTraverserData &) const { return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::string_wrap_mode // Access: Public // Description: Returns the WrapMode value associated with the given // string representation, or WM_invalid if the string // does not match any known WrapMode value. //////////////////////////////////////////////////////////////////// Texture::WrapMode Texture:: string_wrap_mode(const string &string) { if (cmp_nocase_uh(string, "repeat") == 0) { return WM_repeat; } else if (cmp_nocase_uh(string, "clamp") == 0) { return WM_clamp; } else if (cmp_nocase_uh(string, "mirror") == 0) { return WM_clamp; } else if (cmp_nocase_uh(string, "mirror_once") == 0) { return WM_clamp; } else if (cmp_nocase_uh(string, "border_color") == 0) { return WM_border_color; } else { return WM_invalid; } } //////////////////////////////////////////////////////////////////// // Function: Texture::string_filter_type // Access: Public // Description: Returns the FilterType value associated with the given // string representation, or FT_invalid if the string // does not match any known FilterType value. //////////////////////////////////////////////////////////////////// Texture::FilterType Texture:: string_filter_type(const string &string) { if (cmp_nocase_uh(string, "nearest") == 0) { return FT_nearest; } else if (cmp_nocase_uh(string, "linear") == 0) { return FT_linear; } else if (cmp_nocase_uh(string, "nearest_mipmap_nearest") == 0) { return FT_nearest_mipmap_nearest; } else if (cmp_nocase_uh(string, "linear_mipmap_nearest") == 0) { return FT_linear_mipmap_nearest; } else if (cmp_nocase_uh(string, "nearest_mipmap_linear") == 0) { return FT_nearest_mipmap_linear; } else if (cmp_nocase_uh(string, "linear_mipmap_linear") == 0) { return FT_linear_mipmap_linear; } else if (cmp_nocase_uh(string, "mipmap") == 0) { return FT_linear_mipmap_linear; } else if (cmp_nocase_uh(string, "shadow") == 0) { return FT_shadow; } else if (cmp_nocase_uh(string, "default") == 0) { return FT_default; } else { return FT_invalid; } } //////////////////////////////////////////////////////////////////// // Function: Texture::make_texture // Access: Public, Static // Description: A factory function to make a new Texture, used to // pass to the TexturePool. //////////////////////////////////////////////////////////////////// PT(Texture) Texture:: make_texture() { return new Texture; } //////////////////////////////////////////////////////////////////// // Function: Texture::up_to_power_2 // Access: Public, Static // Description: Returns the smallest power of 2 greater than or equal // to value. //////////////////////////////////////////////////////////////////// int Texture:: up_to_power_2(int value) { int x = 1; while (x < value) { x = (x << 1); } return x; } //////////////////////////////////////////////////////////////////// // Function: Texture::down_to_power_2 // Access: Public, Static // Description: Returns the largest power of 2 less than or equal // to value. //////////////////////////////////////////////////////////////////// int Texture:: down_to_power_2(int value) { int x = 1; while ((x << 1) <= value) { x = (x << 1); } return x; } //////////////////////////////////////////////////////////////////// // Function: Texture::is_specific // Access: Public, Static // Description: Returns true if the indicated compression mode is one // of the specific compression types, false otherwise. //////////////////////////////////////////////////////////////////// bool Texture:: is_specific(Texture::CompressionMode compression) { switch (compression) { case CM_default: case CM_off: case CM_on: return false; default: return true; } } //////////////////////////////////////////////////////////////////// // Function: Texture::has_alpha // Access: Public, Static // Description: Returns true if the indicated format includes alpha, // false otherwise. //////////////////////////////////////////////////////////////////// bool Texture:: has_alpha(Format format) { switch (format) { case F_alpha: case F_rgba: case F_rgbm: case F_rgba4: case F_rgba5: case F_rgba8: case F_rgba12: case F_rgba16: case F_rgba32: case F_luminance_alpha: case F_luminance_alphamask: return true; default: return false; } } //////////////////////////////////////////////////////////////////// // Function: Texture::has_binary_alpha // Access: Public, Static // Description: Returns true if the indicated format includes a // binary alpha only, false otherwise. //////////////////////////////////////////////////////////////////// bool Texture:: has_binary_alpha(Format format) { switch (format) { case F_rgbm: return true; default: return false; } } //////////////////////////////////////////////////////////////////// // Function: Texture::adjust_size // Access: Public, Static // Description: Computes the proper size of the texture, based on the // original size, the filename, and the resizing whims // of the config file. // // x_size and y_size should be loaded with the texture // image's original size on disk. On return, they will // be loaded with the texture's in-memory target size. // The return value is true if the size has been // adjusted, or false if it is the same. //////////////////////////////////////////////////////////////////// bool Texture:: adjust_size(int &x_size, int &y_size, const string &name) { bool exclude = false; int num_excludes = exclude_texture_scale.get_num_unique_values(); for (int i = 0; i < num_excludes && !exclude; ++i) { GlobPattern pat(exclude_texture_scale.get_unique_value(i)); if (pat.matches(name)) { exclude = true; } } int new_x_size = x_size; int new_y_size = y_size; if (!exclude) { new_x_size = (int)cfloor(new_x_size * texture_scale + 0.5); new_y_size = (int)cfloor(new_y_size * texture_scale + 0.5); // Don't auto-scale below 4 in either dimension. This causes // problems for DirectX and texture compression. new_x_size = min(max(new_x_size, (int)texture_scale_limit), x_size); new_y_size = min(max(new_y_size, (int)texture_scale_limit), y_size); } switch (get_textures_power_2()) { case ATS_down: new_x_size = down_to_power_2(new_x_size); new_y_size = down_to_power_2(new_y_size); break; case ATS_up: new_x_size = up_to_power_2(new_x_size); new_y_size = up_to_power_2(new_y_size); break; case ATS_none: break; } switch (textures_square.get_value()) { case ATS_down: new_x_size = new_y_size = min(new_x_size, new_y_size); break; case ATS_up: new_x_size = new_y_size = max(new_x_size, new_y_size); break; case ATS_none: break; } if (!exclude) { int max_dimension = max_texture_dimension; if (max_dimension < 0) { GraphicsStateGuardianBase *gsg = GraphicsStateGuardianBase::get_default_gsg(); if (gsg != (GraphicsStateGuardianBase *)NULL) { max_dimension = gsg->get_max_texture_dimension(); } } if (max_dimension > 0) { new_x_size = min(new_x_size, (int)max_dimension); new_y_size = min(new_y_size, (int)max_dimension); } } if (x_size != new_x_size || y_size != new_y_size) { x_size = new_x_size; y_size = new_y_size; return true; } return false; } //////////////////////////////////////////////////////////////////// // Function: Texture::reconsider_dirty // Access: Protected, Virtual // Description: Called by TextureContext to give the Texture a chance // to mark itself dirty before rendering, if necessary. //////////////////////////////////////////////////////////////////// void Texture:: reconsider_dirty() { } //////////////////////////////////////////////////////////////////// // Function: Texture::do_read // Access: Protected, Virtual // Description: The internal implementation of the various read() // methods. //////////////////////////////////////////////////////////////////// bool Texture:: do_read(const Filename &fullpath, const Filename &alpha_fullpath, int primary_file_num_channels, int alpha_file_channel, int z, int n, bool read_pages, bool read_mipmaps, const LoaderOptions &options, BamCacheRecord *record) { PStatTimer timer(_texture_read_pcollector); bool header_only = ((options.get_texture_flags() & (LoaderOptions::TF_preload | LoaderOptions::TF_preload_simple)) == 0); if (record != (BamCacheRecord *)NULL) { header_only = false; } if ((z == 0 || read_pages) && (n == 0 || read_mipmaps)) { // When we re-read the page 0 of the base image, we clear // everything and start over. do_clear_ram_image(); } if (is_txo_filename(fullpath)) { if (record != (BamCacheRecord *)NULL) { record->add_dependent_file(fullpath); } return do_read_txo_file(fullpath); } if (is_dds_filename(fullpath)) { if (record != (BamCacheRecord *)NULL) { record->add_dependent_file(fullpath); } return do_read_dds_file(fullpath, header_only); } // If read_pages or read_mipmaps is specified, then z and n actually // indicate z_size and n_size, respectively--the numerical limits on // which to search for filenames. int z_size = z; int n_size = n; // Certain texture types have an implicit z_size. If z_size is // omitted, choose an appropriate default based on the texture // type. if (z_size == 0) { switch (_texture_type) { case TT_1d_texture: case TT_2d_texture: z_size = 1; break; case TT_cube_map: z_size = 6; break; default: break; } } VirtualFileSystem *vfs = VirtualFileSystem::get_global_ptr(); if (read_pages && read_mipmaps) { // Read a sequence of pages * mipmap levels. Filename fullpath_pattern = Filename::pattern_filename(fullpath); Filename alpha_fullpath_pattern = Filename::pattern_filename(alpha_fullpath); do_set_z_size(z_size); n = 0; while (true) { // For mipmap level 0, the total number of pages might be // determined by the number of files we find. After mipmap // level 0, though, the number of pages is predetermined. if (n != 0) { z_size = do_get_expected_mipmap_z_size(n); } z = 0; Filename n_pattern = Filename::pattern_filename(fullpath_pattern.get_filename_index(z)); Filename alpha_n_pattern = Filename::pattern_filename(alpha_fullpath_pattern.get_filename_index(z)); if (!n_pattern.has_hash()) { gobj_cat.error() << "Filename requires two different hash sequences: " << fullpath << "\n"; return false; } Filename file = n_pattern.get_filename_index(n); Filename alpha_file = alpha_n_pattern.get_filename_index(n); if ((n_size == 0 && (vfs->exists(file) || n == 0)) || (n_size != 0 && n < n_size)) { // Continue through the loop. } else { // We've reached the end of the mipmap sequence. break; } while ((z_size == 0 && (vfs->exists(file) || z == 0)) || (z_size != 0 && z < z_size)) { if (!do_read_one(file, alpha_file, z, n, primary_file_num_channels, alpha_file_channel, options, header_only, record)) { return false; } ++z; n_pattern = Filename::pattern_filename(fullpath_pattern.get_filename_index(z)); file = n_pattern.get_filename_index(n); alpha_file = alpha_n_pattern.get_filename_index(n); } if (n == 0 && n_size == 0) { // If n_size is not specified, it gets implicitly set after we // read the base texture image (which determines the size of // the texture). n_size = do_get_expected_num_mipmap_levels(); } ++n; } } else if (read_pages) { // Read a sequence of cube map or 3-D texture pages. Filename fullpath_pattern = Filename::pattern_filename(fullpath); Filename alpha_fullpath_pattern = Filename::pattern_filename(alpha_fullpath); if (!fullpath_pattern.has_hash()) { gobj_cat.error() << "Filename requires a hash mark: " << fullpath << "\n"; return false; } do_set_z_size(z_size); z = 0; Filename file = fullpath_pattern.get_filename_index(z); Filename alpha_file = alpha_fullpath_pattern.get_filename_index(z); while ((z_size == 0 && (vfs->exists(file) || z == 0)) || (z_size != 0 && z < z_size)) { if (!do_read_one(file, alpha_file, z, 0, primary_file_num_channels, alpha_file_channel, options, header_only, record)) { return false; } ++z; file = fullpath_pattern.get_filename_index(z); alpha_file = alpha_fullpath_pattern.get_filename_index(z); } } else if (read_mipmaps) { // Read a sequence of mipmap levels. Filename fullpath_pattern = Filename::pattern_filename(fullpath); Filename alpha_fullpath_pattern = Filename::pattern_filename(alpha_fullpath); if (!fullpath_pattern.has_hash()) { gobj_cat.error() << "Filename requires a hash mark: " << fullpath << "\n"; return false; } n = 0; Filename file = fullpath_pattern.get_filename_index(n); Filename alpha_file = alpha_fullpath_pattern.get_filename_index(n); while ((n_size == 0 && (vfs->exists(file) || n == 0)) || (n_size != 0 && n < n_size)) { if (!do_read_one(file, alpha_file, z, n, primary_file_num_channels, alpha_file_channel, options, header_only, record)) { return false; } ++n; if (n_size == 0 && n >= do_get_expected_num_mipmap_levels()) { // Don't try to read more than the requisite number of mipmap // levels (unless the user insisted on it for some reason). break; } file = fullpath_pattern.get_filename_index(n); alpha_file = alpha_fullpath_pattern.get_filename_index(n); } } else { // Just an ordinary read of one file. if (!do_read_one(fullpath, alpha_fullpath, z, n, primary_file_num_channels, alpha_file_channel, options, header_only, record)) { return false; } } _has_read_pages = read_pages; _has_read_mipmaps = read_mipmaps; _num_mipmap_levels_read = _ram_images.size(); if (header_only) { // If we were only supposed to be checking the image header // information, don't let the Texture think that it's got the // image now. do_clear_ram_image(); } else { if ((options.get_texture_flags() & LoaderOptions::TF_preload) != 0) { // If we intend to keep the ram image around, consider // compressing it. consider_auto_compress_ram_image(); } } return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_read_one // Access: Protected, Virtual // Description: Called only from do_read(), this method reads a // single image file, either one page or one mipmap // level. //////////////////////////////////////////////////////////////////// bool Texture:: do_read_one(const Filename &fullpath, const Filename &alpha_fullpath, int z, int n, int primary_file_num_channels, int alpha_file_channel, const LoaderOptions &options, bool header_only, BamCacheRecord *record) { if (record != (BamCacheRecord *)NULL) { nassertr(!header_only, false); record->add_dependent_file(fullpath); } PNMImage image; if (header_only || textures_header_only) { if (!image.read_header(fullpath)) { gobj_cat.error() << "Texture::read() - couldn't read: " << fullpath << endl; return false; } int x_size = image.get_x_size(); int y_size = image.get_y_size(); if (z == 0 && n == 0) { _orig_file_x_size = x_size; _orig_file_y_size = y_size; } if (textures_header_only) { // In this mode, we never intend to load the actual texture // image anyway, so we don't even need to make the size right. x_size = 1; y_size = 1; } else { consider_rescale(image, fullpath.get_basename()); x_size = image.get_read_x_size(); y_size = image.get_read_y_size(); } image = PNMImage(x_size, y_size, image.get_num_channels(), image.get_maxval(), image.get_type()); image.fill(0.2, 0.3, 1.0); if (image.has_alpha()) { image.alpha_fill(1.0); } } else { if (!image.read_header(fullpath, NULL, false)) { gobj_cat.error() << "Texture::read() - couldn't read: " << fullpath << endl; return false; } if (z == 0 && n == 0) { _orig_file_x_size = image.get_x_size(); _orig_file_y_size = image.get_y_size(); consider_rescale(image, fullpath.get_basename()); } else { image.set_read_size(get_expected_mipmap_x_size(n), get_expected_mipmap_y_size(n)); } if (image.get_x_size() != image.get_read_x_size() || image.get_y_size() != image.get_read_y_size()) { gobj_cat.info() << "Implicitly rescaling " << fullpath.get_basename() << " from " << image.get_x_size() << " by " << image.get_y_size() << " to " << image.get_read_x_size() << " by " << image.get_read_y_size() << "\n"; } if (!image.read(fullpath, NULL, false)) { gobj_cat.error() << "Texture::read() - couldn't read: " << fullpath << endl; return false; } Thread::consider_yield(); } PNMImage