panda3d/panda/src/pgraph/nodePath.cxx
2016-02-17 17:47:48 +01:00

6611 lines
207 KiB
C++

/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file nodePath.cxx
* @author drose
* @date 2002-02-25
*/
#include "nodePath.h"
#include "nodePathCollection.h"
#include "findApproxPath.h"
#include "findApproxLevelEntry.h"
#include "internalNameCollection.h"
#include "config_pgraph.h"
#include "colorAttrib.h"
#include "colorScaleAttrib.h"
#include "cullBinAttrib.h"
#include "textureAttrib.h"
#include "texMatrixAttrib.h"
#include "texGenAttrib.h"
#include "materialAttrib.h"
#include "materialCollection.h"
#include "lightAttrib.h"
#include "clipPlaneAttrib.h"
#include "occluderEffect.h"
#include "polylightEffect.h"
#include "fogAttrib.h"
#include "renderModeAttrib.h"
#include "cullFaceAttrib.h"
#include "alphaTestAttrib.h"
#include "depthTestAttrib.h"
#include "depthWriteAttrib.h"
#include "depthOffsetAttrib.h"
#include "shaderAttrib.h"
#include "billboardEffect.h"
#include "compassEffect.h"
#include "showBoundsEffect.h"
#include "transparencyAttrib.h"
#include "antialiasAttrib.h"
#include "audioVolumeAttrib.h"
#include "texProjectorEffect.h"
#include "scissorEffect.h"
#include "texturePool.h"
#include "planeNode.h"
#include "occluderNode.h"
#include "lensNode.h"
#include "materialPool.h"
#include "look_at.h"
#include "plist.h"
#include "boundingSphere.h"
#include "geomNode.h"
#include "sceneGraphReducer.h"
#include "textureCollection.h"
#include "textureStageCollection.h"
#include "globPattern.h"
#include "shader.h"
#include "shaderInput.h"
#include "config_gobj.h"
#include "bamFile.h"
#include "preparedGraphicsObjects.h"
#include "dcast.h"
#include "pStatCollector.h"
#include "pStatTimer.h"
#include "modelNode.h"
#include "bam.h"
#include "bamWriter.h"
// stack seems to overflow on Intel C++ at 7000. If we need more than 7000,
// need to increase stack size.
int NodePath::_max_search_depth = 7000;
TypeHandle NodePath::_type_handle;
PStatCollector NodePath::_get_transform_pcollector("*:NodePath:get_transform");
PStatCollector NodePath::_verify_complete_pcollector("*:NodePath:verify_complete");
/**
* Constructs a NodePath with the indicated parent NodePath and child node;
* the child node must be a stashed or unstashed child of the parent.
*/
NodePath::
NodePath(const NodePath &parent, PandaNode *child_node,
Thread *current_thread) :
_error_type(ET_fail)
{
nassertv(child_node != (PandaNode *)NULL);
int pipeline_stage = current_thread->get_pipeline_stage();
if (parent.is_empty()) {
// Special case: constructing a NodePath at the root.
_head = PandaNode::get_top_component(child_node, true,
pipeline_stage, current_thread);
} else {
_head = PandaNode::get_component(parent._head, child_node, pipeline_stage,
current_thread);
}
nassertv(_head != (NodePathComponent *)NULL);
if (_head != (NodePathComponent *)NULL) {
_error_type = ET_ok;
}
_backup_key = 0;
}
/**
* Returns true if the NodePath is valid (not empty), or false if it contains
* no nodes.
*/
NodePath::
operator bool () const {
return !is_empty();
}
/**
* Returns the number of nodes in the path.
*/
int NodePath::
get_num_nodes(Thread *current_thread) const {
if (is_empty()) {
return 0;
}
int pipeline_stage = current_thread->get_pipeline_stage();
return _head->get_length(pipeline_stage, current_thread);
}
/**
* Returns the nth node of the path, where 0 is the referenced (bottom) node
* and get_num_nodes() - 1 is the top node. This requires iterating through
* the path.
*
* Also see node(), which is a convenience function to return the same thing
* as get_node(0) (since the bottom node is the most important node in the
* NodePath, and is the one most frequently referenced).
*
* Note that this function returns the same thing as
* get_ancestor(index).node().
*/
PandaNode *NodePath::
get_node(int index, Thread *current_thread) const {
nassertr(index >= 0 && index < get_num_nodes(), NULL);
int pipeline_stage = current_thread->get_pipeline_stage();
NodePathComponent *comp = _head;
while (index > 0) {
// If this assertion fails, the index was out of range; the component's
// length must have been invalid.
nassertr(comp != (NodePathComponent *)NULL, NULL);
comp = comp->get_next(pipeline_stage, current_thread);
index--;
}
// If this assertion fails, the index was out of range; the component's
// length must have been invalid.
nassertr(comp != (NodePathComponent *)NULL, NULL);
return comp->get_node();
}
/**
* Returns the nth ancestor of the path, where 0 is the NodePath itself and
* get_num_nodes() - 1 is get_top(). This requires iterating through the path.
*
* Also see get_node(), which returns the same thing as a PandaNode pointer,
* not a NodePath.
*/
NodePath NodePath::
get_ancestor(int index, Thread *current_thread) const {
nassertr(index >= 0 && index < get_num_nodes(), NodePath::fail());
int pipeline_stage = current_thread->get_pipeline_stage();
NodePathComponent *comp = _head;
while (index > 0) {
// If this assertion fails, the index was out of range; the component's
// length must have been invalid.
nassertr(comp != (NodePathComponent *)NULL, NodePath::fail());
comp = comp->get_next(pipeline_stage, current_thread);
index--;
}
// If this assertion fails, the index was out of range; the component's
// length must have been invalid.
nassertr(comp != (NodePathComponent *)NULL, NodePath::fail());
NodePath result;
result._head = comp;
return result;
}
/**
* Returns a singleton NodePath that represents the top of the path, or empty
* NodePath if this path is empty.
*/
NodePath NodePath::
get_top(Thread *current_thread) const {
if (is_empty()) {
return *this;
}
int pipeline_stage = current_thread->get_pipeline_stage();
NodePathComponent *comp = _head;
while (!comp->is_top_node(pipeline_stage, current_thread)) {
comp = comp->get_next(pipeline_stage, current_thread);
nassertr(comp != (NodePathComponent *)NULL, NodePath::fail());
}
NodePath top;
top._head = comp;
return top;
}
/**
* Returns the set of all child nodes of the referenced node.
*/
NodePathCollection NodePath::
get_children(Thread *current_thread) const {
NodePathCollection result;
nassertr_always(!is_empty(), result);
PandaNode *bottom_node = node();
int pipeline_stage = current_thread->get_pipeline_stage();
PandaNode::Children cr = bottom_node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
NodePath child;
child._head = PandaNode::get_component(_head, cr.get_child(i),
pipeline_stage, current_thread);
result.add_path(child);
}
return result;
}
/**
* Returns the set of all child nodes of the referenced node that have been
* stashed. These children are not normally visible on the node, and do not
* appear in the list returned by get_children().
*/
NodePathCollection NodePath::
get_stashed_children(Thread *current_thread) const {
NodePathCollection result;
nassertr_always(!is_empty(), result);
PandaNode *bottom_node = node();
int pipeline_stage = current_thread->get_pipeline_stage();
int num_stashed = bottom_node->get_num_stashed();
for (int i = 0; i < num_stashed; i++) {
NodePath stashed;
stashed._head = PandaNode::get_component(_head, bottom_node->get_stashed(i),
pipeline_stage, current_thread);
result.add_path(stashed);
}
return result;
}
/**
* Returns the sort value of the referenced node within its parent; that is,
* the sort number passed on the last reparenting operation for this node.
* This will control the position of the node within its parent's list of
* children.
*/
int NodePath::
get_sort(Thread *current_thread) const {
if (!has_parent()) {
return 0;
}
int pipeline_stage = current_thread->get_pipeline_stage();
PandaNode *parent = _head->get_next(pipeline_stage, current_thread)->get_node();
PandaNode *child = node();
nassertr(parent != (PandaNode *)NULL && child != (PandaNode *)NULL, 0);
int child_index = parent->find_child(child);
if (child_index != -1) {
return parent->get_child_sort(child_index);
}
child_index = parent->find_stashed(child);
if (child_index != -1) {
return parent->get_stashed_sort(child_index);
}
nassertr(false, 0);
return 0;
}
/**
* Searches for a node below the referenced node that matches the indicated
* string. Returns the shortest match found, if any, or an empty NodePath if
* no match can be found.
