import types import string import re import math import operator import inspect import os import sys import random if __debug__: import traceback from direct.directutil import Verify ScalarTypes = (types.FloatType, types.IntType, types.LongType) # NOTE: ifAbsentPut has been replaced with Python's dictionary's builtin setdefault # before: # ifAbsentPut(dict, key, defaultValue) # after: # dict.setdefault(key, defaultValue) # Please use setdefault instead -- Joe def enumerate(L): """Returns (0, L[0]), (1, L[1]), etc., allowing this syntax: for i, item in enumerate(L): ... enumerate is a built-in feature in Python 2.3, which implements it using an iterator. For now, we can use this quick & dirty implementation that returns a list of tuples that is completely constructed every time enumerate() is called. """ return zip(xrange(len(L)), L) import __builtin__ if hasattr(__builtin__, 'enumerate'): print 'enumerate is already present in __builtin__' else: __builtin__.enumerate = enumerate def unique(L1, L2): """Return a list containing all items in 'L1' that are not in 'L2'""" L2 = dict([(k,None) for k in L2]) return [item for item in L1 if item not in L2] def indent(stream, numIndents, str): """ Write str to stream with numIndents in front of it """ # To match emacs, instead of a tab character we will use 4 spaces stream.write(' ' * numIndents + str) def writeFsmTree(instance, indent = 0): if hasattr(instance, 'parentFSM'): writeFsmTree(instance.parentFSM, indent-2) elif hasattr(instance, 'fsm'): name = '' if hasattr(instance.fsm, 'state'): name = instance.fsm.state.name print "%s: %s"%(instance.fsm.name, name) if __debug__: class StackTrace: def __init__(self, label="", start=0, limit=None): """ label is a string (or anything that be be a string) that is printed as part of the trace back. This is just to make it easier to tell what the stack trace is referring to. start is an integer number of stack frames back from the most recent. (This is automatically bumped up by one to skip the __init__ call to the StackTrace). limit is an integer number of stack frames to record (or None for unlimited). """ self.label = label if limit is not None: self.trace = traceback.extract_stack(sys._getframe(1+start), limit=limit) else: self.trace = traceback.extract_stack(sys._getframe(1+start)) def __str__(self): r = "Debug stack trace of %s (back %s frames):\n"%( self.label, len(self.trace),) for i in traceback.format_list(self.trace): r+=i return r def traceFunctionCall(frame): """ return a string that shows the call frame with calling arguments. e.g. foo(x=234, y=135) """ f = frame co = f.f_code dict = f.f_locals n = co.co_argcount if co.co_flags & 4: n = n+1 if co.co_flags & 8: n = n+1 r='' if dict.has_key('self'): r = '%s.'%(dict['self'].__class__.__name__, ) r+="%s("%(f.f_code.co_name, ) comma=0 # formatting, whether we should type a comma. for i in range(n): name = co.co_varnames[i] if name=='self': continue if comma: r+=', ' else: # ok, we skipped the first one, the rest get commas: comma=1 r+=name r+='=' if dict.has_key(name): v=str(dict[name]) if len(v)>200: r+="" else: r+=str(dict[name]) else: r+="*** undefined ***" return r+')' def traceParentCall(): return traceFunctionCall(sys._getframe(2)) def printThisCall(): print traceFunctionCall(sys._getframe(1)) return 1 # to allow "assert printThisCall()" if __debug__: def lineage(obj, verbose=0, indent=0): """ return instance or class name in as a multiline string. Usage: print lineage(foo) (Based on getClassLineage()) """ r="" if type(obj) == types.ListType: r+=(" "*indent)+"python list\n" elif type(obj) == types.DictionaryType: r+=(" "*indent)+"python dictionary\n" elif type(obj) == types.ModuleType: r+=(" "*indent)+str(obj)+"\n" elif type(obj) == types.InstanceType: r+=lineage(obj.__class__, verbose, indent) elif type(obj) == types.ClassType: r+=(" "*indent) if verbose: r+=obj.__module__+"." r+=obj.__name__+"\n" for c in obj.__bases__: r+=lineage(c, verbose, indent+2) return r def tron(): sys.settrace(trace) def trace(frame, event, arg): if event == 'line': pass elif event == 'call': print traceFunctionCall(sys._getframe(1)) elif event == 'return': print "returning" elif event == 'exception': print "exception" return trace def troff(): sys.settrace(None) def apropos(obj, *args): """ Obsolete, use pdir """ print 'Use pdir instead' def getClassLineage(obj): """ print object inheritance list """ if type(obj) == types.DictionaryType: # Just a dictionary, return dictionary return [obj] elif type(obj) == types.InstanceType: # Instance, make a list with the instance and its class interitance return [obj] + getClassLineage(obj.__class__) elif type(obj) == types.ClassType: # Class, see what it derives from lineage = [obj] for c in obj.