alpha_image; if (!alpha_fullpath.empty()) { if (record != (BamCacheRecord *)NULL) { record->add_dependent_file(alpha_fullpath); } if (header_only || textures_header_only) { if (!alpha_image.read_header(alpha_fullpath)) { gobj_cat.error() << "Texture::read() - couldn't read: " << alpha_fullpath << endl; return false; } int x_size = image.get_x_size(); int y_size = image.get_y_size(); alpha_image = PNMImage(x_size, y_size, alpha_image.get_num_channels(), alpha_image.get_maxval(), alpha_image.get_type()); alpha_image.fill(1.0); if (alpha_image.has_alpha()) { alpha_image.alpha_fill(1.0); } } else { if (!alpha_image.read_header(alpha_fullpath, NULL, true)) { gobj_cat.error() << "Texture::read() - couldn't read (alpha): " << alpha_fullpath << endl; return false; } if (image.get_x_size() != alpha_image.get_x_size() || image.get_y_size() != alpha_image.get_y_size()) { gobj_cat.info() << "Implicitly rescaling " << alpha_fullpath.get_basename() << " from " << alpha_image.get_x_size() << " by " << alpha_image.get_y_size() << " to " << image.get_x_size() << " by " << image.get_y_size() << "\n"; alpha_image.set_read_size(image.get_x_size(), image.get_y_size()); } if (!alpha_image.read(alpha_fullpath, NULL, true)) { gobj_cat.error() << "Texture::read() - couldn't read (alpha): " << alpha_fullpath << endl; return false; } Thread::consider_yield(); } } if (z == 0 && n == 0) { if (!has_name()) { set_name(fullpath.get_basename_wo_extension()); } if (_filename.empty()) { _filename = fullpath; _alpha_filename = alpha_fullpath; // The first time we set the filename via a read() operation, we // clear keep_ram_image. The user can always set it again later // if he needs to. _keep_ram_image = false; } _fullpath = fullpath; _alpha_fullpath = alpha_fullpath; } if (!alpha_fullpath.empty()) { // The grayscale (alpha channel) image must be the same size as // the main image. This should really have been already // guaranteed by the above. if (image.get_x_size() != alpha_image.get_x_size() || image.get_y_size() != alpha_image.get_y_size()) { gobj_cat.info() << "Automatically rescaling " << alpha_fullpath.get_basename() << " from " << alpha_image.get_x_size() << " by " << alpha_image.get_y_size() << " to " << image.get_x_size() << " by " << image.get_y_size() << "\n"; PNMImage scaled(image.get_x_size(), image.get_y_size(), alpha_image.get_num_channels(), alpha_image.get_maxval(), alpha_image.get_type()); scaled.quick_filter_from(alpha_image); Thread::consider_yield(); alpha_image = scaled; } } if (n == 0) { consider_downgrade(image, primary_file_num_channels, get_name()); _primary_file_num_channels = image.get_num_channels(); _alpha_file_channel = 0; } if (!alpha_fullpath.empty()) { // Make the original image a 4-component image by taking the // grayscale value from the second image. image.add_alpha(); if (alpha_file_channel == 4 || (alpha_file_channel == 2 && alpha_image.get_num_channels() == 2)) { // Use the alpha channel. for (int x = 0; x < image.get_x_size(); x++) { for (int y = 0; y < image.get_y_size(); y++) { image.set_alpha(x, y, alpha_image.get_alpha(x, y)); } } _alpha_file_channel = alpha_image.get_num_channels(); } else if (alpha_file_channel >= 1 && alpha_file_channel <= 3 && alpha_image.get_num_channels() >= 3) { // Use the appropriate red, green, or blue channel. for (int x = 0; x < image.get_x_size(); x++) { for (int y = 0; y < image.get_y_size(); y++) { image.set_alpha(x, y, alpha_image.get_channel_val(x, y, alpha_file_channel - 1)); } } _alpha_file_channel = alpha_file_channel; } else { // Use the grayscale channel. for (int x = 0; x < image.get_x_size(); x++) { for (int y = 0; y < image.get_y_size(); y++) { image.set_alpha(x, y, alpha_image.get_gray(x, y)); } } _alpha_file_channel = 0; } } return do_load_one(image, fullpath.get_basename(), z, n, options); } //////////////////////////////////////////////////////////////////// // Function: Texture::do_load_one // Access: Protected, Virtual // Description: Internal method to load a single page or mipmap // level. //////////////////////////////////////////////////////////////////// bool Texture:: do_load_one(const PNMImage &pnmimage, const string &name, int z, int n, const LoaderOptions &options) { if (_ram_images.size() <= 1 && n == 0) { // A special case for mipmap level 0. When we load mipmap level // 0, unless we already have mipmap levels, it determines the // image properties like size and number of components. if (!do_reconsider_z_size(z)) { return false; } nassertr(z >= 0 && z < _z_size, false); if (z == 0) { ComponentType component_type = T_unsigned_byte; xelval maxval = pnmimage.get_maxval(); if (maxval > 255) { component_type = T_unsigned_short; } if (!do_reconsider_image_properties(pnmimage.get_x_size(), pnmimage.get_y_size(), pnmimage.get_num_channels(), component_type, z, options)) { return false; } } do_modify_ram_image(); _loaded_from_image = true; } do_modify_ram_mipmap_image(n); // Ensure the PNMImage is an appropriate size. int x_size = do_get_expected_mipmap_x_size(n); int y_size = do_get_expected_mipmap_y_size(n); if (pnmimage.get_x_size() != x_size || pnmimage.get_y_size() != y_size) { gobj_cat.info() << "Automatically rescaling " << name; if (n != 0) { gobj_cat.info(false) << " mipmap level " << n; } gobj_cat.info(false) << " from " << pnmimage.get_x_size() << " by " << pnmimage.get_y_size() << " to " << x_size << " by " << y_size << "\n"; PNMImage scaled(x_size, y_size, pnmimage.get_num_channels(), pnmimage.get_maxval(), pnmimage.get_type()); scaled.quick_filter_from(pnmimage); Thread::consider_yield(); convert_from_pnmimage(_ram_images[n]._image, do_get_expected_ram_mipmap_page_size(n), z, scaled, _num_components, _component_width); } else { // Now copy the pixel data from the PNMImage into our internal // _image component. convert_from_pnmimage(_ram_images[n]._image, do_get_expected_ram_mipmap_page_size(n), z, pnmimage, _num_components, _component_width); } Thread::consider_yield(); return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_read_txo_file // Access: Protected // Description: Called internally when read() detects a txo file. // Assumes the lock is already held. //////////////////////////////////////////////////////////////////// bool Texture:: do_read_txo_file(const Filename &fullpath) { VirtualFileSystem *vfs = VirtualFileSystem::get_global_ptr(); Filename filename = Filename::binary_filename(fullpath); PT(VirtualFile) file = vfs->get_file(filename); if (file == (VirtualFile *)NULL) { // No such file. gobj_cat.error() << "Could not find " << fullpath << "\n"; return false; } if (gobj_cat.is_debug()) { gobj_cat.debug() << "Reading texture object " << filename << "\n"; } istream *in = file->open_read_file(true); bool success = do_read_txo(*in, fullpath); vfs->close_read_file(in); _fullpath = fullpath; _alpha_fullpath = Filename(); _keep_ram_image = false; return success; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_read_txo // Access: Protected // Description: //////////////////////////////////////////////////////////////////// bool Texture:: do_read_txo(istream &in, const string &filename) { DatagramInputFile din; if (!din.open(in)) { gobj_cat.error() << "Could not read texture object: " << filename << "\n"; return false; } string head; if (!din.read_header(head, _bam_header.size())) { gobj_cat.error() << filename << " is not a texture object file.\n"; return false; } if (head != _bam_header) { gobj_cat.error() << filename << " is not a texture object file.\n"; return false; } BamReader reader(&din, filename); if (!reader.init()) { return false; } TypedWritable *object = reader.read_object(); if (object != (TypedWritable *)NULL && object->is_exact_type(BamCacheRecord::get_class_type())) { // Here's a special case: if the first object in the file is a // BamCacheRecord, it's really a cache data file and not a true // txo file; but skip over the cache data record and let the user // treat it like an ordinary txo file. object = reader.read_object(); } if (object == (TypedWritable *)NULL) { gobj_cat.error() << "Texture object " << filename << " is empty.\n"; return false; } else if (!object->is_of_type(Texture::get_class_type())) { gobj_cat.error() << "Texture object " << filename << " contains a " << object->get_type() << ", not a Texture.\n"; return false; } PT(Texture) other = DCAST(Texture, object); if (!reader.resolve()) { gobj_cat.error() << "Unable to fully resolve texture object file.\n"; return false; } Namable::operator = (*other); do_assign(*other); _loaded_from_image = true; _loaded_from_txo = true; _has_read_pages = false; _has_read_mipmaps = false; _num_mipmap_levels_read = 0; return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_read_dds_file // Access: Private // Description: Called internally when read() detects a DDS file. // Assumes the lock is already held. //////////////////////////////////////////////////////////////////// bool Texture:: do_read_dds_file(const Filename &fullpath, bool header_only) { VirtualFileSystem *vfs = VirtualFileSystem::get_global_ptr(); Filename filename = Filename::binary_filename(fullpath); PT(VirtualFile) file = vfs->get_file(filename); if (file == (VirtualFile *)NULL) { // No such file. gobj_cat.error() << "Could not find " << fullpath << "\n"; return false; } if (gobj_cat.is_debug()) { gobj_cat.debug() << "Reading DDS file " << filename << "\n"; } istream *in = file->open_read_file(true); bool success = do_read_dds(*in, fullpath, header_only); vfs->close_read_file(in); if (!has_name()) { set_name(fullpath.get_basename_wo_extension()); } _fullpath = fullpath; _alpha_fullpath = Filename(); _keep_ram_image = false; return success; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_read_dds // Access: Protected // Description: //////////////////////////////////////////////////////////////////// bool Texture:: do_read_dds(istream &in, const string &filename, bool header_only) { StreamReader dds(in); // DDS header (19 words) DDSHeader header; header.dds_magic = dds.get_uint32(); header.dds_size = dds.get_uint32(); header.dds_flags = dds.get_uint32(); header.height = dds.get_uint32(); header.width = dds.get_uint32(); header.pitch = dds.get_uint32(); header.depth = dds.get_uint32(); header.num_levels = dds.get_uint32(); dds.skip_bytes(44); // Pixelformat (8 words) header.pf.pf_size = dds.get_uint32(); header.pf.pf_flags = dds.get_uint32(); header.pf.four_cc = dds.get_uint32(); header.pf.rgb_bitcount = dds.get_uint32(); header.pf.r_mask = dds.get_uint32(); header.pf.g_mask = dds.get_uint32(); header.pf.b_mask = dds.get_uint32(); header.pf.a_mask = dds.get_uint32(); // Caps (4 words) header.caps.caps1 = dds.get_uint32(); header.caps.caps2 = dds.get_uint32(); header.caps.ddsx = dds.get_uint32(); dds.skip_bytes(4); // Pad out to 32 words dds.skip_bytes(4); if (header.dds_magic != DDS_MAGIC || (in.fail() || in.eof())) { gobj_cat.error() << filename << " is not a DDS file.\n"; return false; } if ((header.dds_flags & DDSD_MIPMAPCOUNT) == 0) { // No bit set means only the base mipmap level. header.num_levels = 1; } // Determine the function to use to read the DDS image. typedef bool (*ReadDDSLevelFunc)(Texture *tex, const DDSHeader &header, int n, istream &in); ReadDDSLevelFunc func = NULL; Format format = F_rgb; do_clear_ram_image(); CompressionMode compression = CM_off; if (header.pf.pf_flags & DDPF_FOURCC) { // Some compressed texture format. if (header.pf.four_cc == 0x31545844) { // 'DXT1', little-endian. compression = CM_dxt1; func = read_dds_level_dxt1; } else if (header.pf.four_cc == 0x32545844) { // 'DXT2' compression = CM_dxt2; func = read_dds_level_dxt23; } else if (header.pf.four_cc == 0x33545844) { // 'DXT3' compression = CM_dxt3; func = read_dds_level_dxt23; } else if (header.pf.four_cc == 0x34545844) { // 'DXT4' compression = CM_dxt4; func = read_dds_level_dxt45; } else if (header.pf.four_cc == 0x35545844) { // 'DXT5' compression = CM_dxt5; func = read_dds_level_dxt45; } else { gobj_cat.error() << filename << ": unsupported texture compression.\n"; return false; } // All of the compressed formats support alpha, even DXT1 (to some // extent, at least). format = F_rgba; } else { // An uncompressed texture format. func = read_dds_level_generic_uncompressed; if (header.pf.pf_flags & DDPF_ALPHAPIXELS) { // An uncompressed format that involves alpha. format = F_rgba; if (header.pf.rgb_bitcount == 32 && header.pf.r_mask == 0x000000ff && header.pf.g_mask == 0x0000ff00 && header.pf.b_mask == 0x00ff0000 && header.pf.a_mask == 0xff000000U) { func = read_dds_level_abgr8; } else if (header.pf.rgb_bitcount == 32 && header.pf.r_mask == 0x00ff0000 && header.pf.g_mask == 0x0000ff00 && header.pf.b_mask == 0x000000ff && header.pf.a_mask == 0xff000000U) { func = read_dds_level_rgba8; } } else { // An uncompressed format that doesn't involve alpha. if (header.pf.rgb_bitcount == 24 && header.pf.r_mask == 0x00ff0000 && header.pf.g_mask == 0x0000ff00 && header.pf.b_mask == 0x000000ff) { func = read_dds_level_bgr8; } else if (header.pf.rgb_bitcount == 24 && header.pf.r_mask == 0x000000ff && header.pf.g_mask == 0x0000ff00 && header.pf.b_mask == 0x00ff0000) { func = read_dds_level_rgb8; } } } do_setup_texture(TT_2d_texture, header.width, header.height, 1, T_unsigned_byte, format); _orig_file_x_size = _x_size; _orig_file_y_size = _y_size; _compression = compression; _ram_image_compression = compression; if (!header_only) { for (int n = 0; n < (int)header.num_levels; ++n) { if (!func(this, header, n, in)) { return false; } } _has_read_pages = true; _has_read_mipmaps = true; _num_mipmap_levels_read = _ram_images.size(); } if (in.fail() || in.eof()) { gobj_cat.error() << filename << ": truncated DDS file.