*/
NodePath NodePath::
find(const string &path) const {
nassertr_always(!is_empty(), fail());
NodePathCollection col;
find_matches(col, path, 1);
if (col.is_empty()) {
return NodePath::not_found();
}
return col.get_path(0);
}
/**
* Searches for the indicated node below this node and returns the shortest
* NodePath that connects them.
*/
NodePath NodePath::
find_path_to(PandaNode *node) const {
nassertr_always(!is_empty(), fail());
nassertr(node != (PandaNode *)NULL, fail());
NodePathCollection col;
FindApproxPath approx_path;
approx_path.add_match_many(0);
approx_path.add_match_pointer(node, 0);
find_matches(col, approx_path, 1);
if (col.is_empty()) {
return NodePath::not_found();
}
return col.get_path(0);
}
/**
* Returns the complete set of all NodePaths that begin with this NodePath and
* can be extended by path. The shortest paths will be listed first.
*/
NodePathCollection NodePath::
find_all_matches(const string &path) const {
NodePathCollection col;
nassertr_always(!is_empty(), col);
nassertr(verify_complete(), col);
find_matches(col, path, -1);
return col;
}
/**
* Returns the set of all NodePaths that extend from this NodePath down to the
* indicated node. The shortest paths will be listed first.
*/
NodePathCollection NodePath::
find_all_paths_to(PandaNode *node) const {
NodePathCollection col;
nassertr_always(!is_empty(), col);
nassertr(verify_complete(), col);
nassertr(node != (PandaNode *)NULL, col);
FindApproxPath approx_path;
approx_path.add_match_many(0);
approx_path.add_match_pointer(node, 0);
find_matches(col, approx_path, -1);
return col;
}
/**
* Removes the referenced node of the NodePath from its current parent and
* attaches it to the referenced node of the indicated NodePath.
*
* If the destination NodePath is empty, this is the same thing as
* detach_node().
*
* If the referenced node is already a child of the indicated NodePath (via
* some other instance), this operation fails and leaves the NodePath
* detached.
*/
void NodePath::
reparent_to(const NodePath &other, int sort, Thread *current_thread) {
nassertv(verify_complete());
nassertv(other.verify_complete());
nassertv_always(!is_empty());
nassertv(other._error_type == ET_ok);
// Reparenting implicitly resets the delta vector.
node()->reset_prev_transform();
int pipeline_stage = current_thread->get_pipeline_stage();
bool reparented = PandaNode::reparent(other._head, _head, sort, false,
pipeline_stage, current_thread);
nassertv(reparented);
}
/**
* Similar to reparent_to(), but the node is added to its new parent's stashed
* list, so that the result is equivalent to calling reparent_to() immediately
* followed by stash().
*/
void NodePath::
stash_to(const NodePath &other, int sort, Thread *current_thread) {
nassertv(verify_complete());
nassertv(other.verify_complete());
nassertv_always(!is_empty());
nassertv(other._error_type == ET_ok);
// Reparenting implicitly resets the delta vector.
node()->reset_prev_transform();
int pipeline_stage = current_thread->get_pipeline_stage();
bool reparented = PandaNode::reparent(other._head, _head, sort, true,
pipeline_stage, current_thread);
nassertv(reparented);
}
/**
* This functions identically to reparent_to(), except the transform on this
* node is also adjusted so that the node remains in the same place in world
* coordinates, even if it is reparented into a different coordinate system.
*/
void NodePath::
wrt_reparent_to(const NodePath &other, int sort, Thread *current_thread) {
nassertv(verify_complete(current_thread));
nassertv(other.verify_complete(current_thread));
nassertv_always(!is_empty());
nassertv(other._error_type == ET_ok);
if (get_transform(current_thread) == get_prev_transform(current_thread)) {
set_transform(get_transform(other, current_thread), current_thread);
node()->reset_prev_transform(current_thread);
} else {
set_transform(get_transform(other, current_thread), current_thread);
set_prev_transform(get_prev_transform(other, current_thread), current_thread);
}
reparent_to(other, sort, current_thread);
}
/**
* Adds the referenced node of the NodePath as a child of the referenced node
* of the indicated other NodePath. Any other parent-child relations of the
* node are unchanged; in particular, the node is not removed from its
* existing parent, if any.
*
* If the node already had an existing parent, this method will create a new
* instance of the node within the scene graph.
*
* This does not change the NodePath itself, but does return a new NodePath
* that reflects the new instance node.
*
* If the destination NodePath is empty, this creates a new instance which is
* not yet parented to any node. A new instance of this sort cannot easily be
* differentiated from other similar instances, but it is nevertheless a
* different instance and it will return a different get_id() value.
*
* If the referenced node is already a child of the indicated NodePath,
* returns that already-existing instance, unstashing it first if necessary.
*/
NodePath NodePath::
instance_to(const NodePath &other, int sort, Thread *current_thread) const {
nassertr(verify_complete(), NodePath::fail());
nassertr(other.verify_complete(), NodePath::fail());
nassertr_always(!is_empty(), NodePath::fail());
nassertr(other._error_type == ET_ok, NodePath::fail());
NodePath new_instance;
// First, we'll attach to NULL, to guarantee we get a brand new instance.
int pipeline_stage = current_thread->get_pipeline_stage();
new_instance._head = PandaNode::attach(NULL, node(), sort, pipeline_stage,
current_thread);
// Now, we'll reparent the new instance to the target node.
bool reparented = PandaNode::reparent(other._head, new_instance._head,
sort, false, pipeline_stage,
current_thread);
if (!reparented) {
// Hmm, couldn't reparent. Either making this instance would create a
// cycle, or it was already a child of that node. If it was already a
// child, return that existing NodePath instead.
NodePath orig(other, node(), current_thread);
if (!orig.is_empty()) {
if (orig.is_stashed()) {
orig.unstash();
}
return orig;
}
// Nope, it must be a cycle.
nassertr(reparented, new_instance);
}
// instance_to() doesn't reset the velocity delta, unlike most of the other
// reparenting operations. The reasoning is that instance_to() is not
// necessarily a reparenting operation, since it doesn't change the original
// instance.
return new_instance;
}
/**
* Behaves like instance_to(), but implicitly creates a new node to instance
* the geometry under, and returns a NodePath to that new node. This allows
* the programmer to set a unique state and/or transform on this instance.
*/
NodePath NodePath::
instance_under_node(const NodePath &other, const string &name, int sort,
Thread *current_thread) const {
NodePath new_node = other.attach_new_node(name, sort, current_thread);
NodePath instance = instance_to(new_node, 0, current_thread);
if (instance.is_empty()) {
new_node.remove_node(current_thread);
return instance;
}
return new_node;
}
/**
* Functions like instance_to(), except a deep copy is made of the referenced
* node and all of its descendents, which is then parented to the indicated
* node. A NodePath to the newly created copy is returned.
*/
NodePath NodePath::
copy_to(const NodePath &other, int sort, Thread *current_thread) const {
nassertr(verify_complete(current_thread), fail());
nassertr(other.verify_complete(current_thread), fail());
nassertr_always(!is_empty(), fail());
nassertr(other._error_type == ET_ok, fail());
PandaNode *source_node = node();
PT(PandaNode) copy_node = source_node->copy_subgraph(current_thread);
nassertr(copy_node != (PandaNode *)NULL, fail());
copy_node->reset_prev_transform(current_thread);
return other.attach_new_node(copy_node, sort, current_thread);
}
/**
* Attaches a new node, with or without existing parents, to the scene graph
* below the referenced node of this NodePath. This is the preferred way to
* add nodes to the graph.
*
* If the node was already a child of the parent, this returns a NodePath to
* the existing child.
*
* This does *not* automatically extend the current NodePath to reflect the
* attachment; however, a NodePath that does reflect this extension is
* returned.
*/
NodePath NodePath::
attach_new_node(PandaNode *node, int sort, Thread *current_thread) const {
nassertr(verify_complete(current_thread), NodePath::fail());
nassertr(_error_type == ET_ok, NodePath::fail());
nassertr(node != (PandaNode *)NULL, NodePath::fail());
NodePath new_path(*this);
int pipeline_stage = current_thread->get_pipeline_stage();
new_path._head = PandaNode::attach(_head, node, sort, pipeline_stage,
current_thread);
return new_path;
}
/**
* Disconnects the referenced node from the scene graph. This will also
* delete the node if there are no other pointers to it.