__bases__: lineage = lineage + getClassLineage(c) return lineage else: # Not what I'm looking for return [] def pdir(obj, str = None, fOverloaded = 0, width = None, fTruncate = 1, lineWidth = 75, wantPrivate = 0): # Remove redundant class entries uniqueLineage = [] for l in getClassLineage(obj): if type(l) == types.ClassType: if l in uniqueLineage: break uniqueLineage.append(l) # Pretty print out directory info uniqueLineage.reverse() for obj in uniqueLineage: _pdir(obj, str, fOverloaded, width, fTruncate, lineWidth, wantPrivate) print def _pdir(obj, str = None, fOverloaded = 0, width = None, fTruncate = 1, lineWidth = 75, wantPrivate = 0): """ Print out a formatted list of members and methods of an instance or class """ def printHeader(name): name = ' ' + name + ' ' length = len(name) if length < 70: padBefore = int((70 - length)/2.0) padAfter = max(0,70 - length - padBefore) header = '*' * padBefore + name + '*' * padAfter print header print def printInstanceHeader(i, printHeader = printHeader): printHeader(i.__class__.__name__ + ' INSTANCE INFO') def printClassHeader(c, printHeader = printHeader): printHeader(c.__name__ + ' CLASS INFO') def printDictionaryHeader(d, printHeader = printHeader): printHeader('DICTIONARY INFO') # Print Header if type(obj) == types.InstanceType: printInstanceHeader(obj) elif type(obj) == types.ClassType: printClassHeader(obj) elif type (obj) == types.DictionaryType: printDictionaryHeader(obj) # Get dict if type(obj) == types.DictionaryType: dict = obj else: dict = obj.__dict__ # Adjust width if width: maxWidth = width else: maxWidth = 10 keyWidth = 0 aproposKeys = [] privateKeys = [] remainingKeys = [] for key in dict.keys(): if not width: keyWidth = len(key) if str: if re.search(str, key, re.I): aproposKeys.append(key) if (not width) and (keyWidth > maxWidth): maxWidth = keyWidth else: if key[:1] == '_': if wantPrivate: privateKeys.append(key) if (not width) and (keyWidth > maxWidth): maxWidth = keyWidth else: remainingKeys.append(key) if (not width) and (keyWidth > maxWidth): maxWidth = keyWidth # Sort appropriate keys if str: aproposKeys.sort() else: privateKeys.sort() remainingKeys.sort() # Print out results if wantPrivate: keys = aproposKeys + privateKeys + remainingKeys else: keys = aproposKeys + remainingKeys format = '%-' + `maxWidth` + 's' for key in keys: value = dict[key] if callable(value): strvalue = `Signature(value)` else: strvalue = `value` if fTruncate: # Cut off line (keeping at least 1 char) strvalue = strvalue[:max(1,lineWidth - maxWidth)] print (format % key)[:maxWidth] + '\t' + strvalue # Magic numbers: These are the bit masks in func_code.co_flags that # reveal whether or not the function has a *arg or **kw argument. _POS_LIST = 4 _KEY_DICT = 8 def _is_variadic(function): return function.func_code.co_flags & _POS_LIST def _has_keywordargs(function): return function.func_code.co_flags & _KEY_DICT def _varnames(function): return function.func_code.co_varnames def _getcode(f): """ _getcode(f) This function returns the name and function object of a callable object. """ def method_get(f): return f.__name__, f.im_func def function_get(f): return f.__name__, f def instance_get(f): if hasattr(f, '__call__'): method = f.__call__ if (type(method) == types.MethodType): func = method.im_func else: func = method return ("%s%s" % (f.__class__.__name__, '__call__'), func) else: s = ("Instance %s of class %s does not have a __call__ method" % (f, f.__class__.__name__)) raise TypeError, s def class_get(f): if hasattr(f, '__init__'): return f.__name__, f.__init__.im_func else: return f.__name__, lambda: None codedict = { types.UnboundMethodType: method_get, types.MethodType : method_get, types.FunctionType : function_get, types.InstanceType : instance_get, types.ClassType : class_get, } try: return codedict[type(f)](f) except KeyError: if callable(f): # eg, built-in functions and methods # raise ValueError, "type %s not supported yet." % type(f) return f.__name__, None else: raise TypeError, ("object %s of type %s is not callable." % (f, type(f))) class Signature: def __init__(self, func): self.type = type(func) self.name, self.func = _getcode(func) def ordinary_args(self): n = self.func.func_code.co_argcount return _varnames(self.func)[0:n] def special_args(self): n = self.func.func_code.co_argcount x = {} # if _is_variadic(self.func): x['positional'] = _varnames(self.func)[n] if _has_keywordargs(self.func): x['keyword'] = _varnames(self.func)[n+1] elif _has_keywordargs(self.func): x['keyword'] = _varnames(self.func)[n] else: pass return x def full_arglist(self): base = list(self.ordinary_args()) x = self.special_args() if x.has_key('positional'): base.append(x['positional']) if x.has_key('keyword'): base.append(x['keyword']) return base def defaults(self): defargs = self.func.func_defaults args = self.ordinary_args() mapping = {} if defargs is not None: for i in range(-1, -(len(defargs)+1), -1): mapping[args[i]] = defargs[i] else: pass return mapping def __repr__(self): if self.func: defaults = self.defaults() specials = self.special_args() l = [] for arg in self.ordinary_args(): if defaults.has_key(arg): l.append( arg + '=' + str(defaults[arg]) ) else: l.append( arg ) if specials.has_key('positional'): l.append( '*' + specials['positional'] ) if specials.has_key('keyword'): l.append( '**' + specials['keyword'] ) return "%s(%s)" % (self.name, string.join(l, ', ')) else: return "%s(?)" % self.name def aproposAll(obj): """ Print out a list of all members and methods (including overloaded methods) of an instance or class """ apropos(obj, fOverloaded = 1, fTruncate = 0) def doc(obj): if (isinstance(obj, types.MethodType)) or \ (isinstance(obj, types.FunctionType)): print obj.