\n"; return false; } _loaded_from_image = true; _loaded_from_txo = true; return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_write // Access: Protected // Description: Internal method to write a series of pages and/or // mipmap levels to disk files. //////////////////////////////////////////////////////////////////// bool Texture:: do_write(const Filename &fullpath, int z, int n, bool write_pages, bool write_mipmaps) const { if (!do_has_ram_image()) { ((Texture *)this)->do_get_ram_image(); } nassertr(do_has_ram_image(), false); if (is_txo_filename(fullpath)) { return do_write_txo_file(fullpath); } nassertr(do_has_ram_mipmap_image(n), false); nassertr(_ram_image_compression == CM_off, false); if (write_pages && write_mipmaps) { // Write a sequence of pages * mipmap levels. Filename fullpath_pattern = Filename::pattern_filename(fullpath); int num_levels = _ram_images.size(); for (int n = 0; n < num_levels; ++n) { int z_size = do_get_expected_mipmap_z_size(n); for (z = 0; z < z_size; ++z) { Filename n_pattern = Filename::pattern_filename(fullpath_pattern.get_filename_index(z)); if (!n_pattern.has_hash()) { gobj_cat.error() << "Filename requires two different hash sequences: " << fullpath << "\n"; return false; } if (!do_write_one(n_pattern.get_filename_index(n), z, n)) { return false; } } } } else if (write_pages) { // Write a sequence of pages. Filename fullpath_pattern = Filename::pattern_filename(fullpath); if (!fullpath_pattern.has_hash()) { gobj_cat.error() << "Filename requires a hash mark: " << fullpath << "\n"; return false; } for (z = 0; z < _z_size; ++z) { if (!do_write_one(fullpath_pattern.get_filename_index(z), z, n)) { return false; } } } else if (write_mipmaps) { // Write a sequence of mipmap images. Filename fullpath_pattern = Filename::pattern_filename(fullpath); if (!fullpath_pattern.has_hash()) { gobj_cat.error() << "Filename requires a hash mark: " << fullpath << "\n"; return false; } int num_levels = _ram_images.size(); for (int n = 0; n < num_levels; ++n) { if (!do_write_one(fullpath_pattern.get_filename_index(n), z, n)) { return false; } } } else { // Write a single file. if (!do_write_one(fullpath, z, n)) { return false; } } return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_write_one // Access: Protected // Description: Internal method to write the indicated page and // mipmap level to a disk image file. //////////////////////////////////////////////////////////////////// bool Texture:: do_write_one(const Filename &fullpath, int z, int n) const { if (!do_has_ram_mipmap_image(n)) { return false; } nassertr(_ram_image_compression == CM_off, false); PNMImage pnmimage; if (!do_store_one(pnmimage, z, n)) { return false; } if (!pnmimage.write(fullpath)) { gobj_cat.error() << "Texture::write() - couldn't write: " << fullpath << endl; return false; } return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_store_one // Access: Protected // Description: Internal method to copy a page and/or mipmap level to // a PNMImage. //////////////////////////////////////////////////////////////////// bool Texture:: do_store_one(PNMImage &pnmimage, int z, int n) const { // First, reload the ram image if necessary. ((Texture *)this)->do_get_uncompressed_ram_image(); nassertr(do_has_ram_mipmap_image(n), false); nassertr(z >= 0 && z < do_get_expected_mipmap_z_size(n), false); nassertr(_ram_image_compression == CM_off, false); return convert_to_pnmimage(pnmimage, do_get_expected_mipmap_x_size(n), do_get_expected_mipmap_y_size(n), _num_components, _component_width, _ram_images[n]._image, do_get_ram_mipmap_page_size(n), z); } //////////////////////////////////////////////////////////////////// // Function: Texture::do_write_txo_file // Access: Private // Description: Called internally when write() detects a txo // filename. //////////////////////////////////////////////////////////////////// bool Texture:: do_write_txo_file(const Filename &fullpath) const { Filename filename = Filename::binary_filename(fullpath); pofstream out; if (!filename.open_write(out)) { gobj_cat.error() << "Unable to open " << filename << "\n"; return false; } #ifdef HAVE_ZLIB if (fullpath.get_extension() == "pz") { OCompressStream compressor(&out, false); return do_write_txo(compressor, "stream"); } #endif // HAVE_ZLIB return do_write_txo(out, fullpath); } //////////////////////////////////////////////////////////////////// // Function: Texture::do_write_txo // Access: Protected // Description: //////////////////////////////////////////////////////////////////// bool Texture:: do_write_txo(ostream &out, const string &filename) const { DatagramOutputFile dout; if (!dout.open(out)) { gobj_cat.error() << "Could not write texture object: " << filename << "\n"; return false; } if (!dout.write_header(_bam_header)) { gobj_cat.error() << "Unable to write to " << filename << "\n"; return false; } BamWriter writer(&dout, filename); if (!writer.init()) { return false; } writer.set_file_texture_mode(BTM_rawdata); // We have to temporarily release the lock to allow it to write // (since the BamWriter will call write_datagram, which in turn // will need to grab the lock). _lock.release(); if (!writer.write_object(this)) { _lock.acquire(); return false; } _lock.acquire(); if (!do_has_ram_image()) { gobj_cat.error() << get_name() << " does not have ram image\n"; return false; } return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_unlock_and_reload_ram_image // Access: Protected // Description: This is similar to do_reload_ram_image(), except that // the lock is released during the actual operation, to // allow normal queries into the Texture object to // continue during what might be a slow operation. // // The lock is re-acquired after the operation is // complete, and only then does all of the new data // appear. // // Assumes the lock is held on entry. It will be held // again on return. //////////////////////////////////////////////////////////////////// void Texture:: do_unlock_and_reload_ram_image(bool allow_compression) { // First, wait for any other threads that might be simultaneously // performing the same operation. while (_reloading) { _cvar.wait(); } // Then make sure we still need to reload before continuing. bool has_ram_image = do_has_ram_image(); if (has_ram_image && !allow_compression && get_ram_image_compression() != Texture::CM_off) { // If we don't want compression, but the ram image we have is // pre-compressed, we don't consider it. has_ram_image = false; } if (_loaded_from_image && !has_ram_image && !_fullpath.empty()) { nassertv(!_reloading); _reloading = true; PT(Texture) tex = do_make_copy(); _lock.release(); // Perform the actual reload in a copy of the texture, while our // own mutex is left unlocked. tex->do_reload_ram_image(allow_compression); _lock.acquire(); do_assign(*tex); nassertv(_reloading); _reloading = false; // Normally, we don't update the _modified semaphores in a do_blah // method, but we'll make an exception in this case, because it's // easiest to modify these here, and only when we know it's // needed. ++_image_modified; ++_properties_modified; _cvar.notify_all(); } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_reload_ram_image // Access: Protected, Virtual // Description: Called when the Texture image is required but the ram // image is not available, this will reload it from disk // or otherwise do whatever is required to make it // available, if possible. // // Assumes the lock is already held. The lock will be // held during the duration of this operation. //////////////////////////////////////////////////////////////////// void Texture:: do_reload_ram_image(bool allow_compression) { BamCache *cache = BamCache::get_global_ptr(); PT(BamCacheRecord) record; if (!do_has_compression()) { allow_compression = false; } if ((cache->get_cache_textures() || (allow_compression && cache->get_cache_compressed_textures())) && !textures_header_only) { // See if the texture can be found in the on-disk cache, if it is // active. record = cache->lookup(_fullpath, "txo"); if (record != (BamCacheRecord *)NULL && record->has_data()) { PT(Texture) tex = DCAST(Texture, record->extract_data()); // But don't use the cache record if the config parameters have // changed, and we want a different-sized texture now. int x_size = _orig_file_x_size; int y_size = _orig_file_y_size; Texture::adjust_size(x_size, y_size, _filename.get_basename()); if (x_size != tex->get_x_size() || y_size != tex->get_y_size()) { if (gobj_cat.is_debug()) { gobj_cat.debug() << "Cached texture " << *this << " has size " << tex->get_x_size() << " x " << tex->get_y_size() << " instead of " << x_size << " x " << y_size << "; ignoring cache.\n"; } } else { // Also don't keep the cached version if it's compressed but // we want uncompressed. if (!allow_compression && tex->get_ram_image_compression() != Texture::CM_off) { if (gobj_cat.is_debug()) { gobj_cat.debug() << "Cached texture " << *this << " is compressed in cache; ignoring cache.\n"; } } else { gobj_cat.info() << "Texture " << get_name() << " reloaded from disk cache\n"; // We don't want to replace all the texture parameters--for // instance, we don't want to change the filter type or the // border color or anything--we just want to get the image and // necessary associated parameters. _x_size = tex->get_x_size(); _y_size = tex->get_y_size(); _num_components = tex->get_num_components(); _format = tex->get_format(); _component_type = tex->get_component_type(); _compression = tex->get_compression(); _ram_image_compression = tex->_ram_image_compression; _ram_images = tex->_ram_images; _loaded_from_image = true; if (allow_compression && consider_auto_compress_ram_image()) { if (cache->get_cache_compressed_textures()) { // We've re-compressed the image after loading it from the // cache. To keep the cache current, rewrite it to the // cache now, in its newly compressed form. record->set_data(this, false); cache->store(record); } } return; } } } } gobj_cat.info() << "Reloading texture " << get_name() << "\n"; int z = 0; int n = 0; if (_has_read_pages) { z = _z_size; } if (_has_read_mipmaps) { n = _num_mipmap_levels_read; } _loaded_from_image = false; Format orig_format = _format; int orig_num_components = _num_components; LoaderOptions options; options.set_texture_flags(LoaderOptions::TF_preload); do_read(_fullpath, _alpha_fullpath, _primary_file_num_channels, _alpha_file_channel, z, n, _has_read_pages, _has_read_mipmaps, options, NULL); if (orig_num_components == _num_components) { // Restore the original format, in case it was needlessly changed // during the reload operation. _format = orig_format; } if (do_has_ram_image() && record != (BamCacheRecord *)NULL) { if (cache->get_cache_textures() || (_ram_image_compression != CM_off && cache->get_cache_compressed_textures())) { // Update the cache. record->set_data(this, false); cache->store(record); } } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_modify_ram_image // Access: Protected // Description: This is called internally to uniquify the ram image // pointer without updating _image_modified. //////////////////////////////////////////////////////////////////// PTA_uchar Texture:: do_modify_ram_image() { if (_ram_images.empty() || _ram_images[0]._image.empty() || _ram_image_compression != CM_off) { do_make_ram_image(); } else { do_clear_ram_mipmap_images(); } return _ram_images[0]._image; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_make_ram_image // Access: Protected // Description: This is called internally to make a new ram image // without updating _image_modified. //////////////////////////////////////////////////////////////////// PTA_uchar Texture:: do_make_ram_image() { _ram_images.clear(); _ram_images.push_back(RamImage()); _ram_images[0]._page_size = do_get_expected_ram_page_size(); _ram_images[0]._image = PTA_uchar::empty_array(do_get_expected_ram_image_size(), get_class_type()); _ram_image_compression = CM_off; return _ram_images[0]._image; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_modify_ram_mipmap_image // Access: Protected // Description: This is called internally to uniquify the nth mipmap // image pointer without updating _image_modified. //////////////////////////////////////////////////////////////////// PTA_uchar Texture:: do_modify_ram_mipmap_image(int n) { nassertr(_ram_image_compression == CM_off, PTA_uchar()); if (n >= (int)_ram_images.size() || _ram_images[n]._image.empty()) { do_make_ram_mipmap_image(n); } return _ram_images[n]._image; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_make_ram_mipmap_image // Access: Protected // Description: //////////////////////////////////////////////////////////////////// PTA_uchar Texture:: do_make_ram_mipmap_image(int n) { nassertr(_ram_image_compression == CM_off, PTA_uchar(get_class_type())); while (n >= (int)_ram_images.size()) { _ram_images.push_back(RamImage()); _ram_images.back()._page_size = 0; } _ram_images[n]._image = PTA_uchar::empty_array(do_get_expected_ram_mipmap_image_size(n), get_class_type()); _ram_images[n]._page_size = do_get_expected_ram_mipmap_page_size(n); return _ram_images[n]._image; } //////////////////////////////////////////////////////////////////// // Function: Texture::consider_auto_compress_ram_image // Access: Protected // Description: Should be called after a texture has been loaded into // RAM, this considers compressing the RAM image, if // cpu-compress-textures has been set and the default // GSG has been set and supports it. // Returns true if the image was modified by this // operation, false if it wasn't. //////////////////////////////////////////////////////////////////// bool Texture:: consider_auto_compress_ram_image() { if (!driver_compress_textures) { CompressionMode compression = _compression; if (compression == CM_default) { if (!compressed_textures) { return false; } compression = CM_on; } if (compression != CM_off && _ram_image_compression == CM_off) { GraphicsStateGuardianBase *gsg = GraphicsStateGuardianBase::get_default_gsg(); if (do_compress_ram_image(compression, QL_default, gsg)) { gobj_cat.info() << "Compressed " << get_name() << " with " << _ram_image_compression << "\n"; return true; } } } return false; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_compress_ram_image // Access: Protected // Description: //////////////////////////////////////////////////////////////////// bool Texture:: do_compress_ram_image(Texture::CompressionMode compression, Texture::QualityLevel quality_level, GraphicsStateGuardianBase *gsg) { nassertr(compression != CM_off, false); if (compression == CM_on) { // Select an appropriate compression mode automatically. switch (_format) { case Texture::F_rgbm: case Texture::F_rgb: case Texture::F_rgb5: case Texture::F_rgba5: case Texture::F_rgb8: case Texture::F_rgb12: case Texture::F_rgb332: if (gsg == NULL || gsg->get_supports_compressed_texture_format(CM_dxt1)) { compression = CM_dxt1; } else if (gsg == NULL || gsg->get_supports_compressed_texture_format(CM_dxt3)) { compression = CM_dxt3; } else if (gsg == NULL || gsg->get_supports_compressed_texture_format(CM_dxt5)) { compression = CM_dxt5; } break; case Texture::F_rgba4: if (gsg == NULL || gsg->get_supports_compressed_texture_format(CM_dxt3)) { compression = CM_dxt3; } else if (gsg == NULL || gsg->get_supports_compressed_texture_format(CM_dxt5)) { compression = CM_dxt5; } break; case Texture::F_rgba: case Texture::F_rgba8: case Texture::F_rgba12: if (gsg == NULL || gsg->get_supports_compressed_texture_format(CM_dxt5)) { compression = CM_dxt5; } break; } } // Choose an appropriate quality level. if (quality_level == Texture::QL_default) { quality_level = _quality_level; } if (quality_level == Texture::QL_default) { quality_level = texture_quality_level; } #ifdef HAVE_SQUISH if (_texture_type != TT_3d_texture && _component_type == T_unsigned_byte) { int squish_flags = 0; switch (compression) { case CM_dxt1: squish_flags |= squish::kDxt1; break; case CM_dxt3: squish_flags |= squish::kDxt3; break; case CM_dxt5: squish_flags |= squish::kDxt5; break; } if (squish_flags != 0) { // This compression mode is supported by squish; use it. switch (quality_level) { case QL_fastest: squish_flags |= squish::kColourRangeFit; break; case QL_normal: // ColourClusterFit is just too slow for everyday use. squish_flags |= squish::kColourRangeFit; // squish_flags |= squish::kColourClusterFit; break; case QL_best: squish_flags |= squish::kColourIterativeClusterFit; break; } if (do_squish(compression, squish_flags)) { return true; } } } #endif // HAVE_SQUISH return false; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_uncompress_ram_image // Access: Protected // Description: //////////////////////////////////////////////////////////////////// bool Texture:: do_uncompress_ram_image() { #ifdef HAVE_SQUISH if (_texture_type != TT_3d_texture && _component_type == T_unsigned_byte) { int squish_flags = 0; switch (_ram_image_compression) { case CM_dxt1: squish_flags |= squish::kDxt1; break; case CM_dxt3: squish_flags |= squish::kDxt3; break; case CM_dxt5: squish_flags |= squish::kDxt5; break; } if (squish_flags != 0) { // This compression mode is supported by squish; use it. if (do_unsquish(squish_flags)) { return true; } } } #endif // HAVE_SQUISH return false; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_reconsider_z_size // Access: Protected // Description: Considers whether the z_size should automatically be // adjusted when the user loads a new page. Returns // true if the z size is valid, false otherwise. // // Assumes the lock is already held. //////////////////////////////////////////////////////////////////// bool Texture:: do_reconsider_z_size(int z) { if (z >= _z_size) { // If we're loading a page past _z_size, treat it as an implicit // request to enlarge _z_size. However, this is only legal if // this is, in fact, a 3-d texture (cube maps always have z_size // 6, and other types have z_size 1). nassertr(_texture_type == Texture::TT_3d_texture, false); _z_size = z + 1; // Increase the size of the data buffer to make room for the new // texture level. size_t new_size = do_get_expected_ram_image_size(); if (!