*
* Normally, this should be called only when you are really done with the
* node. If you want to remove a node from the scene graph but keep it around
* for later, you should probably use detach_node() instead.
*
* In practice, the only difference between remove_node() and detach_node() is
* that remove_node() also resets the NodePath to empty, which will cause the
* node to be deleted immediately if there are no other references. On the
* other hand, detach_node() leaves the NodePath referencing the node, which
* will keep at least one reference to the node for as long as the NodePath
* exists.
*/
void NodePath::
remove_node(Thread *current_thread) {
nassertv(_error_type != ET_not_found);
// If we have no parents, remove_node() is just a do-nothing operation; if
// we have no nodes, maybe we were already removed. In either case, quietly
// do nothing except to ensure the NodePath is clear.
if (!is_empty() && !is_singleton(current_thread)) {
node()->reset_prev_transform(current_thread);
int pipeline_stage = current_thread->get_pipeline_stage();
PandaNode::detach(_head, pipeline_stage, current_thread);
}
if (is_empty() || _head->has_key()) {
// Preserve the key we had on the node before we removed it.
int key = get_key();
(*this) = NodePath::removed();
_backup_key = key;
} else {
// We didn't have a key; just clear the NodePath.
(*this) = NodePath::removed();
}
}
/**
* Disconnects the referenced node from its parent, but does not immediately
* delete it. The NodePath retains a pointer to the node, and becomes a
* singleton NodePath.
*
* This should be called to detach a node from the scene graph, with the
* option of reattaching it later to the same parent or to a different parent.
*
* In practice, the only difference between remove_node() and detach_node() is
* that remove_node() also resets the NodePath to empty, which will cause the
* node to be deleted immediately if there are no other references. On the
* other hand, detach_node() leaves the NodePath referencing the node, which
* will keep at least one reference to the node for as long as the NodePath
* exists.
*/
void NodePath::
detach_node(Thread *current_thread) {
nassertv(_error_type != ET_not_found);
if (!is_empty() && !is_singleton()) {
node()->reset_prev_transform();
int pipeline_stage = current_thread->get_pipeline_stage();
PandaNode::detach(_head, pipeline_stage, current_thread);
}
}
/**
* Lists the hierarchy at and above the referenced node.
*/
int NodePath::
reverse_ls(ostream &out, int indent_level) const {
if (is_empty()) {
out << "(empty)\n";
return 0;
} else if (has_parent()) {
indent_level = get_parent().reverse_ls(out, indent_level);
}
node()->write(out, indent_level);
return indent_level + 2;
}
/**
* Writes a sensible description of the NodePath to the indicated output
* stream.
*/
void NodePath::
output(ostream &out) const {
switch (_error_type) {
case ET_not_found:
out << "**not found**";
return;
case ET_removed:
out << "**removed**";
return;
case ET_fail:
out << "**error**";
return;
default:
break;
}
if (_head == (NodePathComponent *)NULL) {
out << "(empty)";
} else {
_head->output(out);
}
}
/**
* Returns the complete state object set on this node.
*/
const RenderState *NodePath::
get_state(Thread *current_thread) const {
// This method is declared non-inline to avoid a compiler bug in gcc-3.4 and
// gcc-4.0.
nassertr_always(!is_empty(), RenderState::make_empty());
return node()->get_state(current_thread);
}
/**
* Returns the state changes that must be made to transition to the render
* state of this node from the render state of the other node.
*/
CPT(RenderState) NodePath::
get_state(const NodePath &other, Thread *current_thread) const {
nassertr(_error_type == ET_ok && other._error_type == ET_ok, RenderState::make_empty());
if (other.is_empty()) {
return get_net_state(current_thread);
}
if (is_empty()) {
return other.get_net_state(current_thread)->invert_compose(RenderState::make_empty());
}
nassertr(verify_complete(current_thread), RenderState::make_empty());
nassertr(other.verify_complete(current_thread), RenderState::make_empty());
int a_count, b_count;
if (find_common_ancestor(*this, other, a_count, b_count, current_thread) == (NodePathComponent *)NULL) {
if (allow_unrelated_wrt) {
pgraph_cat.debug()
<< *this << " is not related to " << other << "\n";
} else {
pgraph_cat.error()
<< *this << " is not related to " << other << "\n";
nassertr(false, RenderState::make_empty());
}
}
CPT(RenderState) a_state = r_get_partial_state(_head, a_count, current_thread);
CPT(RenderState) b_state = r_get_partial_state(other._head, b_count, current_thread);
return b_state->invert_compose(a_state);
}
/**
* Sets the state object on this node, relative to the other node. This
* computes a new state object that will have the indicated value when seen
* from the other node.
*/
void NodePath::
set_state(const NodePath &other, const RenderState *state,
Thread *current_thread) {
nassertv(_error_type == ET_ok && other._error_type == ET_ok);
nassertv_always(!is_empty());
// First, we perform a wrt to the parent, to get the conversion.
CPT(RenderState) rel_state;
if (has_parent()) {
rel_state = other.get_state(get_parent(current_thread), current_thread);
} else {
rel_state = other.get_state(NodePath(), current_thread);
}
CPT(RenderState) new_state = rel_state->compose(state);
set_state(new_state, current_thread);
}
/**
* Returns the complete transform object set on this node.
*/
const TransformState *NodePath::
get_transform(Thread *current_thread) const {
// This method is declared non-inline to avoid a compiler bug in gcc-3.4 and
// gcc-4.0.
nassertr_always(!is_empty(), TransformState::make_identity());
return node()->get_transform(current_thread);
}
/**
* Returns the relative transform to this node from the other node; i.e. the
* transformation of this node as seen from the other node.
*/
CPT(TransformState) NodePath::
get_transform(const NodePath &other, Thread *current_thread) const {
nassertr(_error_type == ET_ok && other._error_type == ET_ok, TransformState::make_identity());
PStatTimer timer(_get_transform_pcollector);
if (other.is_empty()) {
return get_net_transform(current_thread);
}
if (is_empty()) {
return other.get_net_transform(current_thread)->invert_compose(TransformState::make_identity());
}
nassertr(verify_complete(current_thread), TransformState::make_identity());
nassertr(other.verify_complete(current_thread), TransformState::make_identity());
int a_count, b_count;
if (find_common_ancestor(*this, other, a_count, b_count, current_thread) == (NodePathComponent *)NULL) {
if (allow_unrelated_wrt) {
if (pgraph_cat.is_debug()) {
pgraph_cat.debug()
<< *this << " is not related to " << other << "\n";
}
} else {
pgraph_cat.error()
<< *this << " is not related to " << other << "\n";
nassertr(false, TransformState::make_identity());
}
}
CPT(TransformState) a_transform, b_transform;
a_transform = r_get_partial_transform(_head, a_count, current_thread);
if (a_transform != (TransformState *)NULL) {
b_transform = r_get_partial_transform(other._head, b_count, current_thread);
}
if (b_transform == (TransformState *)NULL) {
// If either path involved a node with a net_transform RenderEffect
// applied, we have to go all the way up to the root to get the right
// answer.
a_transform = r_get_net_transform(_head, current_thread);
b_transform = r_get_net_transform(other._head, current_thread);
}
return b_transform->invert_compose(a_transform);
}
/**
* Sets the transform object on this node, relative to the other node. This
* computes a new transform object that will have the indicated value when
* seen from the other node.
*/
void NodePath::
set_transform(const NodePath &other, const TransformState *transform,
Thread *current_thread) {
nassertv(_error_type == ET_ok && other._error_type == ET_ok);
nassertv_always(!is_empty());
// First, we perform a wrt to the parent, to get the conversion.
CPT(TransformState) rel_trans;
if (has_parent()) {
rel_trans = other.get_transform(get_parent(current_thread), current_thread);
} else {
rel_trans = other.get_transform(NodePath(), current_thread);
}
CPT(TransformState) new_trans = rel_trans->compose(transform);
set_transform(new_trans, current_thread);
}
/**
* Returns the transform that has been set as this node's "previous" position.
* See set_prev_transform().