__doc__ def adjust(command = None, dim = 1, parent = None, **kw): """ adjust(command = None, parent = None, **kw) Popup and entry scale to adjust a parameter Accepts any Slider keyword argument. Typical arguments include: command: The one argument command to execute min: The min value of the slider max: The max value of the slider resolution: The resolution of the slider text: The label on the slider These values can be accessed and/or changed after the fact >>> vg = adjust() >>> vg['min'] 0.0 >>> vg['min'] = 10.0 >>> vg['min'] 10.0 """ # Make sure we enable Tk from direct.tkwidgets import Valuator # Set command if specified if command: kw['command'] = lambda x: apply(command, x) if parent is None: kw['title'] = command.__name__ kw['dim'] = dim # Create toplevel if needed if not parent: vg = apply(Valuator.ValuatorGroupPanel, (parent,), kw) else: vg = apply(Valuator.ValuatorGroup,(parent,), kw) vg.pack(expand = 1, fill = 'x') return vg def intersection(a, b): """ intersection(list, list): """ if not a: return [] if not b: return [] d = [] for i in a: if (i in b) and (i not in d): d.append(i) for i in b: if (i in a) and (i not in d): d.append(i) return d def union(a, b): """ union(list, list): """ # Copy a c = a[:] for i in b: if (i not in c): c.append(i) return c def sameElements(a, b): if len(a) != len(b): return 0 for elem in a: if elem not in b: return 0 for elem in b: if elem not in a: return 0 return 1 def list2dict(L, value=None): """creates dict using elements of list, all assigned to same value""" return dict([(k,value) for k in L]) def invertDict(D): """creates a dictionary by 'inverting' D; keys are placed in the new dictionary under their corresponding value in the old dictionary. Data will be lost if D contains any duplicate values. >>> old = {'key1':1, 'key2':2} >>> invertDict(old) {1: 'key1', 2: 'key2'} """ n = {} for key, value in D.items(): n[value] = key return n def invertDictLossless(D): """similar to invertDict, but values of new dict are lists of keys from old dict. No information is lost. >>> old = {'key1':1, 'key2':2, 'keyA':2} >>> invertDictLossless(old) {1: ['key1'], 2: ['key2', 'keyA']} """ n = {} for key, value in D.items(): n.setdefault(value, []) n[value].append(key) return n def uniqueElements(L): """are all elements of list unique?""" return len(L) == len(list2dict(L)) def disjoint(L1, L2): """returns non-zero if L1 and L2 have no common elements""" used = dict([(k,None) for k in L1]) for k in L2: if k in used: return 0 return 1 def contains(whole, sub): """ Return 1 if whole contains sub, 0 otherwise """ if (whole == sub): return 1 for elem in sub: # The first item you find not in whole, return 0 if elem not in whole: return 0 # If you got here, whole must contain sub return 1 def replace(list, old, new, all=0): """ replace 'old' with 'new' in 'list' if all == 0, replace first occurrence otherwise replace all occurrences returns the number of items replaced """ if old not in list: return 0 if not all: i = list.index(old) list[i] = new return 1 else: numReplaced = 0 for i in xrange(len(list)): if list[i] == old: numReplaced += 1 list[i] = new return numReplaced def reduceAngle(deg): """ Reduces an angle (in degrees) to a value in [-180..180) """ return (((deg + 180.) % 360.) - 180.) def fitSrcAngle2Dest(src, dest): """ given a src and destination angle, returns an equivalent src angle that is within [-180..180) of dest examples: fitSrcAngle2Dest(30,60) == 30 fitSrcAngle2Dest(60,30) == 60 fitSrcAngle2Dest(0,180) == 0 fitSrcAngle2Dest(-1,180) == 359 fitSrcAngle2Dest(-180,180) == 180 """ return dest + reduceAngle(src - dest) def fitDestAngle2Src(src, dest): """ given a src and destination angle, returns an equivalent dest angle that is within [-180..180) of src examples: fitDestAngle2Src(30,60) == 60 fitDestAngle2Src(60,30) == 30 fitDestAngle2Src(0,180) == -180 fitDestAngle2Src(1,180) == 180 """ return src + (reduceAngle(dest - src)) def closestDestAngle2(src, dest): # The function above didn't seem to do what I wanted. So I hacked # this one together. I can't really say I understand it. It's more # from impirical observation... GRW diff = src - dest if diff > 180: # if the difference is greater that 180 it's shorter to go the other way return dest - 360 elif diff < -180: # or perhaps the OTHER other way... return dest + 360 else: # otherwise just go to the original destination return dest def closestDestAngle(src, dest): # The function above didn't seem to do what I wanted. So I hacked # this one together. I can't really say I understand it. It's more # from impirical observation... GRW diff = src - dest if diff > 180: # if the difference is greater that 180 it's shorter to go the other way return src - (diff - 360) elif diff < -180: # or perhaps the OTHER other way... return src - (360 + diff) else: # otherwise just go to the original destination return dest def binaryRepr(number, max_length = 32): # This will only work reliably for relatively small numbers. # Increase the value of max_length if you think you're going # to use long integers assert number < 2L << max_length shifts = map (operator.rshift, max_length * [number], \ range (max_length - 1, -1, -1)) digits = map (operator.mod, shifts, max_length * [2]) if not digits.count (1): return 0 digits = digits [digits.index (1):] return string.join (map (repr, digits), '') # constant profile defaults PyUtilProfileDefaultFilename = 'profiledata' PyUtilProfileDefaultLines = 80 PyUtilProfileDefaultSorts = ['cumulative', 'time', 'calls'] # call this from the prompt, and break back out to the prompt # to stop profiling # # OR to do inline profiling, you must make a globally-visible # function to be profiled, i.e. to profile 'self.load()', do # something like this: # # def func(self=self): # self.load() # import __builtin__ # __builtin__.func = func # PythonUtil.startProfile(cmd='func()', filename='profileData') # del __builtin__.func # def startProfile(filename=PyUtilProfileDefaultFilename, lines=PyUtilProfileDefaultLines, sorts=PyUtilProfileDefaultSorts, silent=0, callInfo=1, cmd='run()'): import profile profile.run(cmd, filename) if not silent: printProfile(filename, lines, sorts, callInfo) # call this to see the results again def printProfile(filename=PyUtilProfileDefaultFilename, lines=PyUtilProfileDefaultLines, sorts=PyUtilProfileDefaultSorts, callInfo=1): import pstats s = pstats.Stats(filename) s.strip_dirs() for sort in sorts: s.sort_stats(sort) s.print_stats(lines) if callInfo: s.print_callees(lines) s.print_callers(lines) def getSetterName(valueName, prefix='set'): # getSetterName('color') -> 'setColor' # getSetterName('color', 'get') -> 'getColor' return '%s%s%s' % (prefix, string.upper(valueName[0]), valueName[1:]) def getSetter(targetObj, valueName, prefix='set'): # getSetter(smiley, 'pos') -> smiley.setPos return getattr(targetObj, getSetterName(valueName, prefix)) class Functor: def __init__(self, function, *args, **kargs): assert callable(function), "function should be a callable obj" self._function = function self._args = args self._kargs = kargs self.__name__ = 'Functor: %s' % self._function.__name__ self.__doc__ = self._function.__doc__ def __call__(self, *args, **kargs): """call function""" _args = list(self._args) _args.extend(args) _kargs = self._kargs.copy() _kargs.update(kargs) return apply(self._function,_args,_kargs) """ ParamSet/ParamObj ================= These two classes support you in the definition of a formal set of parameters for an object type. The parameters may be safely queried/set on an object instance at any time, and the object will react to newly-set values immediately. ParamSet & ParamObj also provide a mechanism for atomically setting multiple parameter values before allowing the object to react to any of the new values--useful when two or more parameters are interdependent and there is risk of setting an illegal combination in the process of applying a new set of values. To make use of these classes, derive your object from ParamObj. Then define a class that derives from ParamSet to define the object's parameters. The ParamObj class must declare a class-level reference to its ParamSet class, called 'ParamClass'. (See the example classes below.) Classes that derive from ParamObj must declare a 'get' and 'set' function for each parameter. The setter should simply store the value in a location where the getter can find it; it should not do any further processing based on the new parameter value. Further processing should be implemented in an 'apply' function. The applier function is optional. NOTE: the previous value of a parameter is available inside an apply function as 'self.getPriorValue()' The ParamSet class declaration lists the parameters and defines a default value for each. ParamSet instances represent a complete set of parameter values. A ParamSet instance created with no constructor arguments will contain the default values for each parameter. The defaults may be overriden by passing keyword arguments to the ParamSet's constructor. If a ParamObj instance is passed to the constructor, the ParamSet will extract the object's current parameter values. ParamSet.applyTo(obj) sets all of its parameter