_ram_images.empty() && !_ram_images[0]._image.empty() && new_size > _ram_images[0]._image.size()) { _ram_images[0]._image.insert(_ram_images[0]._image.end(), new_size - _ram_images[0]._image.size(), 0); nassertr(_ram_images[0]._image.size() == new_size, false); } } return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_reconsider_image_properties // Access: Protected // Description: Resets the internal Texture properties when a new // image file is loaded. Returns true if the new image // is valid, false otherwise. // // Assumes the lock is already held. //////////////////////////////////////////////////////////////////// bool Texture:: do_reconsider_image_properties(int x_size, int y_size, int num_components, Texture::ComponentType component_type, int z, const LoaderOptions &options) { if (!_loaded_from_image || num_components != _num_components) { // Come up with a default format based on the number of channels. // But only do this the first time the file is loaded, or if the // number of channels in the image changes on subsequent loads. switch (num_components) { case 1: _format = F_luminance; break; case 2: _format = F_luminance_alpha; break; case 3: _format = F_rgb; break; case 4: _format = F_rgba; break; default: // Eh? nassertr(false, false); _format = F_rgb; } } if (!_loaded_from_image) { if ((options.get_texture_flags() & LoaderOptions::TF_allow_1d) && _texture_type == TT_2d_texture && x_size != 1 && y_size == 1) { // If we're loading an Nx1 size texture, infer a 1-d texture type. _texture_type = TT_1d_texture; } #ifndef NDEBUG if (_texture_type == TT_1d_texture) { nassertr(y_size == 1, false); } else if (_texture_type == TT_cube_map) { nassertr(x_size == y_size, false); } #endif if ((_x_size != x_size)||(_y_size != y_size)) { do_set_pad_size(0, 0, 0); } _x_size = x_size; _y_size = y_size; _num_components = num_components; do_set_component_type(component_type); } else { if (_x_size != x_size || _y_size != y_size || _num_components != num_components || _component_type != component_type) { gobj_cat.error() << "Texture properties have changed for texture " << get_name() << " page " << z << ".\n"; return false; } } return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_make_copy // Access: Protected, Virtual // Description: //////////////////////////////////////////////////////////////////// PT(Texture) Texture:: do_make_copy() { PT(Texture) tex = new Texture(get_name()); tex->do_assign(*this); return tex; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_assign // Access: Protected // Description: The internal implementation of operator =(). Assumes // the lock is already held on both Textures. //////////////////////////////////////////////////////////////////// void Texture:: do_assign(const Texture ©) { _filename = copy._filename; _alpha_filename = copy._alpha_filename; if (!copy._fullpath.empty()) { // Since the fullpath is often empty on a file loaded directly // from a txo, we only assign the fullpath if it is not empty. _fullpath = copy._fullpath; _alpha_fullpath = copy._alpha_fullpath; } _primary_file_num_channels = copy._primary_file_num_channels; _alpha_file_channel = copy._alpha_file_channel; _x_size = copy._x_size; _y_size = copy._y_size; _z_size = copy._z_size; _pad_x_size = copy._pad_x_size; _pad_y_size = copy._pad_y_size; _pad_z_size = copy._pad_z_size; _orig_file_x_size = copy._orig_file_x_size; _orig_file_y_size = copy._orig_file_y_size; _num_components = copy._num_components; _component_width = copy._component_width; _texture_type = copy._texture_type; _format = copy._format; _component_type = copy._component_type; _loaded_from_image = copy._loaded_from_image; _loaded_from_txo = copy._loaded_from_txo; _wrap_u = copy._wrap_u; _wrap_v = copy._wrap_v; _wrap_w = copy._wrap_w; _minfilter = copy._minfilter; _magfilter = copy._magfilter; _anisotropic_degree = copy._anisotropic_degree; _keep_ram_image = copy._keep_ram_image; _border_color = copy._border_color; _compression = copy._compression; _match_framebuffer_format = copy._match_framebuffer_format; _quality_level = copy._quality_level; _ram_image_compression = copy._ram_image_compression; _ram_images = copy._ram_images; _simple_x_size = copy._simple_x_size; _simple_y_size = copy._simple_y_size; _simple_ram_image = copy._simple_ram_image; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_clear // Access: Protected, Virtual // Description: The protected implementation of clear(). Assumes the // lock is already held. //////////////////////////////////////////////////////////////////// void Texture:: do_clear() { do_assign(Texture()); } //////////////////////////////////////////////////////////////////// // Function: Texture::do_setup_texture // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_setup_texture(Texture::TextureType texture_type, int x_size, int y_size, int z_size, Texture::ComponentType component_type, Texture::Format format) { if (texture_type == TT_cube_map) { // Cube maps must always consist of six square images. nassertv(x_size == y_size && z_size == 6); // In principle the wrap mode shouldn't mean anything to a cube // map, but some drivers seem to misbehave if it's other than // WM_clamp. _wrap_u = WM_clamp; _wrap_v = WM_clamp; _wrap_w = WM_clamp; } if (texture_type != TT_2d_texture) { do_clear_simple_ram_image(); } _texture_type = texture_type; _x_size = x_size; _y_size = y_size; _z_size = z_size; do_set_component_type(component_type); do_set_format(format); do_clear_ram_image(); do_set_pad_size(0, 0, 0); _orig_file_x_size = 0; _orig_file_y_size = 0; _loaded_from_image = false; _loaded_from_txo = false; _has_read_pages = false; _has_read_mipmaps = false; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_format // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_format(Texture::Format format) { if (format == _format) { return; } _format = format; ++_properties_modified; switch (_format) { case F_color_index: case F_depth_stencil: case F_red: case F_green: case F_blue: case F_alpha: case F_luminance: _num_components = 1; break; case F_luminance_alpha: case F_luminance_alphamask: _num_components = 2; break; case F_rgb: case F_rgb5: case F_rgb8: case F_rgb12: case F_rgb332: _num_components = 3; break; case F_rgba: case F_rgbm: case F_rgba4: case F_rgba5: case F_rgba8: case F_rgba12: case F_rgba16: case F_rgba32: _num_components = 4; break; } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_component_type // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_component_type(Texture::ComponentType component_type) { _component_type = component_type; switch (component_type) { case T_unsigned_byte: _component_width = 1; break; case T_unsigned_short: _component_width = 2; break; case T_float: _component_width = 4; break; } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_x_size // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_x_size(int x_size) { if (_x_size != x_size) { _x_size = x_size; ++_image_modified; do_clear_ram_image(); do_set_pad_size(0, 0, 0); } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_y_size // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_y_size(int y_size) { if (_y_size != y_size) { nassertv(_texture_type != Texture::TT_1d_texture || y_size == 1); _y_size = y_size; ++_image_modified; do_clear_ram_image(); do_set_pad_size(0, 0, 0); } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_z_size // Access: Protected // Description: Changes the z size indicated for the texture. This // also implicitly unloads the texture if it has already // been loaded. //////////////////////////////////////////////////////////////////// void Texture:: do_set_z_size(int z_size) { if (_z_size != z_size) { nassertv(_texture_type == Texture::TT_3d_texture || (_texture_type == Texture::TT_cube_map && z_size == 6) || (z_size == 1)); _z_size = z_size; ++_image_modified; do_clear_ram_image(); do_set_pad_size(0, 0, 0); } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_wrap_u // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_wrap_u(Texture::WrapMode wrap) { if (_wrap_u != wrap) { ++_properties_modified; _wrap_u = wrap; } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_wrap_v // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_wrap_v(Texture::WrapMode wrap) { if (_wrap_v != wrap) { ++_properties_modified; _wrap_v = wrap; } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_wrap_w // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_wrap_w(Texture::WrapMode wrap) { if (_wrap_w != wrap) { ++_properties_modified; _wrap_w = wrap; } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_minfilter // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_minfilter(Texture::FilterType filter) { if (_minfilter != filter) { ++_properties_modified; _minfilter = filter; } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_magfilter // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_magfilter(Texture::FilterType filter) { if (_magfilter != filter) { ++_properties_modified; _magfilter = filter; } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_anisotropic_degree // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_anisotropic_degree(int anisotropic_degree) { if (_anisotropic_degree != anisotropic_degree) { ++_properties_modified; _anisotropic_degree = anisotropic_degree; } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_border_color // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_border_color(const Colorf &color) { if (_border_color != color) { ++_properties_modified; _border_color = color; } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_compression // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_compression(Texture::CompressionMode compression) { if (_compression != compression) { ++_properties_modified; _compression = compression; } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_quality_level // Access: Public // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_quality_level(Texture::QualityLevel quality_level) { if (_quality_level != quality_level) { ++_properties_modified; _quality_level = quality_level; } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_has_compression // Access: Protected // Description: //////////////////////////////////////////////////////////////////// bool Texture:: do_has_compression() const { if (_compression == CM_default) { return compressed_textures; } else { return (_compression != CM_off); } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_has_ram_image // Access: Protected, Virtual // Description: The protected implementation of has_ram_image(). // Assumes the lock is already held. //////////////////////////////////////////////////////////////////// bool Texture:: do_has_ram_image() const { return !_ram_images.empty() && !_ram_images[0]._image.empty(); } //////////////////////////////////////////////////////////////////// // Function: Texture::do_has_uncompressed_ram_image // Access: Protected, Virtual // Description: The protected implementation of // has_uncompressed_ram_image(). Assumes the lock is // already held. //////////////////////////////////////////////////////////////////// bool Texture:: do_has_uncompressed_ram_image() const { return !_ram_images.empty() && !_ram_images[0]._image.empty() && _ram_image_compression == CM_off; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_get_ram_image // Access: Protected // Description: //////////////////////////////////////////////////////////////////// CPTA_uchar Texture:: do_get_ram_image() { if (_loaded_from_image && !do_has_ram_image() && !_fullpath.empty()) { do_unlock_and_reload_ram_image(true); // Normally, we don't update the _modified semaphores in a do_blah // method, but we'll make an exception in this case, because it's // easiest to modify these here, and only when we know it's // needed. ++_image_modified; ++_properties_modified; } if (_ram_images.empty()) { return CPTA_uchar(get_class_type()); } return _ram_images[0]._image; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_get_uncompressed_ram_image // Access: Protected // Description: //////////////////////////////////////////////////////////////////// CPTA_uchar Texture:: do_get_uncompressed_ram_image() { if (!_ram_images.empty() && _ram_image_compression != CM_off) { // We have an image in-ram, but it's compressed. Try to // uncompress it first. if (do_uncompress_ram_image()) { gobj_cat.info() << "Uncompressed " << get_name() << "\n"; return _ram_images[0]._image; } } // Couldn't uncompress the existing image. Try to reload it. if (_loaded_from_image && (!do_has_ram_image() || _ram_image_compression != CM_off) && !_fullpath.empty()) { do_unlock_and_reload_ram_image(false); } if (!_ram_images.empty() && _ram_image_compression != CM_off) { // Great, now we have an image. if (do_uncompress_ram_image()) { gobj_cat.info() << "Uncompressed " << get_name() << "\n"; return _ram_images[0]._image; } } if (_ram_images.empty() || _ram_image_compression != CM_off) { return CPTA_uchar(get_class_type()); } return _ram_images[0]._image; } //////////////////////////////////////////////////////////////////// // Function: Texture::get_ram_image_as // Access: Published // Description: Returns the uncompressed system-RAM image data // associated with the texture, but rather than // just returning a pointer to the data, like // get_uncompressed_ram_image, this function first // processes the data, reorders the components using // the specified format string, and fills these into // a new area. The 'format' arugment should specify // in which order the components of the texture // must be. For example, valid format strings are // "RGBA", "GA", "ABRG" or "AAA". A component can // also be written as "0" or "1", which means an // empty/black or a full/white channel, respectively. // This function is particularly useful to // copy an image in-memory to a different library // (for example, PIL or wxWidgets) that require // a different component order than Panda's internal // format, BGRA. Note, however, that this conversion // can still be too slow if you want to do it every // frame, and should thus be avoided for that purpose. // The only requirement for the reordering is that // an uncompressed image must be available. If the // RAM image is compressed, it will attempt to re-load // the texture from disk, if it doesn't find an // uncompressed image there, it will return NULL. //////////////////////////////////////////////////////////////////// CPTA_uchar Texture:: get_ram_image_as(const string &requested_format) { MutexHolder holder(_lock); string format = upcase(requested_format); // Make sure we can grab something that's uncompressed. CPTA_uchar data = do_get_uncompressed_ram_image(); if (data == NULL) { gobj_cat.error() << "Couldn't find an uncompressed RAM image!