*/
const TransformState *NodePath::
get_prev_transform(Thread *current_thread) const {
// This method is declared non-inline to avoid a compiler bug in gcc-3.4 and
// gcc-4.0.
nassertr_always(!is_empty(), TransformState::make_identity());
return node()->get_prev_transform(current_thread);
}
/**
* Returns the relative "previous" transform to this node from the other node;
* i.e. the position of this node in the previous frame, as seen by the other
* node in the previous frame.
*/
CPT(TransformState) NodePath::
get_prev_transform(const NodePath &other, Thread *current_thread) const {
nassertr(_error_type == ET_ok && other._error_type == ET_ok, TransformState::make_identity());
if (other.is_empty()) {
return get_net_prev_transform(current_thread);
}
if (is_empty()) {
return other.get_net_prev_transform(current_thread)->invert_compose(TransformState::make_identity());
}
nassertr(verify_complete(current_thread), TransformState::make_identity());
nassertr(other.verify_complete(current_thread), TransformState::make_identity());
int a_count, b_count;
if (find_common_ancestor(*this, other, a_count, b_count, current_thread) == (NodePathComponent *)NULL) {
if (allow_unrelated_wrt) {
pgraph_cat.debug()
<< *this << " is not related to " << other << "\n";
} else {
pgraph_cat.error()
<< *this << " is not related to " << other << "\n";
nassertr(false, TransformState::make_identity());
}
}
CPT(TransformState) a_prev_transform = r_get_partial_prev_transform(_head, a_count, current_thread);
CPT(TransformState) b_prev_transform = r_get_partial_prev_transform(other._head, b_count, current_thread);
return b_prev_transform->invert_compose(a_prev_transform);
}
/**
* Sets the "previous" transform object on this node, relative to the other
* node. This computes a new transform object that will have the indicated
* value when seen from the other node.
*/
void NodePath::
set_prev_transform(const NodePath &other, const TransformState *transform,
Thread *current_thread) {
nassertv(_error_type == ET_ok && other._error_type == ET_ok);
nassertv_always(!is_empty());
// First, we perform a wrt to the parent, to get the conversion.
CPT(TransformState) rel_trans;
if (has_parent(current_thread)) {
rel_trans = other.get_prev_transform(get_parent(current_thread), current_thread);
} else {
rel_trans = other.get_prev_transform(NodePath(), current_thread);
}
CPT(TransformState) new_trans = rel_trans->compose(transform);
set_prev_transform(new_trans, current_thread);
}
/**
* Sets the translation component of the transform, leaving rotation and scale
* untouched. This also resets the node's "previous" position, so that the
* collision system will see the node as having suddenly appeared in the new
* position, without passing any points in between. See Also:
* NodePath::set_fluid_pos
*/
void NodePath::
set_pos(const LVecBase3 &pos) {
nassertv_always(!is_empty());
set_transform(get_transform()->set_pos(pos));
node()->reset_prev_transform();
}
void NodePath::
set_x(PN_stdfloat x) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos();
pos[0] = x;
set_pos(pos);
}
void NodePath::
set_y(PN_stdfloat y) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos();
pos[1] = y;
set_pos(pos);
}
void NodePath::
set_z(PN_stdfloat z) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos();
pos[2] = z;
set_pos(pos);
}
/**
* Sets the translation component, without changing the "previous" position,
* so that the collision system will see the node as moving fluidly from its
* previous position to its new position. See Also: NodePath::set_pos
*/
void NodePath::
set_fluid_pos(const LVecBase3 &pos) {
nassertv_always(!is_empty());
set_transform(get_transform()->set_pos(pos));
}
void NodePath::
set_fluid_x(PN_stdfloat x) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos();
pos[0] = x;
set_fluid_pos(pos);
}
void NodePath::
set_fluid_y(PN_stdfloat y) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos();
pos[1] = y;
set_fluid_pos(pos);
}
void NodePath::
set_fluid_z(PN_stdfloat z) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos();
pos[2] = z;
set_fluid_pos(pos);
}
/**
* Retrieves the translation component of the transform.
*/
LPoint3 NodePath::
get_pos() const {
nassertr_always(!is_empty(), LPoint3(0.0f, 0.0f, 0.0f));
return get_transform()->get_pos();
}
/**
* Returns the delta vector from this node's position in the previous frame
* (according to set_prev_transform(), typically set via the use of
* set_fluid_pos()) and its position in the current frame. This is the vector
* used to determine collisions. Generally, if the node was last repositioned
* via set_pos(), the delta will be zero; if it was adjusted via
* set_fluid_pos(), the delta will represent the change from the previous
* frame's position.
*/
LVector3 NodePath::
get_pos_delta() const {
nassertr_always(!is_empty(), LPoint3(0.0f, 0.0f, 0.0f));
return get_transform()->get_pos() - get_prev_transform()->get_pos();
}
/**
* Sets the rotation component of the transform, leaving translation and scale
* untouched.
*/
void NodePath::
set_hpr(const LVecBase3 &hpr) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
nassertv(transform->has_hpr());
set_transform(transform->set_hpr(hpr));
}
void NodePath::
set_h(PN_stdfloat h) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
nassertv(transform->has_hpr());
LVecBase3 hpr = transform->get_hpr();
hpr[0] = h;
set_transform(transform->set_hpr(hpr));
}
void NodePath::
set_p(PN_stdfloat p) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
nassertv(transform->has_hpr());
LVecBase3 hpr = transform->get_hpr();
hpr[1] = p;
set_transform(transform->set_hpr(hpr));
}
void NodePath::
set_r(PN_stdfloat r) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
nassertv(transform->has_hpr());
LVecBase3 hpr = transform->get_hpr();
hpr[2] = r;
set_transform(transform->set_hpr(hpr));
}
/**
* Retrieves the rotation component of the transform.
*/
LVecBase3 NodePath::
get_hpr() const {
nassertr_always(!is_empty(), LVecBase3(0.0f, 0.0f, 0.0f));
CPT(TransformState) transform = get_transform();
nassertr(transform->has_hpr(), LVecBase3(0.0f, 0.0f, 0.0f));
return transform->get_hpr();
}
/**
* Sets the rotation component of the transform, leaving translation and scale
* untouched.
*/
void NodePath::
set_quat(const LQuaternion &quat) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
set_transform(transform->set_quat(quat));
}
/**
* Retrieves the rotation component of the transform.
*/
LQuaternion NodePath::
get_quat() const {
nassertr_always(!is_empty(), LQuaternion::ident_quat());
CPT(TransformState) transform = get_transform();
return transform->get_quat();
}
/**
* Sets the scale component of the transform, leaving translation and rotation
* untouched.
*/
void NodePath::
set_scale(const LVecBase3 &scale) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
set_transform(transform->set_scale(scale));
}
void NodePath::
set_sx(PN_stdfloat sx) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
LVecBase3 scale = transform->get_scale();
scale[0] = sx;
set_transform(transform->set_scale(scale));
}
void NodePath::
set_sy(PN_stdfloat sy) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
LVecBase3 scale = transform->get_scale();
scale[1] = sy;
set_transform(transform->set_scale(scale));
}
void NodePath::
set_sz(PN_stdfloat sz) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
LVecBase3 scale = transform->get_scale();
scale[2] = sz;
set_transform(transform->set_scale(scale));
}
/**
* Retrieves the scale component of the transform.
*/
LVecBase3 NodePath::
get_scale() const {
nassertr_always(!is_empty(), LVecBase3(0.0f, 0.0f, 0.0f));
CPT(TransformState) transform = get_transform();
return transform->get_scale();
}
/**
* Sets the shear component of the transform, leaving translation and rotation
* untouched.
*/
void NodePath::
set_shear(const LVecBase3 &shear) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
set_transform(transform->set_shear(shear));
}
void NodePath::
set_shxy(PN_stdfloat shxy) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
LVecBase3 shear = transform->get_shear();
shear[0] = shxy;
set_transform(transform->set_shear(shear));
}
void NodePath::
set_shxz(PN_stdfloat shxz) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
LVecBase3 shear = transform->get_shear();
shear[1] = shxz;
set_transform(transform->set_shear(shear));
}
void NodePath::
set_shyz(PN_stdfloat shyz) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
LVecBase3 shear = transform->get_shear();
shear[2] = shyz;
set_transform(transform->set_shear(shear));
}
/**
* Retrieves the shear component of the transform.