values on 'obj'. SETTERS AND APPLIERS ==================== Under normal conditions, a call to a setter function, i.e. cam.setFov(90) will actually result in the following calls being made: cam.setFov(90) cam.applyFov() Calls to several setter functions, i.e. cam.setFov(90) cam.setViewType('cutscene') will result in this call sequence: cam.setFov(90) cam.applyFov() cam.setViewType('cutscene') cam.applyViewType() Suppose that you desire the view type to already be set to 'cutscene' at the time when applyFov() is called. You could reverse the order of the set calls, but suppose that you also want the fov to be set properly at the time when applyViewType() is called. In this case, you can 'lock' the params, i.e. cam.lockParams() cam.setFov(90) cam.setViewType('cutscene') cam.unlockParams() This will result in the following call sequence: cam.setFov(90) cam.setViewType('cutscene') cam.applyFov() cam.applyViewType() NOTE: Currently the order of the apply calls following an unlock is not guaranteed. EXAMPLE CLASSES =============== Here is an example of a class that uses ParamSet/ParamObj to manage its parameters: class CameraParams(ParamSet): Params = { 'viewType': 'normal', 'fov': 60, } class Camera(ParamObj): ParamClass = CameraParams ... def getViewType(self): return self.viewType def setViewType(self, viewType): self.viewType = viewType def applyViewType(self): if self.viewType == 'normal': ... def getFov(self): return self.fov def setFov(self, fov): self.fov = fov def applyFov(self): base.camera.setFov(self.fov) ... EXAMPLE USAGE ============= cam = Camera() ... # set up for the cutscene savedSettings = CameraParams(cam) cam.setViewType('closeup') cam.setFov(90) ... # cutscene is over, set the camera back savedSettings.applyTo(cam) del savedSettings """ class ParamSet: # Base class for a container of parameter values. See documentation above. Params = { # base class does not define any parameters, but they would appear as # 'name': value, } def __init__(self, *args, **kwArgs): ParamSet._compileDefaultParams() if len(args) == 1 and len(kwArgs) == 0: # extract our params from an existing ParamObj instance obj = args[0] self.paramVals = {} for param in self.getParams(): self.paramVals[param] = getSetter(obj, param, 'get')() else: assert len(args) == 0 if __debug__: for arg in kwArgs.keys(): assert arg in self.getParams() self.paramVals = dict(kwArgs) def getValue(self, param): if param in self.paramVals: return self.paramVals[param] return self._Params[param] def applyTo(self, obj): # Apply our entire set of params to a ParamObj obj.lockParams() for param in self.getParams(): getSetter(obj, param)(self.getValue(param)) obj.unlockParams() # CLASS METHODS def getParams(cls): # returns safely-mutable list of param names cls._compileDefaultParams() return cls._Params.keys() getParams = classmethod(getParams) def getDefaultValue(cls, param): cls._compileDefaultParams() return cls._Params[param] getDefaultValue = classmethod(getDefaultValue) def _compileDefaultParams(cls): if cls.__dict__.has_key('_Params'): # we've already compiled the defaults for this class return bases = list(cls.__bases__) # bring less-derived classes to the front mostDerivedLast(bases) cls._Params = {} for c in (bases + [cls]): # make sure this base has its dict of param defaults c._compileDefaultParams() if c.__dict__.has_key('Params'): # apply this class' default param values to our dict cls._Params.update(c.Params) _compileDefaultParams = classmethod(_compileDefaultParams) class ParamObj: # abstract base for classes that want to support a formal parameter # set whose values may be queried, changed, 'bulk' changed, and # extracted/stored/applied all at once (see documentation above) # derived class must override this to be the appropriate ParamSet subclass ParamClass = ParamSet def __init__(self): self._paramLockRefCount = 0 def setterStub(param, value, self=self): # should we apply the value now or should we wait? # if this obj's params are locked, we track which values have # been set, and on unlock, we'll call the applyers for those # values if self._paramLockRefCount > 0: # set the new value; make sure we're not calling ourselves # recursively getSetter(self.__class__, param)(self, value) if param not in self._priorValues: try: priorValue = getSetter(self, param, 'get')() except: priorValue = None self._priorValues[param] = priorValue self._paramsSet[param] = None else: # prepare for call to getPriorValue self._oneShotPriorVal = getSetter(self, param, 'get')() # set the new value; make sure we're not calling ourselves # recursively getSetter(self.__class__, param)(self, value) # call the applier, if there is one applier = getattr(self, getSetterName(param, 'apply'), None) if applier is not None: applier() del self._oneShotPriorVal # insert stub funcs for param setters for param in self.ParamClass.getParams(): # if the setter is a direct member of self, move the setter # aside setterName = getSetterName(param) if setterName in self.