\n"; return CPTA_uchar(get_class_type()); } int imgsize = _x_size * _y_size; nassertr(_num_components > 0 && _num_components <= 4, CPTA_uchar(get_class_type())); nassertr(data.size() == _component_width * _num_components * imgsize, CPTA_uchar(get_class_type())); // Check if the format is already what we have internally. if ((_num_components == 1 && format.size() == 1) || (_num_components == 2 && format.size() == 2 && format.at(1) == 'A' && format.at(0) != 'A') || (_num_components == 3 && format == "BGR") || (_num_components == 4 && format == "BGRA")) { // The format string is already our format, so we just need to copy it. return CPTA_uchar(data); } // Create a new empty array that can hold our image. PTA_uchar newdata = PTA_uchar::empty_array(imgsize * format.size() * _component_width, get_class_type()); // These ifs are for optimization of commonly used image types. if (format == "RGBA" && _num_components == 4 && _component_width == 1) { imgsize *= 4; for (int p = 0; p < imgsize; p += 4) { newdata[p ] = data[p + 2]; newdata[p + 1] = data[p + 1]; newdata[p + 2] = data[p ]; newdata[p + 3] = data[p + 3]; } return newdata; } if (format == "RGB" && _num_components == 3 && _component_width == 1) { imgsize *= 3; for (int p = 0; p < imgsize; p += 3) { newdata[p ] = data[p + 2]; newdata[p + 1] = data[p + 1]; newdata[p + 2] = data[p ]; } return newdata; } if (format == "A" && _component_width == 1 && _num_components != 3) { // We can generally rely on alpha to be the last component. int component = _num_components - 1; for (int p = 0; p < imgsize; ++p) { newdata[p] = data[component]; } return newdata; } if (_component_width == 1) { for (int p = 0; p < imgsize; ++p) { for (uchar s = 0; s < format.size(); ++s) { char component = -1; if (format.at(s) == 'B' || (_num_components <= 2 && format.at(s) != 'A')) { component = 0; } else if (format.at(s) == 'G') { component = 1; } else if (format.at(s) == 'R') { component = 2; } else if (format.at(s) == 'A') { nassertr(_num_components != 3, CPTA_uchar(get_class_type())); component = _num_components - 1; } else if (format.at(s) == '0') { newdata[p * format.size() + s] = 0; } else if (format.at(s) == '1') { newdata[p * format.size() + s] = -1; } else { gobj_cat.error() << "Unexpected component character '" << format.at(s) << "', expected one of RGBA!\n"; return CPTA_uchar(get_class_type()); } if (component >= 0) { newdata[p * format.size() + s] = data[p * _num_components + component]; } } } return newdata; } for (int p = 0; p < imgsize; ++p) { for (uchar s = 0; s < format.size(); ++s) { char component = -1; if (format.at(s) == 'B' || (_num_components <= 2 && format.at(s) != 'A')) { component = 0; } else if (format.at(s) == 'G') { component = 1; } else if (format.at(s) == 'R') { component = 2; } else if (format.at(s) == 'A') { nassertr(_num_components != 3, CPTA_uchar(get_class_type())); component = _num_components - 1; } else if (format.at(s) == '0') { memset((void*)(newdata + (p * format.size() + s) * _component_width), 0, _component_width); } else if (format.at(s) == '1') { memset((void*)(newdata + (p * format.size() + s) * _component_width), -1, _component_width); } else { gobj_cat.error() << "Unexpected component character '" << format.at(s) << "', expected one of RGBA!\n"; return CPTA_uchar(get_class_type()); } if (component >= 0) { memcpy((void*)(newdata + (p * format.size() + s) * _component_width), (void*)(data + (p * _num_components + component) * _component_width), _component_width); } } } return newdata; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_simple_ram_image // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_simple_ram_image(PTA_uchar image, int x_size, int y_size) { nassertv(_texture_type == TT_2d_texture); size_t expected_page_size = (size_t)(x_size * y_size * 4); nassertv(image.size() == expected_page_size); _simple_x_size = x_size; _simple_y_size = y_size; _simple_ram_image._image = image; _simple_ram_image._page_size = image.size(); _simple_image_date_generated = (PN_int32)time(NULL); ++_simple_image_modified; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_get_expected_num_mipmap_levels // Access: Protected // Description: //////////////////////////////////////////////////////////////////// int Texture:: do_get_expected_num_mipmap_levels() const { int size = max(_x_size, max(_y_size, _z_size)); int count = 1; while (size > 1) { size >>= 1; ++count; } return count; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_get_ram_mipmap_page_size // Access: Protected // Description: //////////////////////////////////////////////////////////////////// size_t Texture:: do_get_ram_mipmap_page_size(int n) const { if (_ram_image_compression != CM_off) { if (n >= 0 && n < (int)_ram_images.size()) { return _ram_images[n]._page_size; } return 0; } else { return do_get_expected_ram_mipmap_page_size(n); } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_get_expected_mipmap_x_size // Access: Protected // Description: //////////////////////////////////////////////////////////////////// int Texture:: do_get_expected_mipmap_x_size(int n) const { int size = max(_x_size, 1); while (n > 0 && size > 1) { size >>= 1; --n; } return size; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_get_expected_mipmap_y_size // Access: Protected // Description: //////////////////////////////////////////////////////////////////// int Texture:: do_get_expected_mipmap_y_size(int n) const { int size = max(_y_size, 1); while (n > 0 && size > 1) { size >>= 1; --n; } return size; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_get_expected_mipmap_z_size // Access: Protected // Description: //////////////////////////////////////////////////////////////////// int Texture:: do_get_expected_mipmap_z_size(int n) const { // 3-D textures have a different number of pages per each mipmap // level. Other kinds of textures--especially, cube map // textures--always have the same. if (_texture_type == Texture::TT_3d_texture) { int size = max(_z_size, 1); while (n > 0 && size > 1) { size >>= 1; --n; } return size; } else { return _z_size; } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_clear_simple_ram_image // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_clear_simple_ram_image() { _simple_x_size = 0; _simple_y_size = 0; _simple_ram_image._image.clear(); _simple_ram_image._page_size = 0; _simple_image_date_generated = 0; // We allow this exception: we update the _simple_image_modified // here, since no one really cares much about that anyway, and it's // convenient to do it here. ++_simple_image_modified; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_clear_ram_mipmap_images // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_clear_ram_mipmap_images() { if (!_ram_images.empty()) { _ram_images.erase(_ram_images.begin() + 1, _ram_images.end()); } } //////////////////////////////////////////////////////////////////// // Function: Texture::do_set_pad_size // Access: Protected // Description: //////////////////////////////////////////////////////////////////// void Texture:: do_set_pad_size(int x, int y, int z) { if (x > _x_size) { x = _x_size; } if (y > _y_size) { y = _y_size; } if (z > _z_size) { z = _z_size; } _pad_x_size = x; _pad_y_size = y; _pad_z_size = z; } //////////////////////////////////////////////////////////////////// // Function: Texture::convert_from_pnmimage // Access: Private, Static // Description: Internal method to convert pixel data from the // indicated PNMImage into the given ram_image. //////////////////////////////////////////////////////////////////// void Texture:: convert_from_pnmimage(PTA_uchar &image, size_t page_size, int z, const PNMImage &pnmimage, int num_components, int component_width) { int x_size = pnmimage.get_x_size(); int y_size = pnmimage.get_y_size(); xelval maxval = pnmimage.get_maxval(); bool is_grayscale = (num_components == 1 || num_components == 2); bool has_alpha = (num_components == 2 || num_components == 4); bool img_has_alpha = pnmimage.has_alpha(); int idx = page_size * z; nassertv(idx + page_size <= image.size()); unsigned char *p = &image[idx]; if (maxval == 255 && component_width == 1) { // Most common case: one byte per pixel, and the source image // shows a maxval of 255. No scaling is necessary. for (int j = y_size-1; j >= 0; j--) { for (int i = 0; i < x_size; i++) { if (is_grayscale) { store_unscaled_byte(p, pnmimage.get_gray_val(i, j)); } else { store_unscaled_byte(p, pnmimage.get_blue_val(i, j)); store_unscaled_byte(p, pnmimage.get_green_val(i, j)); store_unscaled_byte(p, pnmimage.get_red_val(i, j)); } if (has_alpha) { if (img_has_alpha) { store_unscaled_byte(p, pnmimage.get_alpha_val(i, j)); } else { store_unscaled_byte(p, 255); } } } } } else if (maxval == 65535 && component_width == 2) { // Another possible case: two bytes per pixel, and the source // image shows a maxval of 65535. Again, no scaling is necessary. for (int j = y_size-1; j >= 0; j--) { for (int i = 0; i < x_size; i++) { if (is_grayscale) { store_unscaled_short(p, pnmimage.get_gray_val(i, j)); } else { store_unscaled_short(p, pnmimage.get_blue_val(i, j)); store_unscaled_short(p, pnmimage.get_green_val(i, j)); store_unscaled_short(p, pnmimage.get_red_val(i, j)); } if (has_alpha) { if (img_has_alpha) { store_unscaled_short(p, pnmimage.get_alpha_val(i, j)); } else { store_unscaled_short(p, 65535); } } } } } else if (component_width == 1) { // A less common case: one byte per pixel, but the maxval is // something other than 255. In this case, we should scale the // pixel values up to the appropriate amount. double scale = 255.0 / (double)maxval; for (int j = y_size-1; j >= 0; j--) { for (int i = 0; i < x_size; i++) { if (is_grayscale) { store_scaled_byte(p, pnmimage.get_gray_val(i, j), scale); } else { store_scaled_byte(p, pnmimage.get_blue_val(i, j), scale); store_scaled_byte(p, pnmimage.get_green_val(i, j), scale); store_scaled_byte(p, pnmimage.get_red_val(i, j), scale); } if (has_alpha) { if (img_has_alpha) { store_scaled_byte(p, pnmimage.get_alpha_val(i, j), scale); } else { store_unscaled_byte(p, 255); } } } } } else { // component_width == 2 // Another uncommon case: two bytes per pixel, and the maxval is // something other than 65535. Again, we must scale the pixel // values. double scale = 65535.0 / (double)maxval; for (int j = y_size-1; j >= 0; j--) { for (int i = 0; i < x_size; i++) { if (is_grayscale) { store_scaled_short(p, pnmimage.get_gray_val(i, j), scale); } else { store_scaled_short(p, pnmimage.get_blue_val(i, j), scale); store_scaled_short(p, pnmimage.get_green_val(i, j), scale); store_scaled_short(p, pnmimage.get_red_val(i, j), scale); } if (has_alpha) { if (img_has_alpha) { store_scaled_short(p, pnmimage.get_alpha_val(i, j), 1.0); } else { store_unscaled_short(p, 65535); } } } } } nassertv(p == &image[idx] + page_size); } //////////////////////////////////////////////////////////////////// // Function: Texture::convert_to_pnmimage // Access: Private, Static // Description: Internal method to convert pixel data to the // indicated PNMImage from the given ram_image. //////////////////////////////////////////////////////////////////// bool Texture:: convert_to_pnmimage(PNMImage &pnmimage, int x_size, int y_size, int num_components, int component_width, CPTA_uchar image, size_t page_size, int z) { pnmimage.clear(x_size, y_size, num_components); bool has_alpha = pnmimage.has_alpha(); bool is_grayscale = pnmimage.is_grayscale(); int idx = page_size * z; nassertr(idx + page_size <= image.size(), false); const unsigned char *p = &image[idx]; if (component_width == 1) { for (int j = y_size-1; j >= 0; j--) { for (int i = 0; i < x_size; i++) { if (is_grayscale) { pnmimage.set_gray(i, j, get_unsigned_byte(p)); } else { pnmimage.set_blue(i, j, get_unsigned_byte(p)); pnmimage.set_green(i, j, get_unsigned_byte(p)); pnmimage.set_red(i, j, get_unsigned_byte(p)); } if (has_alpha) { pnmimage.set_alpha(i, j, get_unsigned_byte(p)); } } } } else if (component_width == 2) { for (int j = y_size-1; j >= 0; j--) { for (int i = 0; i < x_size; i++) { if (is_grayscale) { pnmimage.set_gray(i, j, get_unsigned_short(p)); } else { pnmimage.set_blue(i, j, get_unsigned_short(p)); pnmimage.set_green(i, j, get_unsigned_short(p)); pnmimage.set_red(i, j, get_unsigned_short(p)); } if (has_alpha) { pnmimage.set_alpha(i, j, get_unsigned_short(p)); } } } } else { return false; } nassertr(p == &image[idx] + page_size, false); return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::read_dds_level_bgr8 // Access: Private, Static // Description: Called by read_dds for a DDS file in BGR8 format. //////////////////////////////////////////////////////////////////// bool Texture:: read_dds_level_bgr8(Texture *tex, const DDSHeader &header, int n, istream &in) { // This is in order B, G, R. int x_size = tex->get_expected_mipmap_x_size(n); int y_size = tex->get_expected_mipmap_y_size(n); size_t size = tex->get_expected_ram_mipmap_image_size(n); size_t row_bytes = x_size * 3; PTA_uchar image = PTA_uchar::empty_array(size); for (int y = y_size - 1; y >= 0; --y) { unsigned char *p = image.p() + y * row_bytes; nassertr(p + row_bytes <= image.p() + size, false); in.read((char *)p, row_bytes); } tex->set_ram_mipmap_image(n, image); return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::read_dds_level_rgb8 // Access: Private, Static // Description: Called by read_dds for a DDS file in RGB8 format. //////////////////////////////////////////////////////////////////// bool Texture:: read_dds_level_rgb8(Texture *tex, const DDSHeader &header, int n, istream &in) { // This is in order R, G, B. int x_size = tex->get_expected_mipmap_x_size(n); int y_size = tex->get_expected_mipmap_y_size(n); size_t size = tex->get_expected_ram_mipmap_image_size(n); size_t row_bytes = x_size * 3; PTA_uchar image = PTA_uchar::empty_array(size); for (int y = y_size - 1; y >= 0; --y) { unsigned char *p = image.p() + y * row_bytes; nassertr(p + row_bytes <= image.p() + size, false); in.read((char *)p, row_bytes); // Now reverse the r, g, b triples. for (int x = 0; x < x_size; ++x) { unsigned char r = p[0]; p[0] = p[2]; p[2] = r; p += 3; } nassertr(p <= image.p() + size, false); } tex->set_ram_mipmap_image(n, image); return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::read_dds_level_abgr8 // Access: Private, Static // Description: Called by read_dds for a DDS file in ABGR8 format. //////////////////////////////////////////////////////////////////// bool Texture:: read_dds_level_abgr8(Texture *tex, const DDSHeader &header, int n, istream &in) { // This is laid out in order R, G, B, A. int x_size = tex->get_expected_mipmap_x_size(n); int y_size = tex->get_expected_mipmap_y_size(n); size_t size = tex->get_expected_ram_mipmap_image_size(n); size_t row_bytes = x_size * 4; PTA_uchar image = PTA_uchar::empty_array(size); for (int y = y_size - 1; y >= 0; --y) { unsigned char *p = image.p() + y * row_bytes; in.read((char *)p, row_bytes); PN_uint32 *pw = (PN_uint32 *)p; for (int x = 0; x < x_size; ++x) { PN_uint32 w = *pw; #ifdef WORDS_BIGENDIAN // bigendian: convert R, G, B, A to B, G, R, A. w = ((w & 0xff00) << 16) | ((w & 0xff000000U) >> 16) | (w & 0xff00ff); #else // littendian: convert A, B, G, R to to A, R, G, B. w = ((w & 0xff) << 16) | ((w & 0xff0000) >> 16) | (w & 0xff00ff00U); #endif *pw = w; ++pw; } nassertr((unsigned char *)pw <= image.p() + size, false); } tex->set_ram_mipmap_image(n, image); return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::read_dds_level_rgba8 // Access: Private, Static // Description: Called by read_dds for a DDS file in RGBA8 format. //////////////////////////////////////////////////////////////////// bool Texture:: read_dds_level_rgba8(Texture *tex, const DDSHeader &header, int n, istream &in) { // This is actually laid out in order B, G, R, A. int x_size = tex->get_expected_mipmap_x_size(n); int y_size = tex->get_expected_mipmap_y_size(n); size_t size = tex->get_expected_ram_mipmap_image_size(n); size_t row_bytes = x_size * 4; PTA_uchar image = PTA_uchar::empty_array(size); for (int y = y_size - 1; y >= 0; --y) { unsigned char *p = image.p() + y * row_bytes; nassertr(p + row_bytes <= image.p() + size, false); in.read((char *)p, row_bytes); } tex->set_ram_mipmap_image(n, image); return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::read_dds_level_generic_uncompressed // Access: Private, Static // Description: Called by read_dds for a DDS