*/
LVecBase3 NodePath::
get_shear() const {
nassertr_always(!is_empty(), LVecBase3(0.0f, 0.0f, 0.0f));
CPT(TransformState) transform = get_transform();
return transform->get_shear();
}
/**
* Sets the translation and rotation component of the transform, leaving scale
* untouched.
*/
void NodePath::
set_pos_hpr(const LVecBase3 &pos, const LVecBase3 &hpr) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
transform = TransformState::make_pos_hpr_scale_shear
(pos, hpr, transform->get_scale(), transform->get_shear());
set_transform(transform);
node()->reset_prev_transform();
}
/**
* Sets the translation and rotation component of the transform, leaving scale
* untouched.
*/
void NodePath::
set_pos_quat(const LVecBase3 &pos, const LQuaternion &quat) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
transform = TransformState::make_pos_quat_scale_shear
(pos, quat, transform->get_scale(), transform->get_shear());
set_transform(transform);
node()->reset_prev_transform();
}
/**
* Sets the rotation and scale components of the transform, leaving
* translation untouched.
*/
void NodePath::
set_hpr_scale(const LVecBase3 &hpr, const LVecBase3 &scale) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
transform = TransformState::make_pos_hpr_scale_shear
(transform->get_pos(), hpr, scale, transform->get_shear());
set_transform(transform);
}
/**
* Sets the rotation and scale components of the transform, leaving
* translation untouched.
*/
void NodePath::
set_quat_scale(const LQuaternion &quat, const LVecBase3 &scale) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
transform = TransformState::make_pos_quat_scale_shear
(transform->get_pos(), quat, scale, transform->get_shear());
set_transform(transform);
}
/**
* Replaces the translation, rotation, and scale components, implicitly
* setting shear to 0.
*/
void NodePath::
set_pos_hpr_scale(const LVecBase3 &pos, const LVecBase3 &hpr,
const LVecBase3 &scale) {
nassertv_always(!is_empty());
set_transform(TransformState::make_pos_hpr_scale
(pos, hpr, scale));
node()->reset_prev_transform();
}
/**
* Replaces the translation, rotation, and scale components, implicitly
* setting shear to 0.
*/
void NodePath::
set_pos_quat_scale(const LVecBase3 &pos, const LQuaternion &quat,
const LVecBase3 &scale) {
nassertv_always(!is_empty());
set_transform(TransformState::make_pos_quat_scale
(pos, quat, scale));
node()->reset_prev_transform();
}
/**
* Completely replaces the transform with new translation, rotation, scale,
* and shear components.
*/
void NodePath::
set_pos_hpr_scale_shear(const LVecBase3 &pos, const LVecBase3 &hpr,
const LVecBase3 &scale, const LVecBase3 &shear) {
nassertv_always(!is_empty());
set_transform(TransformState::make_pos_hpr_scale_shear
(pos, hpr, scale, shear));
node()->reset_prev_transform();
}
/**
* Completely replaces the transform with new translation, rotation, scale,
* and shear components.
*/
void NodePath::
set_pos_quat_scale_shear(const LVecBase3 &pos, const LQuaternion &quat,
const LVecBase3 &scale, const LVecBase3 &shear) {
nassertv_always(!is_empty());
set_transform(TransformState::make_pos_quat_scale_shear
(pos, quat, scale, shear));
node()->reset_prev_transform();
}
/**
* Directly sets an arbitrary 4x4 transform matrix.
*/
void NodePath::
set_mat(const LMatrix4 &mat) {
nassertv_always(!is_empty());
set_transform(TransformState::make_mat(mat));
node()->reset_prev_transform();
}
/**
* Sets the hpr on this NodePath so that it rotates to face the indicated
* point in space.
*/
void NodePath::
look_at(const LPoint3 &point, const LVector3 &up) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos();
LQuaternion quat;
::look_at(quat, point - pos, up);
set_quat(quat);
}
/**
* Behaves like look_at(), but with a strong preference to keeping the up
* vector oriented in the indicated "up" direction.
*/
void NodePath::
heads_up(const LPoint3 &point, const LVector3 &up) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos();
LQuaternion quat;
::heads_up(quat, point - pos, up);
set_quat(quat);
}
/**
* Sets the translation component of the transform, relative to the other
* node.
*/
void NodePath::
set_pos(const NodePath &other, const LVecBase3 &pos) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
CPT(TransformState) orig_transform = get_transform();
if (orig_transform->has_components()) {
// If we had a componentwise transform before we started, we should be
// careful to preserve the other three components. We wouldn't need to do
// this, except for the possibility of numerical error or decompose
// ambiguity.
const LVecBase3 &orig_hpr = orig_transform->get_hpr();
const LVecBase3 &orig_scale = orig_transform->get_scale();
const LVecBase3 &orig_shear = orig_transform->get_shear();
set_transform(other, rel_transform->set_pos(pos));
set_pos_hpr_scale_shear(get_transform()->get_pos(), orig_hpr, orig_scale, orig_shear);
} else {
// If we didn't have a componentwise transform already, never mind.
set_transform(other, rel_transform->set_pos(pos));
}
node()->reset_prev_transform();
}
void NodePath::
set_x(const NodePath &other, PN_stdfloat x) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos(other);
pos[0] = x;
set_pos(other, pos);
}
void NodePath::
set_y(const NodePath &other, PN_stdfloat y) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos(other);
pos[1] = y;
set_pos(other, pos);
}
void NodePath::
set_z(const NodePath &other, PN_stdfloat z) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos(other);
pos[2] = z;
set_pos(other, pos);
}
/**
* Sets the translation component of the transform, relative to the other
* node.
*/
void NodePath::
set_fluid_pos(const NodePath &other, const LVecBase3 &pos) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
CPT(TransformState) orig_transform = get_transform();
if (orig_transform->has_components()) {
// If we had a componentwise transform before we started, we should be
// careful to preserve the other three components. We wouldn't need to do
// this, except for the possibility of numerical error or decompose
// ambiguity.
const LVecBase3 &orig_hpr = orig_transform->get_hpr();
const LVecBase3 &orig_scale = orig_transform->get_scale();
const LVecBase3 &orig_shear = orig_transform->get_shear();
// Use the relative set_transform() to compute the relative pos, and then
// reset all of the other components back to the way they were.
set_transform(other, rel_transform->set_pos(pos));
set_transform(TransformState::make_pos_hpr_scale_shear
(get_transform()->get_pos(), orig_hpr, orig_scale, orig_shear));
} else {
// If we didn't have a componentwise transform already, never mind.
set_transform(other, rel_transform->set_pos(pos));
}
}
void NodePath::
set_fluid_x(const NodePath &other, PN_stdfloat x) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos(other);
pos[0] = x;
set_fluid_pos(other, pos);
}
void NodePath::
set_fluid_y(const NodePath &other, PN_stdfloat y) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos(other);
pos[1] = y;
set_fluid_pos(other, pos);
}
void NodePath::
set_fluid_z(const NodePath &other, PN_stdfloat z) {
nassertv_always(!is_empty());
LPoint3 pos = get_pos(other);
pos[2] = z;
set_fluid_pos(other, pos);
}
/**
* Returns the relative position of the referenced node as seen from the other
* node.
*/
LPoint3 NodePath::
get_pos(const NodePath &other) const {
nassertr_always(!is_empty(), LPoint3(0.0f, 0.0f, 0.0f));
return get_transform(other)->get_pos();
}
/**
* Returns the delta vector from this node's position in the previous frame
* (according to set_prev_transform(), typically set via the use of
* set_fluid_pos()) and its position in the current frame, as seen in the
* indicated node's coordinate space. This is the vector used to determine
* collisions. Generally, if the node was last repositioned via set_pos(),
* the delta will be zero; if it was adjusted via set_fluid_pos(), the delta
* will represent the change from the previous frame's position.
*/
LVector3 NodePath::
get_pos_delta(const NodePath &other) const {
nassertr_always(!is_empty(), LPoint3(0.0f, 0.0f, 0.0f));
return get_transform(other)->get_pos() - get_prev_transform(other)->get_pos();
}
/**
* Sets the rotation component of the transform, relative to the other node.