__dict__: self.__dict__[setterName + '_MOVED'] = self.__dict__[setterName] # and replace it with a stub that will a) call the setter and # then the applier, or b) call the setter and queue the applier, # depending on whether our params are locked self.__dict__[setterName] = Functor(setterStub, param) def setDefaultParams(self): # set all the default parameters on ourself self.ParamClass().applyTo(self) def lockParams(self): self._paramLockRefCount += 1 if self._paramLockRefCount == 1: self._handleLockParams() def unlockParams(self): if self._paramLockRefCount > 0: self._paramLockRefCount -= 1 if self._paramLockRefCount == 0: self._handleUnlockParams() def _handleLockParams(self): # this will store the names of the parameters that are modified self._paramsSet = {} # this will store the values of modified params (from prior to # the lock). self._priorValues = {} def _handleUnlockParams(self): self.__curParam = None for param in self._paramsSet: # call the applier, if there is one applier = getattr(self, getSetterName(param, 'apply'), None) if applier is not None: self.__curParam = param applier() del self.__curParam del self._priorValues del self._paramsSet def paramsLocked(self): return self._paramLockRefCount > 0 def getPriorValue(self): # call this within an apply function to find out what the prior value # of a param was before the set call(s) corresponding to the call # to apply if hasattr(self, '_oneShotPriorVal'): return self._oneShotPriorVal return self._priorValues[self.__curParam] def bound(value, bound1, bound2): """ returns value if value is between bound1 and bound2 otherwise returns bound that is closer to value """ if bound1 > bound2: return min(max(value, bound2), bound1) else: return min(max(value, bound1), bound2) def lerp(v0, v1, t): """ returns a value lerped between v0 and v1, according to t t == 0 maps to v0, t == 1 maps to v1 """ return v0 + (t * (v1 - v0)) def average(*args): """ returns simple average of list of values """ val = 0. for arg in args: val += arg return val / len(args) def addListsByValue(a, b): """ returns a new array containing the sums of the two array arguments (c[0] = a[0 + b[0], etc.) """ c = [] for x, y in zip(a, b): c.append(x + y) return c def boolEqual(a, b): """ returns true if a and b are both true or both false. returns false otherwise (a.k.a. xnor -- eXclusive Not OR). """ return (a and b) or not (a or b) def lineupPos(i, num, spacing): """ use to line up a series of 'num' objects, in one dimension, centered around zero 'i' is the index of the object in the lineup 'spacing' is the amount of space between objects in the lineup """ assert num >= 1 assert i >= 0 and i < num pos = float(i) * spacing return pos - ((float(spacing) * (num-1))/2.) def formatElapsedSeconds(seconds): """ Returns a string of the form "mm:ss" or "hh:mm:ss" or "n days", representing the indicated elapsed time in seconds. """ sign = '' if seconds < 0: seconds = -seconds sign = '-' # We use math.floor() instead of casting to an int, so we avoid # problems with numbers that are too large to represent as # type int. seconds = math.floor(seconds) hours = math.floor(seconds / (60 * 60)) if hours > 36: days = math.floor((hours + 12) / 24) return "%s%d days" % (sign, days) seconds -= hours * (60 * 60) minutes = (int)(seconds / 60) seconds -= minutes * 60 if hours != 0: return "%s%d:%02d:%02d" % (sign, hours, minutes, seconds) else: return "%s%d:%02d" % (sign, minutes, seconds) def solveQuadratic(a, b, c): # quadratic equation: ax^2 + bx + c = 0 # quadratic formula: x = [-b +/- sqrt(b^2 - 4ac)] / 2a # returns None, root, or [root1, root2] # a cannot be zero. if a == 0.: return None # calculate the determinant (b^2 - 4ac) D = (b * b) - (4. * a * c) if D < 0: # there are no solutions (sqrt(negative number) is undefined) return None elif D == 0: # only one root return (-b) / (2. * a) else: # OK, there are two roots sqrtD = math.sqrt(D) twoA = 2. * a root1 = ((-b) - sqrtD) / twoA root2 = ((-b) + sqrtD) / twoA return [root1, root2] def stackEntryInfo(depth=0, baseFileName=1): """ returns the sourcefilename, line number, and function name of an entry in the stack. 