file whose format isn't // one we've specifically optimized. //////////////////////////////////////////////////////////////////// bool Texture:: read_dds_level_generic_uncompressed(Texture *tex, const DDSHeader &header, int n, istream &in) { int x_size = tex->get_expected_mipmap_x_size(n); int y_size = tex->get_expected_mipmap_y_size(n); int pitch = (x_size * header.pf.rgb_bitcount) / 8; // MS says the pitch can be supplied in the header file and must be // DWORD aligned, but this appears to apply to level 0 mipmaps only // (where it almost always will be anyway). Other mipmap levels // seem to be tightly packed, but there isn't a separate pitch for // each mipmap level. Weird. if (n == 0) { pitch = ((pitch + 3) / 4) * 4; if (header.dds_flags & DDSD_PITCH) { pitch = header.pitch; } } int bpp = header.pf.rgb_bitcount / 8; int skip_bytes = pitch - (bpp * x_size); nassertr(skip_bytes >= 0, false); unsigned int r_mask = header.pf.r_mask; unsigned int g_mask = header.pf.g_mask; unsigned int b_mask = header.pf.b_mask; unsigned int a_mask = header.pf.a_mask; // Determine the number of bits to shift each mask to the right so // that the lowest on bit is at bit 0. int r_shift = get_lowest_on_bit(r_mask); int g_shift = get_lowest_on_bit(g_mask); int b_shift = get_lowest_on_bit(b_mask); int a_shift = get_lowest_on_bit(a_mask); // Then determine the scale factor required to raise the highest // color value to 0xff000000. unsigned int r_scale = 0; if (r_mask != 0) { r_scale = 0xff000000 / (r_mask >> r_shift); } unsigned int g_scale = 0; if (g_mask != 0) { g_scale = 0xff000000 / (g_mask >> g_shift); } unsigned int b_scale = 0; if (b_mask != 0) { b_scale = 0xff000000 / (b_mask >> b_shift); } unsigned int a_scale = 0; if (a_mask != 0) { a_scale = 0xff000000 / (a_mask >> a_shift); } bool add_alpha = has_alpha(tex->_format); size_t size = tex->get_expected_ram_mipmap_image_size(n); size_t row_bytes = x_size * tex->get_num_components(); PTA_uchar image = PTA_uchar::empty_array(size); for (int y = y_size - 1; y >= 0; --y) { unsigned char *p = image.p() + y * row_bytes; for (int x = 0; x < x_size; ++x) { // Read a little-endian numeric value of bpp bytes. unsigned int pixel = 0; int shift = 0; for (int b = 0; b < bpp; ++b) { unsigned int ch = (unsigned char)in.get(); pixel |= (ch << shift); shift += 8; } // Then break apart that value into its R, G, B, and maybe A // components. unsigned int r = (((pixel & r_mask) >> r_shift) * r_scale) >> 24; unsigned int g = (((pixel & g_mask) >> g_shift) * g_scale) >> 24; unsigned int b = (((pixel & b_mask) >> b_shift) * b_scale) >> 24; // Store the components in the Texture's image data. store_unscaled_byte(p, b); store_unscaled_byte(p, g); store_unscaled_byte(p, r); if (add_alpha) { unsigned int a = (((pixel & a_mask) >> a_shift) * a_scale) >> 24; store_unscaled_byte(p, a); } } nassertr(p <= image.p() + size, false); for (int bi = 0; bi < skip_bytes; ++bi) { in.get(); } } tex->set_ram_mipmap_image(n, image); return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::read_dds_level_dxt1 // Access: Private, Static // Description: Called by read_dds for DXT1 file format. //////////////////////////////////////////////////////////////////// bool Texture:: read_dds_level_dxt1(Texture *tex, const DDSHeader &header, int n, istream &in) { int x_size = tex->get_expected_mipmap_x_size(n); int y_size = tex->get_expected_mipmap_y_size(n); static const int div = 4; static const int block_bytes = 8; // The DXT1 image is divided into num_rows x num_cols blocks, where // each block represents 4x4 pixels. int num_cols = max(div, x_size) / div; int num_rows = max(div, y_size) / div; int row_length = num_cols * block_bytes; int linear_size = row_length * num_rows; if (n == 0) { if (header.dds_flags & DDSD_LINEARSIZE) { nassertr(linear_size == header.pitch, false); } } PTA_uchar image = PTA_uchar::empty_array(linear_size); if (y_size >= 4) { // We have to flip the image as we read it, because of DirectX's // inverted sense of up. That means we (a) reverse the order of the // rows of blocks . . . for (int ri = num_rows - 1; ri >= 0; --ri) { unsigned char *p = image.p() + row_length * ri; in.read((char *)p, row_length); for (int ci = 0; ci < num_cols; ++ci) { // . . . and (b) within each block, we reverse the 4 individual // rows of 4 pixels. PN_uint32 *cells = (PN_uint32 *)p; PN_uint32 w = cells[1]; w = ((w & 0xff) << 24) | ((w & 0xff00) << 8) | ((w & 0xff0000) >> 8) | ((w & 0xff000000U) >> 24); cells[1] = w; p += block_bytes; } } } else if (y_size >= 2) { // To invert a two-pixel high image, we just flip two rows within a cell. unsigned char *p = image.p(); in.read((char *)p, row_length); for (int ci = 0; ci < num_cols; ++ci) { PN_uint32 *cells = (PN_uint32 *)p; PN_uint32 w = cells[1]; w = ((w & 0xff) << 8) | ((w & 0xff00) >> 8); cells[1] = w; p += block_bytes; } } else if (y_size >= 1) { // No need to invert a one-pixel-high image. unsigned char *p = image.p(); in.read((char *)p, row_length); } tex->set_ram_mipmap_image(n, image); return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::read_dds_level_dxt23 // Access: Private, Static // Description: Called by read_dds for DXT2 or DXT3 file format. //////////////////////////////////////////////////////////////////// bool Texture:: read_dds_level_dxt23(Texture *tex, const DDSHeader &header, int n, istream &in) { int x_size = tex->get_expected_mipmap_x_size(n); int y_size = tex->get_expected_mipmap_y_size(n); static const int div = 4; static const int block_bytes = 16; // The DXT3 image is divided into num_rows x num_cols blocks, where // each block represents 4x4 pixels. Unlike DXT1, each block // consists of two 8-byte chunks, representing the alpha and color // separately. int num_cols = max(div, x_size) / div; int num_rows = max(div, y_size) / div; int row_length = num_cols * block_bytes; int linear_size = row_length * num_rows; if (n == 0) { if (header.dds_flags & DDSD_LINEARSIZE) { nassertr(linear_size == header.pitch, false); } } PTA_uchar image = PTA_uchar::empty_array(linear_size); if (y_size >= 4) { // We have to flip the image as we read it, because of DirectX's // inverted sense of up. That means we (a) reverse the order of the // rows of blocks . . . for (int ri = num_rows - 1; ri >= 0; --ri) { unsigned char *p = image.p() + row_length * ri; in.read((char *)p, row_length); for (int ci = 0; ci < num_cols; ++ci) { // . . . and (b) within each block, we reverse the 4 individual // rows of 4 pixels. PN_uint32 *cells = (PN_uint32 *)p; // Alpha. The block is four 16-bit words of pixel data. PN_uint32 w0 = cells[0]; PN_uint32 w1 = cells[1]; w0 = ((w0 & 0xffff) << 16) | ((w0 & 0xffff0000U) >> 16); w1 = ((w1 & 0xffff) << 16) | ((w1 & 0xffff0000U) >> 16); cells[0] = w1; cells[1] = w0; // Color. Only the second 32-bit dword of the color block // represents the pixel data. PN_uint32 w = cells[3]; w = ((w & 0xff) << 24) | ((w & 0xff00) << 8) | ((w & 0xff0000) >> 8) | ((w & 0xff000000U) >> 24); cells[3] = w; p += block_bytes; } } } else if (y_size >= 2) { // To invert a two-pixel high image, we just flip two rows within a cell. unsigned char *p = image.p(); in.read((char *)p, row_length); for (int ci = 0; ci < num_cols; ++ci) { PN_uint32 *cells = (PN_uint32 *)p; PN_uint32 w0 = cells[0]; w0 = ((w0 & 0xffff) << 16) | ((w0 & 0xffff0000U) >> 16); cells[0] = w0; PN_uint32 w = cells[3]; w = ((w & 0xff) << 8) | ((w & 0xff00) >> 8); cells[3] = w; p += block_bytes; } } else if (y_size >= 1) { // No need to invert a one-pixel-high image. unsigned char *p = image.p(); in.read((char *)p, row_length); } tex->set_ram_mipmap_image(n, image); return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::read_dds_level_dxt45 // Access: Private, Static // Description: Called by read_dds for DXT4 or DXT5 file format. //////////////////////////////////////////////////////////////////// bool Texture:: read_dds_level_dxt45(Texture *tex, const DDSHeader &header, int n, istream &in) { int x_size = tex->get_expected_mipmap_x_size(n); int y_size = tex->get_expected_mipmap_y_size(n); static const int div = 4; static const int block_bytes = 16; // The DXT5 image is similar to DXT3, in that there each 4x4 block // of pixels consists of an alpha block and a color block, but the // layout of the alpha block is different. int num_cols = max(div, x_size) / div; int num_rows = max(div, y_size) / div; int row_length = num_cols * block_bytes; int linear_size = row_length * num_rows; if (n == 0) { if (header.dds_flags & DDSD_LINEARSIZE) { nassertr(linear_size == header.pitch, false); } } PTA_uchar image = PTA_uchar::empty_array(linear_size); if (y_size >= 4) { // We have to flip the image as we read it, because of DirectX's // inverted sense of up. That means we (a) reverse the order of the // rows of blocks . . . for (int ri = num_rows - 1; ri >= 0; --ri) { unsigned char *p = image.p() + row_length * ri; in.read((char *)p, row_length); for (int ci = 0; ci < num_cols; ++ci) { // . . . and (b) within each block, we reverse the 4 individual // rows of 4 pixels. PN_uint32 *cells = (PN_uint32 *)p; // Alpha. The block is one 16-bit word of reference values, // followed by six words of pixel values, in 12-bit rows. // Tricky to invert. unsigned char p2 = p[2]; unsigned char p3 = p[3]; unsigned char p4 = p[4]; unsigned char p5 = p[5]; unsigned char p6 = p[6]; unsigned char p7 = p[7]; p[2] = ((p7 & 0xf) << 4) | ((p6 & 0xf0) >> 4); p[3] = ((p5 & 0xf) << 4) | ((p7 & 0xf0) >> 4); p[4] = ((p6 & 0xf) << 4) | ((p5 & 0xf0) >> 4); p[5] = ((p4 & 0xf) << 4) | ((p3 & 0xf0) >> 4); p[6] = ((p2 & 0xf) << 4) | ((p4 & 0xf0) >> 4); p[7] = ((p3 & 0xf) << 4) | ((p2 & 0xf0) >> 4); // Color. Only the second 32-bit dword of the color block // represents the pixel data. PN_uint32 w = cells[3]; w = ((w & 0xff) << 24) | ((w & 0xff00) << 8) | ((w & 0xff0000) >> 8) | ((w & 0xff000000U) >> 24); cells[3] = w; p += block_bytes; } } } else if (y_size >= 2) { // To invert a two-pixel high image, we just flip two rows within a cell. unsigned char *p = image.p(); in.read((char *)p, row_length); for (int ci = 0; ci < num_cols; ++ci) { PN_uint32 *cells = (PN_uint32 *)p; unsigned char p2 = p[2]; unsigned char p3 = p[3]; unsigned char p4 = p[4]; p[2] = ((p4 & 0xf) << 4) | ((p3 & 0xf0) >> 4); p[3] = ((p2 & 0xf) << 4) | ((p4 & 0xf0) >> 4); p[4] = ((p3 & 0xf) << 4) | ((p2 & 0xf0) >> 4); PN_uint32 w0 = cells[0]; w0 = ((w0 & 0xffff) << 16) | ((w0 & 0xffff0000U) >> 16); cells[0] = w0; PN_uint32 w = cells[3]; w = ((w & 0xff) << 8) | ((w & 0xff00) >> 8); cells[3] = w; p += block_bytes; } } else if (y_size >= 1) { // No need to invert a one-pixel-high image. unsigned char *p = image.p(); in.read((char *)p, row_length); } tex->set_ram_mipmap_image(n, image); return true; } //////////////////////////////////////////////////////////////////// // Function: Texture::clear_prepared // Access: Private // Description: Removes the indicated PreparedGraphicsObjects table // from the Texture's table, without actually releasing // the texture. This is intended to be called only from // PreparedGraphicsObjects::release_texture(); it should // never be called by user code. //////////////////////////////////////////////////////////////////// void Texture:: clear_prepared(PreparedGraphicsObjects *prepared_objects) { Contexts::iterator ci; ci = _contexts.find(prepared_objects); if (ci != _contexts.end()) { _contexts.erase(ci); } else { // If this assertion fails, clear_prepared() was given a // prepared_objects which the texture didn't know about. nassertv(false); } } //////////////////////////////////////////////////////////////////// // Function: Texture::consider_rescale // Access: Private, Static // Description: Asks the PNMImage to change its scale when it reads // the image, according to the whims of the Config.prc // file. // // This method should be called after // pnmimage.read_header() has been called, but before // pnmimage.read(). //////////////////////////////////////////////////////////////////// void Texture:: consider_rescale(PNMImage &pnmimage, const string &name) { int new_x_size = pnmimage.get_x_size(); int new_y_size = pnmimage.get_y_size(); if (adjust_size(new_x_size, new_y_size, name)) { pnmimage.set_read_size(new_x_size, new_y_size); } } //////////////////////////////////////////////////////////////////// // Function: Texture::consider_downgrade // Access: Private, Static // Description: Reduces the number of channels in the texture, if // necessary, according to num_channels. //////////////////////////////////////////////////////////////////// void Texture:: consider_downgrade(PNMImage &pnmimage, int num_channels, const string &name) { if (num_channels != 0 && num_channels < pnmimage.get_num_channels()) { // One special case: we can't reduce from 3 to 2 components, since // that would require adding an alpha channel. if (pnmimage.get_num_channels() == 3 && num_channels == 2) { return; } gobj_cat.info() << "Downgrading " << name << " from " << pnmimage.get_num_channels() << " components to " << num_channels << ".\n"; pnmimage.set_num_channels(num_channels); } } //////////////////////////////////////////////////////////////////// // Function: Texture::compare_images // Access: Private, Static // Description: Called by generate_simple_ram_image(), this compares // the two PNMImages pixel-by-pixel. If they're similar // enough (within a given threshold), returns true. //////////////////////////////////////////////////////////////////// bool Texture:: compare_images(const PNMImage &a, const PNMImage &b) { nassertr(a.get_maxval() == 255 && b.get_maxval() == 255, false); nassertr(a.get_num_channels() == 4 && b.get_num_channels() == 4, false); nassertr(a.get_x_size() == b.get_x_size() && a.get_y_size() == b.get_y_size(), false); int delta = 0; for (int yi = 0; yi < a.get_y_size(); ++yi) { for (int xi = 0; xi < a.get_x_size(); ++xi) { delta += abs(a.get_red_val(xi, yi) - b.get_red_val(xi, yi)); delta += abs(a.get_green_val(xi, yi) - b.get_green_val(xi, yi)); delta += abs(a.get_blue_val(xi, yi) - b.get_blue_val(xi, yi)); delta += abs(a.get_alpha_val(xi, yi) - b.get_alpha_val(xi, yi)); } } double average_delta = (double)delta / ((double)a.get_x_size() * (double)b.get_y_size() * (double)a.get_maxval()); return (average_delta <= simple_image_threshold); } //////////////////////////////////////////////////////////////////// // Function: Texture::filter_2d_mipmap_pages // Access: Private // Description: Generates the next mipmap level from the previous // one. If there are multiple pages (e.g. a cube map), // generates each page independently. // // x_size and y_size are the size of the previous level. // They need not be a power of 2, or even a multiple of // 2. // // Assumes the lock is already held. //////////////////////////////////////////////////////////////////// void Texture:: filter_2d_mipmap_pages(Texture::RamImage &to, const Texture::RamImage &from, int x_size, int y_size) { size_t pixel_size = _num_components * _component_width; size_t row_size = (size_t)x_size * pixel_size; int to_x_size = max(x_size >> 1, 1); int to_y_size = max(y_size >> 1, 1); size_t to_row_size = (size_t)to_x_size * pixel_size; to._page_size = (size_t)to_y_size * to_row_size; to._image = PTA_uchar::empty_array(to._page_size * _z_size, get_class_type()); Filter2DComponent *filter_component = (_component_type == T_unsigned_byte ? &filter_2d_unsigned_byte : filter_2d_unsigned_short); for (int z = 0; z < _z_size; ++z) { // For each level. unsigned char *p = to._image.p() + z * to._page_size; const unsigned char *q = from._image.p() + z * from._page_size; if (y_size != 1) { int y; for (y = 0; y < y_size - 1; y += 2) { // For each row. nassertv(p == to._image.p() + z * to._page_size + (y / 2) * to_row_size); nassertv(q == from._image.p() + z * from._page_size + y * row_size); if (x_size != 1) { int x; for (x = 0; x < x_size - 1; x += 2) { // For each pixel. for (int c = 0; c < _num_components; ++c) { // For each component. filter_component(p, q, pixel_size, row_size); } q += pixel_size; } if (x < x_size) { // Skip the last odd pixel. q += pixel_size; } } else { // Just one pixel. for (int c = 0; c < _num_components; ++c) { // For each component. filter_component(p, q, 0, row_size); } } q += row_size; } if (y < y_size) { // Skip the last odd row. q += row_size; } } else { // Just one row. if (x_size != 1) { int x; for (x = 0; x < x_size - 1; x += 2) { // For each pixel. for (int c = 0; c < _num_components; ++c) { // For each component. filter_component(p, q, pixel_size, 0); } q += pixel_size; } if (x < x_size) { // Skip the last odd pixel. q += pixel_size; } } else { // Just one pixel. for (int c = 0; c < _num_components; ++c) { // For each component. filter_component(p, q, 0, 0); } } } nassertv(p == to._image.p() + (z + 1) * to._page_size); nassertv(q == from._image.p() + (z + 1) * from._page_size); } } //////////////////////////////////////////////////////////////////// // Function: Texture::filter_3d_mipmap_level // Access: Private // Description: Generates the next mipmap level from the previous // one, treating all the pages of the level as a single // 3-d block of pixels. // // x_size, y_size, and z_size are the size of the // previous level. They need not be a power of 2, or // even a multiple of 2. // // Assumes the lock is already held. //////////////////////////////////////////////////////////////////// void Texture:: filter_3d_mipmap_level(Texture::RamImage &to, const Texture::RamImage &from, int x_size, int y_size, int z_size) { size_t pixel_size = _num_components * _component_width; size_t row_size = (size_t)x_size * pixel_size; size_t page_size = (size_t)y_size * row_size; int to_x_size = max(x_size >> 1, 1); int to_y_size = max(y_size >> 1, 1); int to_z_size = max(z_size >> 1, 1); size_t to_row_size = (size_t)to_x_size * pixel_size; size_t to_page_size = (size_t)to_y_size * to_row_size; to._page_size = to_page_size; to._image = PTA_uchar::empty_array(to_page_size * to_z_size, get_class_type()); Filter3DComponent *filter_component = (_component_type == T_unsigned_byte ? &filter_3d_unsigned_byte : filter_3d_unsigned_short); unsigned char *p = to._image.p(); const unsigned char *q = from._image.p(); if (z_size != 1) { int z; for (z = 0; z < z_size - 1; z += 2) { // For each level. nassertv(p == to._image.p() + (z / 2) * to_page_size); nassertv(q == from._image.p() + z * page_size); if (y_size != 1) { int y; for (y = 0; y < y_size - 1; y += 2) { // For each row. nassertv(p == to._image.p() + (z / 2) * to_page_size + (y / 2) * to_row_size); nassertv(q == from._image.p() + z * page_size + y * row_size); if (x_size != 1) { int x; for (x = 0; x < x_size - 1; x += 2) { // For each pixel. for (int c = 0; c < _num_components; ++c) { // For each component. filter_component(p, q, pixel_size, row_size, page_size); } q += pixel_size; } if (x < x_size) { // Skip the last odd pixel. q += pixel_size; } } else { // Just one pixel. for (int c = 0; c < _num_components; ++c) { // For each component. filter_component(p, q, 0, row_size, page_size); } } q += row_size; } if (y < y_size) { // Skip the last odd row. q += row_size; } } else { // Just one row. if (x_size != 1) { int x; for (x = 0; x < x_size - 1; x += 2) { // For each pixel. for (int c = 0; c < _num_components; ++c) { // For each component. filter_component(p, q, pixel_size, 0, page_size); } q += pixel_size; } if (x < x_size) { // Skip the last odd pixel. q += pixel_size; } } else { // Just one pixel. for (int c = 0; c < _num_components; ++c) { // For each component. filter_component(p, q, 0, 0, page_size); } } } q += page_size; } if (z < z_size) { // Skip the last odd page. q += page_size; } } else { // Just one page. if (y_size != 1) { int y; for (y = 0; y < y_size - 1; y += 2) { // For each row. nassertv(p == to._image.p() + (y / 2) * to_row_size); nassertv(q == from._image.p() + y * row_size); if (x_size != 1) { int x; for (x = 0; x < x_size - 1; x += 2) { // For each pixel. for (int c = 0; c < _num_components; ++c) { // For each component. filter_component(p, q, pixel_size, row_size, 0); } q += pixel_size; } if (x < x_size) { // Skip the last odd pixel. q += pixel_size; } } else { // Just one pixel. for (int c = 0; c < _num_components; ++c) { // For each component. filter_component(p, q, 0, row_size, 0); } } q += row_size; } if (y < y_size) { // Skip the last odd row. q += row_size; } } else { // Just one row. if (x_size != 1) { int x; for (x = 0; x < x_size - 1; x += 2) { // For each pixel. for (int c = 0; c < _num_components; ++c) { // For each component. filter_component(p, q, pixel_size, 0, 0); } q += pixel_size; } if (x < x_size) { // Skip the last odd pixel. q += pixel_size; } } else { // Just one pixel. for (int c = 0; c < _num_components; ++c) { // For each component. filter_component(p, q, 0, 0, 0); } } } } nassertv(p == to._image.p() + to_z_size * to_page_size); nassertv(q == from._image.p() + z_size * page_size); } //////////////////////////////////////////////////////////////////// // Function: Texture::filter_2d_unsigned_byte // Access: Public, Static // Description: Averages a 2x2 block of pixel components into a // single pixel component, for producing the next mipmap // level. Increments p and q to the next component. //////////////////////////////////////////////////////////////////// void Texture:: filter_2d_unsigned_byte(unsigned char *&p, const unsigned char *&q, size_t pixel_size, size_t row_size) { unsigned int result = ((unsigned int)q[0] + (unsigned int)q[pixel_size] + (unsigned int)q[row_size] + (unsigned int)q[pixel_size + row_size]) >> 2; *p = (unsigned char)result; ++p; ++q; } //////////////////////////////////////////////////////////////////// // Function: Texture::filter_2d_unsigned_short // Access: Public, Static // Description: Averages a 2x2 block of pixel components into a // single pixel component, for producing the next mipmap // level. Increments p and q to the next component. //////////////////////////////////////////////////////////////////// void Texture:: filter_2d_unsigned_short(unsigned char *&p, const unsigned char *&q, size_t pixel_size, size_t row_size) { unsigned int result = ((unsigned int)*(unsigned short *)&q[0] + (unsigned int)*(unsigned short *)&q[pixel_size] + (unsigned int)*(unsigned short *)&q[row_size] + (unsigned int)*(unsigned short *)&q[pixel_size + row_size]) >> 2; store_unscaled_short(p, result); q += 2; } //////////////////////////////////////////////////////////////////// // Function: Texture::filter_3d_unsigned_byte // Access: Public, Static // Description: Averages a 2x2x2 block of pixel components into a // single pixel component, for producing the next mipmap // level. Increments p and q to the next component. //////////////////////////////////////////////////////////////////// void Texture:: filter_3d_unsigned_byte(unsigned char *&p, const unsigned char *&q, size_t pixel_size, size_t row_size, size_t page_size) { unsigned int result = ((unsigned int)q[0] + (unsigned int)q[pixel_size] + (unsigned int)q[row_size] + (unsigned int)q[pixel_size + row_size] + (unsigned int)q[page_size] + (unsigned int)q[pixel_size + page_size] + (unsigned int)q[row_size + page_size] + (unsigned int)q[pixel_size + row_size + page_size]) >> 3; *p = (unsigned char)result; ++p; ++q; } //////////////////////////////////////////////////////////////////// // Function: Texture::filter_3d_unsigned_short // Access: Public, Static // Description: Averages a 2x2x2 block of pixel components into a // single pixel component, for producing the next mipmap // level. Increments p and q to the next component. //////////////////////////////////////////////////////////////////// void Texture:: filter_3d_unsigned_short(unsigned char *&p, const unsigned char *&q, size_t pixel_size, size_t row_size, size_t page_size) { unsigned int result = ((unsigned int)*(unsigned short *)&q[0] + (unsigned int)*(unsigned short *)&q[pixel_size] + (unsigned int)*(unsigned short *)&q[row_size] + (unsigned int)*(unsigned short *)&q[pixel_size + row_size] + (unsigned int)*(unsigned short *)&q[page_size] + (unsigned int)*(unsigned short *)&q[pixel_size + page_size] + (unsigned int)*(unsigned short *)&q[row_size + page_size] + (unsigned int)*(unsigned short *)&q[pixel_size + row_size + page_size]) >> 3; store_unscaled_short(p, result); q += 2; } //////////////////////////////////////////////////////////////////// // Function: Texture::do_squish // Access: Private // Description: Invokes the squish library to compress the RAM // image(s). //////////////////////////////////////////////////////////////////// bool Texture:: do_squish(Texture::CompressionMode compression, int squish_flags) { #ifdef HAVE_SQUISH if (_ram_images.empty()) { return false; } RamImages compressed_ram_images; compressed_ram_images.reserve(_ram_images.size()); for (size_t n = 0; n < _ram_images.size(); ++n) { RamImage compressed_image; int x_size = do_get_expected_mipmap_x_size(n); int y_size = do_get_expected_mipmap_y_size(n); int z_size = do_get_expected_mipmap_z_size(n); int page_size = squish::GetStorageRequirements(x_size, y_size, squish_flags); int cell_size = squish::GetStorageRequirements(4, 4, squish_flags); compressed_image._page_size = page_size; compressed_image._image = PTA_uchar::empty_array(page_size * z_size); for (int z = 0; z < z_size; ++z) { unsigned char *dest_page = compressed_image._image.p() + z * page_size; unsigned const char *source_page = _ram_images[n]._image.p() + z * _ram_images[n]._page_size; unsigned const char *source_page_end = source_page + _ram_images[n]._page_size; // Convert one 4 x 4 cell at a time. unsigned char *d = dest_page; for (int y = 0; y < y_size; y += 4) { for (int x = 0; x < x_size; x += 4) { unsigned char tb[16 * 4]; int mask = 0; unsigned char *t = tb; for (int i = 0; i < 16; ++i) { int xi = x + i % 4; int yi = y + i / 4; unsigned const char *s = source_page + (yi * x_size + xi) * _num_components; if (s < source_page_end) { switch (_num_components) { case 1: t[0] = s[0]; // r t[1] = s[0]; // g t[2] = s[0]; // b t[3] = 255; // a break; case 2: t[0] = s[0]; // r t[1] = s[0]; // g t[2] = s[0]; // b t[3] = s[1]; // a break; case 3: t[0] = s[2]; // r t[1] = s[1]; // g t[2] = s[0]; // b t[3] = 255; // a break; case 4: t[0] = s[2]; // r t[1] = s[1]; // g t[2] = s[0]; // b t[3] = s[3]; // a break; } mask |= (1 << i); } t += 4; } squish::CompressMasked(tb, mask, d, squish_flags); d += cell_size; Thread::consider_yield(); } } } compressed_ram_images.push_back(compressed_image); } _ram_images.swap(compressed_ram_images); _ram_image_compression = compression; ++_image_modified; return true; #else // HAVE_SQUISH return false; #endif // HAVE_SQUISH } //////////////////////////////////////////////////////////////////// // Function: Texture::do_unsquish // Access: Private // Description: Invokes the squish library to uncompress the RAM // image(s). //////////////////////////////////////////////////////////////////// bool Texture:: do_unsquish(int squish_flags) { #ifdef HAVE_SQUISH if (_ram_images.empty()) { return false; } RamImages uncompressed_ram_images; uncompressed_ram_images.reserve(_ram_images.size()); for (size_t n = 0; n < _ram_images.size(); ++n) { RamImage uncompressed_image; int x_size = do_get_expected_mipmap_x_size(n); int y_size = do_get_expected_mipmap_y_size(n); int z_size = do_get_expected_mipmap_z_size(n); int page_size = squish::GetStorageRequirements(x_size, y_size, squish_flags); int cell_size = squish::GetStorageRequirements(4, 4, squish_flags); uncompressed_image._page_size = do_get_expected_ram_mipmap_page_size(n); uncompressed_image._image = PTA_uchar::empty_array(uncompressed_image._page_size * z_size); for (int z = 0; z < z_size; ++z) { unsigned char *dest_page = uncompressed_image._image.p() + z * uncompressed_image._page_size; unsigned char *dest_page_end = dest_page + uncompressed_image._page_size; unsigned const char *source_page = _ram_images[n]._image.p() + z * page_size; // Unconvert one 4 x 4 cell at a time. unsigned const char *s = source_page; for (int y = 0; y < y_size; y += 4) { for (int x = 0; x < x_size; x += 4) { unsigned char tb[16 * 4]; squish::Decompress(tb, s, squish_flags); s += cell_size; unsigned char *t = tb; for (int i = 0; i < 16; ++i) { int xi = x + i % 4; int yi = y + i / 4; unsigned char *d = dest_page + (yi * x_size + xi) * _num_components; if (d < dest_page_end) { switch (_num_components) { case 1: d[0] = t[1]; // g break; case 2: d[0] = t[1]; // g d[1] = t[3]; // a break; case 3: d[2] = t[0]; // r d[1] = t[1]; // g d[0] = t[2]; // b break; case 4: d[2] = t[0]; // r d[1] = t[1]; // g d[0] = t[2]; // b d[3] = t[3]; // a break; } } t += 4; } } Thread::consider_yield(); } } uncompressed_ram_images.push_back(uncompressed_image); } _ram_images.swap(uncompressed_ram_images); _ram_image_compression = CM_off; ++_image_modified; return true; #else // HAVE_SQUISH return false; #endif // HAVE_SQUISH } //////////////////////////////////////////////////////////////////// // Function: Texture::register_with_read_factory // Access: Public, Static // Description: Factory method to generate a Texture object //////////////////////////////////////////////////////////////////// void Texture:: register_with_read_factory() { BamReader::get_factory()->register_factory(get_class_type(), make_from_bam); } //////////////////////////////////////////////////////////////////// // Function: Texture::make_from_bam // Access: Protected, Static // Description: Factory method to generate a Texture object //////////////////////////////////////////////////////////////////// TypedWritable *Texture:: make_from_bam(const FactoryParams ¶ms) { // The process of making a texture is slightly different than making // other TypedWritable objects. That is because all creation of // Textures should be done through calls to TexturePool, which // ensures that any loads of the same filename refer to the same // memory. DatagramIterator scan; BamReader *manager; parse_params(params, scan, manager); // Get the filenames and texture type so we can look up the file on // disk first. string name = scan.get_string(); Filename filename = scan.get_string(); Filename alpha_filename = scan.get_string(); int primary_file_num_channels = scan.get_uint8(); int alpha_file_channel = scan.get_uint8(); bool has_rawdata = scan.get_bool(); TextureType texture_type = (TextureType)scan.get_uint8(); Texture *me = NULL; if (has_rawdata) { // If the raw image data is included, then just create a Texture // and don't load from the file. me = new Texture(name); me->_filename = filename; me->_alpha_filename = alpha_filename; me->_primary_file_num_channels = primary_file_num_channels; me->_alpha_file_channel = alpha_file_channel; me->_texture_type = texture_type; } else { if (filename.empty()) { // This texture has no filename; since we don't have an image to // load, we can't actually create the texture. gobj_cat.info() << "Cannot create texture '" << name << "' with no filename.