*/
void NodePath::
set_hpr(const NodePath &other, const LVecBase3 &hpr) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
nassertv(rel_transform->has_hpr());
CPT(TransformState) transform = get_transform();
if (transform->has_components()) {
// If we had a componentwise transform before we started, we should be
// careful to preserve the other three components. We wouldn't need to do
// this, except for the possibility of numerical error or decompose
// ambiguity.
const LVecBase3 &orig_pos = transform->get_pos();
const LVecBase3 &orig_scale = transform->get_scale();
const LVecBase3 &orig_shear = transform->get_shear();
set_transform(other, rel_transform->set_hpr(hpr));
transform = get_transform();
if (transform->has_components()) {
set_transform(TransformState::make_pos_hpr_scale_shear
(orig_pos, transform->get_hpr(), orig_scale, orig_shear));
}
} else {
// If we didn't have a componentwise transform already, never mind.
set_transform(other, rel_transform->set_hpr(hpr));
}
}
void NodePath::
set_h(const NodePath &other, PN_stdfloat h) {
nassertv_always(!is_empty());
LVecBase3 hpr = get_hpr(other);
hpr[0] = h;
set_hpr(other, hpr);
}
void NodePath::
set_p(const NodePath &other, PN_stdfloat p) {
nassertv_always(!is_empty());
LVecBase3 hpr = get_hpr(other);
hpr[1] = p;
set_hpr(other, hpr);
}
void NodePath::
set_r(const NodePath &other, PN_stdfloat r) {
nassertv_always(!is_empty());
LVecBase3 hpr = get_hpr(other);
hpr[2] = r;
set_hpr(other, hpr);
}
/**
* Returns the relative orientation of the bottom node as seen from the other
* node.
*/
LVecBase3 NodePath::
get_hpr(const NodePath &other) const {
nassertr_always(!is_empty(), LVecBase3(0.0f, 0.0f, 0.0f));
CPT(TransformState) transform = get_transform(other);
nassertr(transform->has_hpr(), LVecBase3(0.0f, 0.0f, 0.0f));
return transform->get_hpr();
}
/**
* Sets the rotation component of the transform, relative to the other node.
*/
void NodePath::
set_quat(const NodePath &other, const LQuaternion &quat) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
CPT(TransformState) transform = get_transform();
if (transform->has_components()) {
// If we had a componentwise transform before we started, we should be
// careful to preserve the other three components. We wouldn't need to do
// this, except for the possibility of numerical error or decompose
// ambiguity.
const LVecBase3 &orig_pos = transform->get_pos();
const LVecBase3 &orig_scale = transform->get_scale();
const LVecBase3 &orig_shear = transform->get_shear();
set_transform(other, rel_transform->set_quat(quat));
transform = get_transform();
if (transform->has_components()) {
set_transform(TransformState::make_pos_quat_scale_shear
(orig_pos, transform->get_quat(), orig_scale, orig_shear));
}
} else {
// If we didn't have a componentwise transform already, never mind.
set_transform(other, rel_transform->set_quat(quat));
}
}
/**
* Returns the relative orientation of the bottom node as seen from the other
* node.
*/
LQuaternion NodePath::
get_quat(const NodePath &other) const {
nassertr_always(!is_empty(), LQuaternion::ident_quat());
CPT(TransformState) transform = get_transform(other);
return transform->get_quat();
}
/**
* Sets the scale component of the transform, relative to the other node.
*/
void NodePath::
set_scale(const NodePath &other, const LVecBase3 &scale) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
CPT(TransformState) transform = get_transform();
if (transform->has_components()) {
// If we had a componentwise transform before we started, we should be
// careful to preserve the other three components. We wouldn't need to do
// this, except for the possibility of numerical error or decompose
// ambiguity.
const LVecBase3 &orig_pos = transform->get_pos();
const LVecBase3 &orig_hpr = transform->get_hpr();
const LVecBase3 &orig_shear = transform->get_shear();
set_transform(other, rel_transform->set_scale(scale));
transform = get_transform();
if (transform->has_components()) {
set_transform(TransformState::make_pos_hpr_scale_shear
(orig_pos, orig_hpr, transform->get_scale(), orig_shear));
}
} else {
// If we didn't have a componentwise transform already, never mind.
set_transform(other, rel_transform->set_scale(scale));
}
}
void NodePath::
set_sx(const NodePath &other, PN_stdfloat sx) {
nassertv_always(!is_empty());
LVecBase3 scale = get_scale(other);
scale[0] = sx;
set_scale(other, scale);
}
void NodePath::
set_sy(const NodePath &other, PN_stdfloat sy) {
nassertv_always(!is_empty());
LVecBase3 scale = get_scale(other);
scale[1] = sy;
set_scale(other, scale);
}
void NodePath::
set_sz(const NodePath &other, PN_stdfloat sz) {
nassertv_always(!is_empty());
LVecBase3 scale = get_scale(other);
scale[2] = sz;
set_scale(other, scale);
}
/**
* Returns the relative scale of the bottom node as seen from the other node.
*/
LVecBase3 NodePath::
get_scale(const NodePath &other) const {
nassertr_always(!is_empty(), LVecBase3(0.0f, 0.0f, 0.0f));
CPT(TransformState) transform = get_transform(other);
return transform->get_scale();
}
/**
* Sets the shear component of the transform, relative to the other node.
*/
void NodePath::
set_shear(const NodePath &other, const LVecBase3 &shear) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
CPT(TransformState) transform = get_transform();
if (transform->has_components()) {
// If we had a componentwise transform before we started, we should be
// careful to preserve the other three components. We wouldn't need to do
// this, except for the possibility of numerical error or decompose
// ambiguity.
const LVecBase3 &orig_pos = transform->get_pos();
const LVecBase3 &orig_hpr = transform->get_hpr();
const LVecBase3 &orig_scale = transform->get_scale();
set_transform(other, rel_transform->set_shear(shear));
transform = get_transform();
if (transform->has_components()) {
set_transform(TransformState::make_pos_hpr_scale_shear
(orig_pos, orig_hpr, orig_scale, transform->get_shear()));
}
} else {
// If we didn't have a componentwise transform already, never mind.
set_transform(other, rel_transform->set_shear(shear));
}
}
void NodePath::
set_shxy(const NodePath &other, PN_stdfloat shxy) {
nassertv_always(!is_empty());
LVecBase3 shear = get_shear(other);
shear[0] = shxy;
set_shear(other, shear);
}
void NodePath::
set_shxz(const NodePath &other, PN_stdfloat shxz) {
nassertv_always(!is_empty());
LVecBase3 shear = get_shear(other);
shear[1] = shxz;
set_shear(other, shear);
}
void NodePath::
set_shyz(const NodePath &other, PN_stdfloat shyz) {
nassertv_always(!is_empty());
LVecBase3 shear = get_shear(other);
shear[2] = shyz;
set_shear(other, shear);
}
/**
* Returns the relative shear of the bottom node as seen from the other node.
*/
LVecBase3 NodePath::
get_shear(const NodePath &other) const {
nassertr_always(!is_empty(), LVecBase3(0.0f, 0.0f, 0.0f));
CPT(TransformState) transform = get_transform(other);
return transform->get_shear();
}
/**
* Sets the translation and rotation component of the transform, relative to
* the other node.
*/
void NodePath::
set_pos_hpr(const NodePath &other, const LVecBase3 &pos,
const LVecBase3 &hpr) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
CPT(TransformState) transform = get_transform();
if (transform->has_components()) {
// If we had a componentwise transform before we started, we should be
// careful to preserve the other two components. We wouldn't need to do
// this, except for the possibility of numerical error or decompose
// ambiguity.
const LVecBase3 &orig_scale = transform->get_scale();
const LVecBase3 &orig_shear = transform->get_shear();
set_transform(other, TransformState::make_pos_hpr_scale_shear
(pos, hpr, rel_transform->get_scale(), rel_transform->get_shear()));
transform = get_transform();
if (transform->has_components()) {
set_pos_hpr_scale_shear(transform->get_pos(), transform->get_hpr(),
orig_scale, orig_shear);
}
} else {
// If we didn't have a componentwise transform already, never mind.
set_transform(other, TransformState::make_pos_hpr_scale_shear
(pos, hpr, rel_transform->get_scale(), rel_transform->get_shear()));
node()->reset_prev_transform();
}
}
/**
* Sets the translation and rotation component of the transform, relative to
* the other node.