'depth' is how far back to go in the stack; 0 is the caller of this function, 1 is the function that called the caller of this function, etc. by default, strips off the path of the filename; override with baseFileName returns (fileName, lineNum, funcName) --> (string, int, string) returns (None, None, None) on error """ try: stack = None frame = None try: stack = inspect.stack() # add one to skip the frame associated with this function frame = stack[depth+1] filename = frame[1] if baseFileName: filename = os.path.basename(filename) lineNum = frame[2] funcName = frame[3] result = (filename, lineNum, funcName) finally: del stack del frame except: result = (None, None, None) return result def lineInfo(baseFileName=1): """ returns the sourcefilename, line number, and function name of the code that called this function (answers the question: 'hey lineInfo, where am I in the codebase?') see stackEntryInfo, above, for info on 'baseFileName' and return types """ return stackEntryInfo(1) def callerInfo(baseFileName=1): """ returns the sourcefilename, line number, and function name of the caller of the function that called this function (answers the question: 'hey callerInfo, who called me?') see stackEntryInfo, above, for info on 'baseFileName' and return types """ return stackEntryInfo(2) def lineTag(baseFileName=1, verbose=0, separator=':'): """ returns a string containing the sourcefilename and line number of the code that called this function (equivalent to lineInfo, above, with different return type) see stackEntryInfo, above, for info on 'baseFileName' if 'verbose' is false, returns a compact string of the form 'fileName:lineNum:funcName' if 'verbose' is true, returns a longer string that matches the format of Python stack trace dumps returns empty string on error """ fileName, lineNum, funcName = callerInfo() if fileName is None: return '' if verbose: return 'File "%s", line %s, in %s' % (fileName, lineNum, funcName) else: return '%s%s%s%s%s' % (fileName, separator, lineNum, separator, funcName) def findPythonModule(module): # Look along the python load path for the indicated filename. # Returns the located pathname, or None if the filename is not # found. filename = module + '.py' for dir in sys.path: pathname = os.path.join(dir, filename) if os.path.exists(pathname): return pathname return None def describeException(backTrace = 4): # When called in an exception handler, returns a string describing # the current exception. def byteOffsetToLineno(code, byte): # Returns the source line number corresponding to the given byte # offset into the indicated Python code module. import array lnotab = array.array('B', code.co_lnotab) line = code.co_firstlineno for i in range(0, len(lnotab),2): byte -= lnotab[i] if byte <= 0: return line line += lnotab[i+1] return line infoArr = sys.exc_info() exception = infoArr[0] exceptionName = getattr(exception, '__name__', None) extraInfo = infoArr[1] trace = infoArr[2] stack = [] while trace.tb_next: # We need to call byteOffsetToLineno to determine the true # line number at which the exception occurred, even though we # have both trace.tb_lineno and frame.f_lineno, which return # the correct line number only in non-optimized mode. frame = trace.tb_frame module = frame.f_globals.get('__name__', None) lineno = byteOffsetToLineno(frame.f_code, frame.f_lasti) stack.append("%s:%s, " % (module, lineno)) trace = trace.tb_next frame = trace.tb_frame module = frame.f_globals.get('__name__', None) lineno = byteOffsetToLineno(frame.f_code, frame.f_lasti) stack.append("%s:%s, " % (module, lineno)) description = "" for i in range(len(stack) - 1, max(len(stack) - backTrace, 0) - 1, -1): description += stack[i] description += "%s: %s" % (exceptionName, extraInfo) return description def mostDerivedLast(classList): """pass in list of classes. sorts list in-place, with derived classes appearing after their bases""" def compare(a,b): if issubclass(a,b): result=1 elif issubclass(b,a): result=-1 else: result=0 #print a,b,result return result classList.sort(compare) def clampScalar(value, a, b): # calling this ought to be faster than calling both min and max if a < b: if value < a: return a elif value > b: return b else: return value else: if value < b: return b elif value > a: return a else: return value def weightedChoice(choiceList, rng=random.random, sum=None): """given a list of (weight,item) pairs, chooses an item based on the weights. rng must return 0..1. if you happen to have the sum of the weights, pass it in 'sum'.""" # TODO: add support for dicts if sum is None: sum = 0. for weight, item in choiceList: sum += weight rand = rng() accum = rand * sum for weight, item in choiceList: accum -= weight if accum <= 0.: return item # rand is ~1., and floating-point error prevented accum from hitting 0. # Or you passed in a 'sum' that was was too large. # Return the last item. return item def randFloat(a, b=0., rng=random.random): """returns a random float in [a,b] call with single argument to generate random float between arg and zero """ return lerp(a,b,rng()) def normalDistrib(a, b, gauss=random.gauss): """ NOTE: assumes a < b Returns random number between a and b, using gaussian distribution, with mean=avg(a,b), and a standard deviation that fits ~99.7% of the curve between a and b. Outlying results are clipped to a and b. ------------------------------------------------------------------------ http://www-stat.stanford.edu/~naras/jsm/NormalDensity/NormalDensity.html The 68-95-99.7% Rule ==================== All normal density curves satisfy the following property which is often referred