\n"; } else { // This texture does have a filename, so try to load it from disk. VirtualFileSystem *vfs = VirtualFileSystem::get_global_ptr(); if (!manager->get_filename().empty()) { // If texture filename was given relative to the bam filename, // expand it now. Filename bam_dir = manager->get_filename().get_dirname(); vfs->resolve_filename(filename, bam_dir); if (!alpha_filename.empty()) { vfs->resolve_filename(alpha_filename, bam_dir); } } switch (texture_type) { case TT_1d_texture: case TT_2d_texture: if (alpha_filename.empty()) { me = TexturePool::load_texture(filename, primary_file_num_channels, false, manager->get_loader_options()); } else { me = TexturePool::load_texture(filename, alpha_filename, primary_file_num_channels, alpha_file_channel, false, manager->get_loader_options()); } break; case TT_3d_texture: me = TexturePool::load_3d_texture(filename, false, manager->get_loader_options()); break; case TT_cube_map: me = TexturePool::load_cube_map(filename, false, manager->get_loader_options()); break; } } } if (me == (Texture *)NULL) { // Oops, we couldn't load the texture; we'll just return NULL. // But we do need a dummy texture to read in and ignore all of the // attributes. PT(Texture) dummy = new Texture(""); dummy->fillin(scan, manager, has_rawdata); } else { me->set_name(name); me->fillin(scan, manager, has_rawdata); } return me; } //////////////////////////////////////////////////////////////////// // Function: Texture::fillin // Access: Protected // Description: Function that reads out of the datagram (or asks // manager to read) all of the data that is needed to // re-create this object and stores it in the appropiate // place //////////////////////////////////////////////////////////////////// void Texture:: fillin(DatagramIterator &scan, BamReader *manager, bool has_rawdata) { // We have already read in the filenames; don't read them again. // Use the setters instead of setting these directly, so we can // correctly avoid incrementing _properties_modified if none of // these actually change. (Otherwise, we'd have to reload the // texture to the GSG every time we loaded a new bam file that // reference the texture, since each bam file reference passes // through this function.) do_set_wrap_u((WrapMode)scan.get_uint8()); do_set_wrap_v((WrapMode)scan.get_uint8()); do_set_wrap_w((WrapMode)scan.get_uint8()); do_set_minfilter((FilterType)scan.get_uint8()); do_set_magfilter((FilterType)scan.get_uint8()); do_set_anisotropic_degree(scan.get_int16()); Colorf color; color.read_datagram(scan); do_set_border_color(color); if (manager->get_file_minor_ver() >= 1) { do_set_compression((CompressionMode)scan.get_uint8()); } if (manager->get_file_minor_ver() >= 16) { do_set_quality_level((QualityLevel)scan.get_uint8()); } Format format = (Format)scan.get_uint8(); int num_components = scan.get_uint8(); if (num_components == _num_components) { // Only reset the format if the number of components hasn't // changed, since if the number of components has changed our // texture no longer matches what it was when the bam was // written. do_set_format(format); } bool has_simple_ram_image = false; if (manager->get_file_minor_ver() >= 18) { if (has_rawdata || (_orig_file_x_size == 0 && _orig_file_y_size == 0)) { // We only trust the file size if we have the raw data. _orig_file_x_size = scan.get_uint32(); _orig_file_y_size = scan.get_uint32(); } else { // Discard the file size indicated in the bam file; it might not // be accurate. scan.get_uint32(); scan.get_uint32(); } has_simple_ram_image = scan.get_bool(); } if (has_simple_ram_image) { int x_size = scan.get_uint32(); int y_size = scan.get_uint32(); PN_int32 date_generated = scan.get_int32(); size_t u_size = scan.get_uint32(); PTA_uchar image = PTA_uchar::empty_array(u_size, get_class_type()); for (size_t u_idx = 0; u_idx < u_size; ++u_idx) { image[(int)u_idx] = scan.get_uint8(); } // Only replace the simple ram image if it was generated more // recently than the one we already have. if (_simple_ram_image._image.empty() || date_generated > _simple_image_date_generated) { _simple_x_size = x_size; _simple_y_size = y_size; _simple_image_date_generated = date_generated; _simple_ram_image._image = image; _simple_ram_image._page_size = u_size; ++_simple_image_modified; } } if (has_rawdata) { // In the rawdata case, we must always set the format. _format = format; _num_components = num_components; _x_size = scan.get_uint32(); _y_size = scan.get_uint32(); _z_size = scan.get_uint32(); _component_type = (ComponentType)scan.get_uint8(); _component_width = scan.get_uint8(); _ram_image_compression = CM_off; if (manager->get_file_minor_ver() >= 1) { _ram_image_compression = (CompressionMode)scan.get_uint8(); } int num_ram_images = 1; if (manager->get_file_minor_ver() >= 3) { num_ram_images = scan.get_uint8(); } _ram_images.clear(); _ram_images.reserve(num_ram_images); for (int n = 0; n < num_ram_images; ++n) { _ram_images.push_back(RamImage()); _ram_images[n]._page_size = get_expected_ram_page_size(); if (manager->get_file_minor_ver() >= 1) { _ram_images[n]._page_size = scan.get_uint32(); } size_t u_size = scan.get_uint32(); // fill the _image buffer with image data PTA_uchar image = PTA_uchar::empty_array(u_size, get_class_type()); for (size_t u_idx = 0; u_idx < u_size; ++u_idx) { image[(int)u_idx] = scan.get_uint8(); } _ram_images[n]._image = image; } _loaded_from_image = true; do_set_pad_size(0, 0, 0); ++_image_modified; ++_properties_modified; } } //////////////////////////////////////////////////////////////////// // Function: Texture::write_datagram // Access: Public // Description: Function to write the important information in // the particular object to a Datagram //////////////////////////////////////////////////////////////////// void Texture:: write_datagram(BamWriter *manager, Datagram &me) { MutexHolder holder(_lock); // Write out the texture's raw pixel data if (a) the current Bam // Texture Mode requires that, or (b) there's no filename, so the // file can't be loaded up from disk, but the raw pixel data is // currently available in RAM. // Otherwise, we just write out the filename, and assume whoever // loads the bam file later will have access to the image file on // disk. BamTextureMode file_texture_mode = manager->get_file_texture_mode(); bool has_rawdata = (file_texture_mode == BTM_rawdata || (do_has_ram_image() && _filename.empty())); if (has_rawdata && !do_has_ram_image()) { do_get_ram_image(); if (!do_has_ram_image()) { // No image data after all. has_rawdata = false; } } bool has_bam_dir = !manager->get_filename().empty(); Filename bam_dir = manager->get_filename().get_dirname(); Filename filename = _filename; Filename alpha_filename = _alpha_filename; VirtualFileSystem *vfs = VirtualFileSystem::get_global_ptr(); switch (file_texture_mode) { case BTM_unchanged: case BTM_rawdata: break; case BTM_fullpath: filename = _fullpath; alpha_filename = _alpha_fullpath; break; case BTM_relative: filename = _fullpath; alpha_filename = _alpha_fullpath; bam_dir.make_absolute(vfs->get_cwd()); if (!has_bam_dir || !filename.make_relative_to(bam_dir, true)) { filename.find_on_searchpath(get_model_path()); } if (gobj_cat.is_debug()) { gobj_cat.debug() << "Texture file " << _fullpath << " found as " << filename << "\n"; } if (!has_bam_dir || !alpha_filename.make_relative_to(bam_dir, true)) { alpha_filename.find_on_searchpath(get_model_path()); } if (gobj_cat.is_debug()) { gobj_cat.debug() << "Alpha image " << _alpha_fullpath << " found as " << alpha_filename << "\n"; } break; case BTM_basename: filename = _fullpath.get_basename(); alpha_filename = _alpha_fullpath.get_basename(); break; default: gobj_cat.error() << "Unsupported bam-texture-mode: " << (int)file_texture_mode << "\n"; } if (filename.empty() && do_has_ram_image()) { // If we don't have a filename, we have to store rawdata anyway. has_rawdata = true; } me.add_string(get_name()); me.add_string(filename); me.add_string(alpha_filename); me.add_uint8(_primary_file_num_channels); me.add_uint8(_alpha_file_channel); me.add_uint8(has_rawdata); me.add_uint8(_texture_type); // The data beginning at this point is handled by fillin(). me.add_uint8(_wrap_u); me.add_uint8(_wrap_v); me.add_uint8(_wrap_w); me.add_uint8(_minfilter); me.add_uint8(_magfilter); me.add_int16(_anisotropic_degree); _border_color.write_datagram(me); me.add_uint8(_compression); me.add_uint8(_quality_level); me.add_uint8(_format); me.add_uint8(_num_components); me.add_uint32(_orig_file_x_size); me.add_uint32(_orig_file_y_size); bool has_simple_ram_image = !_simple_ram_image._image.empty(); me.add_bool(has_simple_ram_image); // Write out the simple image too, so it will be available later. if (has_simple_ram_image) { me.add_uint32(_simple_x_size); me.add_uint32(_simple_y_size); me.add_int32(_simple_image_date_generated); me.add_uint32(_simple_ram_image._image.size()); me.append_data(_simple_ram_image._image, _simple_ram_image._image.size()); } // If we are also including the texture's image data, then stuff it // in here. if (has_rawdata) { me.add_uint32(_x_size); me.add_uint32(_y_size); me.add_uint32(_z_size); me.add_uint8(_component_type); me.add_uint8(_component_width); me.add_uint8(_ram_image_compression); me.add_uint8(_ram_images.size()); for (size_t n = 0; n < _ram_images.size(); ++n) { me.add_uint32(_ram_images[n]._page_size); me.add_uint32(_ram_images[n]._image.size()); me.append_data(_ram_images[n]._image, _ram_images[n]._image.size()); } } } //////////////////////////////////////////////////////////////////// // Function: Texture::TextureType output operator // Description: //////////////////////////////////////////////////////////////////// ostream & operator << (ostream &out, Texture::TextureType tt) { switch (tt) { case Texture::TT_1d_texture: return out << "1d_texture"; case Texture::TT_2d_texture: return out << "2d_texture"; case Texture::TT_3d_texture: return out << "3d_texture"; case Texture::TT_cube_map: return out << "cube_map"; } return out << "(**invalid Texture::TextureType(" << (int)tt << ")**)"; } //////////////////////////////////////////////////////////////////// // Function: Texture::ComponentType output operator // Description: //////////////////////////////////////////////////////////////////// ostream & operator << (ostream &out, Texture::ComponentType ct) { switch (ct) { case Texture::T_unsigned_byte: return out << "unsigned_byte"; case Texture::T_unsigned_short: return out << "unsigned_short"; case Texture::T_float: return out << "float"; } return out << "(**invalid Texture::ComponentType(" << (int)ct << ")**)"; } //////////////////////////////////////////////////////////////////// // Function: Texture::Format output operator // Description: //////////////////////////////////////////////////////////////////// ostream & operator << (ostream &out, Texture::Format f) { switch (f) { case Texture::F_depth_stencil: return out << "depth_stencil"; case Texture::F_color_index: return out << "color_index"; case Texture::F_red: return out << "red"; case Texture::F_green: return out << "green"; case Texture::F_blue: return out << "blue"; case Texture::F_alpha: return out << "alpha"; case Texture::F_rgb: return out << "rgb"; case Texture::F_rgb5: return out << "rgb5"; case Texture::F_rgb8: return out << "rgb8"; case Texture::F_rgb12: return out << "rgb12"; case Texture::F_rgb332: return out << "rgb332"; case Texture::F_rgba: return out << "rgba"; case Texture::F_rgbm: return out << "rgbm"; case Texture::F_rgba4: return out << "rgba4"; case Texture::F_rgba5: return out << "rgba5"; case Texture::F_rgba8: return out << "rgba8"; case Texture::F_rgba12: return out << "rgba12"; case Texture::F_luminance: return out << "luminance"; case Texture::F_luminance_alpha: return out << "luminance_alpha"; case Texture::F_luminance_alphamask: return out << "luminance_alphamask"; case Texture::F_rgba16: return out << "rgba16"; case Texture::F_rgba32: return out << "rgba32"; } return out << "(**invalid Texture::Format(" << (int)f << ")**)"; } //////////////////////////////////////////////////////////////////// // Function: Texture::FilterType output operator // Description: //////////////////////////////////////////////////////////////////// ostream & operator << (ostream &out, Texture::FilterType ft) { switch (ft) { case Texture::FT_nearest: return out << "nearest"; case Texture::FT_linear: return out << "linear"; case Texture::FT_nearest_mipmap_nearest: return out << "nearest_mipmap_nearest"; case Texture::FT_linear_mipmap_nearest: return out << "linear_mipmap_nearest"; case Texture::FT_nearest_mipmap_linear: return out << "nearest_mipmap_linear"; case Texture::FT_linear_mipmap_linear: return out << "linear_mipmap_linear"; case Texture::FT_shadow: return out << "shadow"; case Texture::FT_default: return out << "default"; case Texture::FT_invalid: return out << "invalid"; } return out << "(**invalid Texture::FilterType(" << (int)ft << ")**)"; } //////////////////////////////////////////////////////////////////// // Function: Texture::FilterType input operator // Description: //////////////////////////////////////////////////////////////////// istream & operator >> (istream &in, Texture::FilterType &ft) { string word; in >> word; ft = Texture::string_filter_type(word); return in; } //////////////////////////////////////////////////////////////////// // Function: Texture::WrapMode output operator // Description: //////////////////////////////////////////////////////////////////// ostream & operator << (ostream &out, Texture::WrapMode wm) { switch (wm) { case Texture::WM_clamp: return out << "clamp"; case Texture::WM_repeat: return out << "repeat"; case Texture::WM_mirror: return out << "mirror"; case Texture::WM_mirror_once: return out << "mirror_once"; case Texture::WM_border_color: return out << "border_color"; case Texture::WM_invalid: return out << "invalid"; } return out << "(**invalid Texture::WrapMode(" << (int)wm << ")**)"; } //////////////////////////////////////////////////////////////////// // Function: Texture::WrapMode input operator // Description: //////////////////////////////////////////////////////////////////// istream & operator >> (istream &in, Texture::WrapMode &wm) { string word; in >> word; wm = Texture::string_wrap_mode(word); return in; } //////////////////////////////////////////////////////////////////// // Function: Texture::CompressionMode output operator // Description: //////////////////////////////////////////////////////////////////// ostream & operator << (ostream &out, Texture::CompressionMode cm) { switch (cm) { case Texture::CM_default: return out << "default"; case Texture::CM_off: return out << "off"; case Texture::CM_on: return out << "on"; case Texture::CM_fxt1: return out << "fxt1"; case Texture::CM_dxt1: return out << "dxt1"; case Texture::CM_dxt2: return out << "dxt2"; case Texture::CM_dxt3: return out << "dxt3"; case Texture::CM_dxt4: return out << "dxt4"; case Texture::CM_dxt5: return out << "dxt5"; } return out << "(**invalid Texture::CompressionMode(" << (int)cm << ")**)"; } //////////////////////////////////////////////////////////////////// // Function: Texture::QualityLevel output operator // Description: //////////////////////////////////////////////////////////////////// ostream & operator << (ostream &out, Texture::QualityLevel tql) { switch (tql) { case Texture::QL_default: return out << "default"; case Texture::QL_fastest: return out << "fastest"; case Texture::QL_normal: return out << "normal"; case Texture::QL_best: return out << "best"; } return out << "**invalid Texture::QualityLevel (" << (int)tql << ")**"; } //////////////////////////////////////////////////////////////////// // Function: Texture::QualityLevel input operator // Description: //////////////////////////////////////////////////////////////////// istream & operator >> (istream &in, Texture::QualityLevel &tql) { string word; in >> word; if (cmp_nocase(word, "default") == 0) { tql = Texture::QL_default; } else if (cmp_nocase(word, "fastest") == 0) { tql = Texture::QL_fastest; } else if (cmp_nocase(word, "normal") == 0) { tql = Texture::QL_normal; } else if (cmp_nocase(word, "best") == 0) { tql = Texture::QL_best; } else { gobj_cat->error() << "Invalid Texture::QualityLevel value: " << word << "\n"; tql = Texture::QL_default; } return in; }