*/
void NodePath::
set_pos_quat(const NodePath &other, const LVecBase3 &pos,
const LQuaternion &quat) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
CPT(TransformState) transform = get_transform();
if (transform->has_components()) {
// If we had a componentwise transform before we started, we should be
// careful to preserve the other two components. We wouldn't need to do
// this, except for the possibility of numerical error or decompose
// ambiguity.
const LVecBase3 &orig_scale = transform->get_scale();
const LVecBase3 &orig_shear = transform->get_shear();
set_transform(other, TransformState::make_pos_quat_scale_shear
(pos, quat, rel_transform->get_scale(), rel_transform->get_shear()));
transform = get_transform();
if (transform->has_components()) {
set_pos_quat_scale_shear(transform->get_pos(), transform->get_quat(),
orig_scale, orig_shear);
}
} else {
// If we didn't have a componentwise transform already, never mind.
set_transform(other, TransformState::make_pos_quat_scale_shear
(pos, quat, rel_transform->get_scale(), rel_transform->get_shear()));
node()->reset_prev_transform();
}
}
/**
* Sets the rotation and scale components of the transform, leaving
* translation untouched. This, or set_pos_hpr_scale, is the preferred way to
* update a transform when both hpr and scale are to be changed.
*/
void NodePath::
set_hpr_scale(const NodePath &other, const LVecBase3 &hpr, const LVecBase3 &scale) {
// We don't bother trying very hard to preserve pos across this operation,
// unlike the work we do above to preserve hpr or scale, since it generally
// doesn't matter that much if pos is off by a few thousandths.
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform(other);
transform = TransformState::make_pos_hpr_scale_shear
(transform->get_pos(), hpr, scale, transform->get_shear());
set_transform(other, transform);
}
/**
* Sets the rotation and scale components of the transform, leaving
* translation untouched. This, or set_pos_quat_scale, is the preferred way
* to update a transform when both quat and scale are to be changed.
*/
void NodePath::
set_quat_scale(const NodePath &other, const LQuaternion &quat,
const LVecBase3 &scale) {
// We don't bother trying very hard to preserve pos across this operation,
// unlike the work we do above to preserve quat or scale, since it generally
// doesn't matter that much if pos is off by a few thousandths.
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform(other);
transform = TransformState::make_pos_quat_scale_shear
(transform->get_pos(), quat, scale, transform->get_shear());
set_transform(other, transform);
}
/**
* Completely replaces the transform with new translation, rotation, and scale
* components, relative to the other node, implicitly setting shear to 0.
*/
void NodePath::
set_pos_hpr_scale(const NodePath &other,
const LVecBase3 &pos, const LVecBase3 &hpr,
const LVecBase3 &scale) {
nassertv_always(!is_empty());
set_transform(other, TransformState::make_pos_hpr_scale
(pos, hpr, scale));
node()->reset_prev_transform();
}
/**
* Completely replaces the transform with new translation, rotation, and scale
* components, relative to the other node, implicitly setting shear to 0.
*/
void NodePath::
set_pos_quat_scale(const NodePath &other,
const LVecBase3 &pos, const LQuaternion &quat,
const LVecBase3 &scale) {
nassertv_always(!is_empty());
set_transform(other, TransformState::make_pos_quat_scale
(pos, quat, scale));
node()->reset_prev_transform();
}
/**
* Completely replaces the transform with new translation, rotation, scale,
* and shear components, relative to the other node.
*/
void NodePath::
set_pos_hpr_scale_shear(const NodePath &other,
const LVecBase3 &pos, const LVecBase3 &hpr,
const LVecBase3 &scale, const LVecBase3 &shear) {
nassertv_always(!is_empty());
set_transform(other, TransformState::make_pos_hpr_scale_shear
(pos, hpr, scale, shear));
node()->reset_prev_transform();
}
/**
* Completely replaces the transform with new translation, rotation, scale,
* and shear components, relative to the other node.
*/
void NodePath::
set_pos_quat_scale_shear(const NodePath &other,
const LVecBase3 &pos, const LQuaternion &quat,
const LVecBase3 &scale, const LVecBase3 &shear) {
nassertv_always(!is_empty());
set_transform(other, TransformState::make_pos_quat_scale_shear
(pos, quat, scale, shear));
node()->reset_prev_transform();
}
/**
* Returns the matrix that describes the coordinate space of the bottom node,
* relative to the other path's bottom node's coordinate space.
*/
LMatrix4 NodePath::
get_mat(const NodePath &other) const {
CPT(TransformState) transform = get_transform(other);
// We can't safely return a reference to the matrix, because we can't assume
// the transform won't go away when the function returns. If the transform
// was partially modified by, say, a CompassEffect, it won't be stored in
// the cache, and thus we might have the only reference to it.
return transform->get_mat();
}
/**
* Converts the indicated matrix from the other's coordinate space to the
* local coordinate space, and applies it to the node.
*/
void NodePath::
set_mat(const NodePath &other, const LMatrix4 &mat) {
nassertv_always(!is_empty());
set_transform(other, TransformState::make_mat(mat));
node()->reset_prev_transform();
}
/**
* Given that the indicated point is in the coordinate system of the other
* node, returns the same point in this node's coordinate system.
*/
LPoint3 NodePath::
get_relative_point(const NodePath &other, const LVecBase3 &point) const {
CPT(TransformState) transform = other.get_transform(*this);
LPoint3 rel_point = LPoint3(point) * transform->get_mat();
return rel_point;
}
/**
* Given that the indicated vector is in the coordinate system of the other
* node, returns the same vector in this node's coordinate system.
*/
LVector3 NodePath::
get_relative_vector(const NodePath &other, const LVecBase3 &vec) const {
CPT(TransformState) transform = other.get_transform(*this);
LVector3 rel_vector = LVector3(vec) * transform->get_mat();
return rel_vector;
}
/**
* Sets the transform on this NodePath so that it rotates to face the
* indicated point in space, which is relative to the other NodePath.
*/
void NodePath::
look_at(const NodePath &other, const LPoint3 &point, const LVector3 &up) {
nassertv_always(!is_empty());
CPT(TransformState) transform = other.get_transform(get_parent());
LPoint3 rel_point = point * transform->get_mat();
LPoint3 pos = get_pos();
LQuaternion quat;
::look_at(quat, rel_point - pos, up);
set_quat(quat);
}
/**
* Behaves like look_at(), but with a strong preference to keeping the up
* vector oriented in the indicated "up" direction.
*/
void NodePath::
heads_up(const NodePath &other, const LPoint3 &point, const LVector3 &up) {
nassertv_always(!is_empty());
CPT(TransformState) transform = other.get_transform(get_parent());
LPoint3 rel_point = point * transform->get_mat();
LPoint3 pos = get_pos();
LQuaternion quat;
::heads_up(quat, rel_point - pos, up);
set_quat(quat);
}
/**
* Applies a scene-graph color to the referenced node. This color will apply
* to all geometry at this level and below (that does not specify a new color
* or a set_color_off()).
*/
void NodePath::
set_color(PN_stdfloat r, PN_stdfloat g, PN_stdfloat b, PN_stdfloat a,
int priority) {
set_color(LColor(r, g, b, a), priority);
}
/**
* Applies a scene-graph color to the referenced node. This color will apply
* to all geometry at this level and below (that does not specify a new color
* or a set_color_off()).
*/
void NodePath::
set_color(const LColor &color, int priority) {
nassertv_always(!is_empty());
node()->set_attrib(ColorAttrib::make_flat(color), priority);
}
/**
* Sets the geometry at this level and below to render using the geometry
* color. This is normally the default, but it may be useful to use this to
* contradict set_color() at a higher node level (or, with a priority, to
* override a set_color() at a lower level).
*/
void NodePath::
set_color_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(ColorAttrib::make_vertex(), priority);
}
/**
* Completely removes any color adjustment from the node. This allows the
* natural color of the geometry, or whatever color transitions might be
* otherwise affecting the geometry, to show instead.
*/
void NodePath::
clear_color() {
nassertv_always(!is_empty());
node()->clear_attrib(ColorAttrib::get_class_slot());
}
/**
* Returns true if a color has been applied to the given node, false
* otherwise.
*/
bool NodePath::
has_color() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(ColorAttrib::get_class_slot());
}
/**
* Returns the color that has been assigned to the node, or black if no color
* has been assigned.
*/
LColor NodePath::
get_color() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(ColorAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const ColorAttrib *ca = DCAST(ColorAttrib, attrib);
if (ca->get_color_type() == ColorAttrib::T_flat) {
return ca->get_color();
}
}
pgraph_cat.warning()
<< "get_color() called on " << *this << " which has no color set.\n";
return LColor(1.0f, 1.0f, 1.0f, 1.0f);
}
/**
* Returns true if a color scale has been applied to the referenced node,
* false otherwise. It is still possible that color at this node might have
* been scaled by an ancestor node.