to as the Empirical Rule: 68% of the observations fall within 1 standard deviation of the mean. 95% of the observations fall within 2 standard deviations of the mean. 99.7% of the observations fall within 3 standard deviations of the mean. Thus, for a normal distribution, almost all values lie within 3 standard deviations of the mean. ------------------------------------------------------------------------ In calculating our standard deviation, we divide (b-a) by 6, since the 99.7% figure includes 3 standard deviations _on_either_side_ of the mean. """ return max(a, min(b, gauss((a+b)*.5, (b-a)/6.))) def weightedRand(valDict, rng=random.random): """ pass in a dictionary with a selection -> weight mapping. Eg. {"Choice 1" : 10, "Choice 2" : 30, "bear" : 100} -Weights need not add up to any particular value. -The actual selection will be returned. """ selections = valDict.keys() weights = valDict.values() totalWeight = 0 for weight in weights: totalWeight += weight # get a random value between 0 and the total of the weights randomWeight = rng() * totalWeight # find the index that corresponds with this weight for i in range(len(weights)): totalWeight -= weights[i] if totalWeight <= randomWeight: return selections[i] assert(True, "Should never get here") return selections[-1] def randUint31(rng=random.random): """returns a random integer in [0..2^31). rng must return float in [0..1]""" return int(rng() * 0x7FFFFFFF) def randInt32(rng=random.random): """returns a random integer in [-2147483648..2147483647]. rng must return float in [0..1] """ i = int(rng() * 0x7FFFFFFF) if rng() < .5: i *= -1 return i class Enum: """Pass in list of strings or string of comma-separated strings. Items are accessible as instance.item, and are assigned unique, increasing integer values. Pass in integer for 'start' to override starting value. Example: >>> colors = Enum('red, green, blue') >>> colors.red 0 >>> colors.green 1 >>> colors.blue 2 >>> colors.getString(colors.red) 'red' """ if __debug__: # chars that cannot appear within an item string. InvalidChars = string.whitespace def _checkValidIdentifier(item): invalidChars = string.whitespace+string.punctuation invalidChars = invalidChars.replace('_','') invalidFirstChars = invalidChars+string.digits if item[0] in invalidFirstChars: raise SyntaxError, ("Enum '%s' contains invalid first char" % item) if not disjoint(item, invalidChars): for char in item: if char in invalidChars: raise SyntaxError, ( "Enum\n'%s'\ncontains illegal char '%s'" % (item, char)) return 1 _checkValidIdentifier = staticmethod(_checkValidIdentifier) def __init__(self, items, start=0): if type(items) == types.StringType: items = items.split(',') self._stringTable = {} # make sure we don't overwrite an existing element of the class assert(self._checkExistingMembers(items)) assert(uniqueElements(items)) i = start for item in items: # remove leading/trailing whitespace item = string.strip(item) # is there anything left? if len(item) == 0: continue # make sure there are no invalid characters assert(Enum._checkValidIdentifier(item)) self.__dict__[item] = i self._stringTable[i] = item i += 1 def getString(self, value): return self._stringTable[value] def __contains__(self, value): return value in self._stringTable def __len__(self): return len(self._stringTable) if __debug__: def _checkExistingMembers(self, items): for item in items: if hasattr(self, item): return 0 return 1 ############################################################ # class: Singleton # Purpose: This provides a base metaclass for all classes # that require one and only one instance. # # Example: class mySingleton: # __metaclass__ = PythonUtil.Singleton # def __init__(self,...): # ... # # Note: This class is based on Python's New-Style Class # design. An error will occur if a defined class # attemps to inherit from a Classic-Style Class only, # ie: class myClassX: # def __init__(self, ...): # ... # # class myNewClassX(myClassX): # __metaclass__ = PythonUtil.Singleton # def __init__(self, ...): # myClassX.__init__(self, ...) # ... # # This causes problems because myNewClassX is a # New-Style class that inherits from only a # Classic-Style base class. There are two ways # simple ways to resolve this issue. # # First, if possible, make myClassX a # New-Style class by inheriting from object # object. IE: class myClassX(object): # # If for some reason that is not an option, make # myNewClassX inherit from object and myClassX. # IE: class myNewClassX(object, myClassX): ############################################################ class Singleton(type): def __init__(cls,name,bases,dic): super(Singleton,cls).__init__(name,bases,dic) cls.instance=None def __call__(cls,*args,**kw): if cls.instance is None: cls.instance=super(Singleton,cls).__call__(*args,**kw) return cls.instance class SingletonError(ValueError): """ Used to indicate an inappropriate value for a Singleton."""