*/
bool NodePath::
has_color_scale() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(ColorScaleAttrib::get_class_slot());
}
/**
* Completely removes any color scale from the referenced node. This is
* preferable to simply setting the color scale to identity, as it also
* removes the overhead associated with having a color scale at all.
*/
void NodePath::
clear_color_scale() {
nassertv_always(!is_empty());
node()->clear_attrib(ColorScaleAttrib::get_class_slot());
}
/**
* multiplies the color scale component of the transform, with previous color
* scale leaving translation and rotation untouched.
*/
void NodePath::
compose_color_scale(const LVecBase4 &scale, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ColorScaleAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(ColorScaleAttrib::get_class_slot()));
const ColorScaleAttrib *csa = DCAST(ColorScaleAttrib, attrib);
// Modify the existing ColorScaleAttrib by multiplying with the indicated
// colorScale.
LVecBase4 prev_color_scale = csa->get_scale();
LVecBase4 new_color_scale(prev_color_scale[0]*scale[0],
prev_color_scale[1]*scale[1],
prev_color_scale[2]*scale[2],
prev_color_scale[3]*scale[3]);
node()->set_attrib(csa->set_scale(new_color_scale), priority);
} else {
// Create a new ColorScaleAttrib for this node.
node()->set_attrib(ColorScaleAttrib::make(scale), priority);
}
}
/**
* Sets the color scale component of the transform, leaving translation and
* rotation untouched.
*/
void NodePath::
set_color_scale(const LVecBase4 &scale, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ColorScaleAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(ColorScaleAttrib::get_class_slot()));
const ColorScaleAttrib *csa = DCAST(ColorScaleAttrib, attrib);
// Modify the existing ColorScaleAttrib to add the indicated colorScale.
node()->set_attrib(csa->set_scale(scale), priority);
} else {
// Create a new ColorScaleAttrib for this node.
node()->set_attrib(ColorScaleAttrib::make(scale), priority);
}
}
/**
* Disables any color scale attribute inherited from above. This is not the
* same thing as clear_color_scale(), which undoes any previous
* set_color_scale() operation on this node; rather, this actively disables
* any set_color_scale() that might be inherited from a parent node. This
* also disables set_alpha_scale() at the same time.
*
* It is legal to specify a new color scale on the same node with a subsequent
* call to set_color_scale() or set_alpha_scale(); this new scale will apply
* to lower geometry.
*/
void NodePath::
set_color_scale_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(ColorScaleAttrib::make_off(), priority);
}
/**
* Sets the alpha scale component of the transform without (much) affecting
* the color scale. Note that any priority specified will also apply to the
* color scale.
*/
void NodePath::
set_alpha_scale(PN_stdfloat scale, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ColorScaleAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(ColorScaleAttrib::get_class_slot()));
const ColorScaleAttrib *csa = DCAST(ColorScaleAttrib, attrib);
// Modify the existing ColorScaleAttrib to add the indicated colorScale.
const LVecBase4 &sc = csa->get_scale();
node()->set_attrib(csa->set_scale(LVecBase4(sc[0], sc[1], sc[2], scale)), priority);
} else {
// Create a new ColorScaleAttrib for this node.
node()->set_attrib(ColorScaleAttrib::make(LVecBase4(1.0f, 1.0f, 1.0f, scale)), priority);
}
}
/**
* Scales all the color components of the object by the same amount, darkening
* the object, without (much) affecting alpha. Note that any priority
* specified will also apply to the alpha scale.
*/
void NodePath::
set_all_color_scale(PN_stdfloat scale, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ColorScaleAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(ColorScaleAttrib::get_class_slot()));
const ColorScaleAttrib *csa = DCAST(ColorScaleAttrib, attrib);
// Modify the existing ColorScaleAttrib to add the indicated colorScale.
const LVecBase4 &sc = csa->get_scale();
node()->set_attrib(csa->set_scale(LVecBase4(scale, scale, scale, sc[3])), priority);
} else {
// Create a new ColorScaleAttrib for this node.
node()->set_attrib(ColorScaleAttrib::make(LVecBase4(scale, scale, scale, 1.0f)), priority);
}
}
/**
* Returns the complete color scale vector that has been applied to this node
* via a previous call to set_color_scale() and/or set_alpha_scale(), or all
* 1's (identity) if no scale has been applied to this particular node.
*/
const LVecBase4 &NodePath::
get_color_scale() const {
static const LVecBase4 ident_scale(1.0f, 1.0f, 1.0f, 1.0f);
nassertr_always(!is_empty(), ident_scale);
const RenderAttrib *attrib =
node()->get_attrib(ColorScaleAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const ColorScaleAttrib *csa = DCAST(ColorScaleAttrib, attrib);
return csa->get_scale();
}
return ident_scale;
}
/**
* Adds the indicated Light or PolylightNode to the list of lights that
* illuminate geometry at this node and below. The light itself should be
* parented into the scene graph elsewhere, to represent the light's position
* in space; but until set_light() is called it will illuminate no geometry.
*/
void NodePath::
set_light(const NodePath &light, int priority) {
nassertv_always(!is_empty());
if (!light.is_empty()) {
Light *light_obj = light.node()->as_light();
if (light_obj != (Light *)NULL) {
// It's an actual Light object.
const RenderAttrib *attrib =
node()->get_attrib(LightAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(LightAttrib::get_class_slot()));
const LightAttrib *la = DCAST(LightAttrib, attrib);
// Modify the existing LightAttrib to add the indicated light.
node()->set_attrib(la->add_on_light(light), priority);
} else {
// Create a new LightAttrib for this node.
CPT(LightAttrib) la = DCAST(LightAttrib, LightAttrib::make());
node()->set_attrib(la->add_on_light(light), priority);
}
return;
} else if (light.node()->is_of_type(PolylightNode::get_class_type())) {
// It's a Polylight object.
if (priority != 0) {
// PolylightEffects can't have a priority, since they're just an
// effect to be applied immediately.
pgraph_cat.warning()
<< "Ignoring priority on set_light(" << light << ")\n";
}
const RenderEffect *effect =
node()->get_effect(PolylightEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
const PolylightEffect *ple = DCAST(PolylightEffect, effect);
// Modify the existing PolylightEffect to add the indicated light.
node()->set_effect(ple->add_light(light));
} else {
// Create a new PolylightEffect for this node.
CPT(PolylightEffect) ple = DCAST(PolylightEffect, PolylightEffect::make());
node()->set_effect(ple->add_light(light));
}
return;
}
}
nassert_raise("Not a Light object.");
}
/**
* Sets the geometry at this level and below to render using no lights at all.
* This is different from not specifying a light; rather, this specifically
* contradicts set_light() at a higher node level (or, with a priority,
* overrides a set_light() at a lower level).
*
* If no lights are in effect on a particular piece of geometry, that geometry
* is rendered with lighting disabled.
*/
void NodePath::
set_light_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(LightAttrib::make_all_off(), priority);
node()->clear_effect(PolylightEffect::get_class_type());
}
/**
* Sets the geometry at this level and below to render without using the
* indicated Light. This is different from not specifying the Light; rather,
* this specifically contradicts set_light() at a higher node level (or, with
* a priority, overrides a set_light() at a lower level).
*
* This interface does not support PolylightNodes, which cannot be turned off
* at a lower level.
*/
void NodePath::
set_light_off(const NodePath &light, int priority) {
nassertv_always(!is_empty());
if (!light.is_empty()) {
Light *light_obj = light.node()->as_light();
if (light_obj != (Light *)NULL) {
const RenderAttrib *attrib =
node()->get_attrib(LightAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(LightAttrib::get_class_slot()));
const LightAttrib *la = DCAST(LightAttrib, attrib);
// Modify the existing LightAttrib to add the indicated light to the
// "off" list. This also, incidentally, removes it from the "on" list
// if it is there.
node()->set_attrib(la->add_off_light(light), priority);
} else {
// Create a new LightAttrib for this node that turns off the indicated
// light.
CPT(LightAttrib) la = DCAST(LightAttrib, LightAttrib::make());
node()->set_attrib(la->add_off_light(light), priority);
}
return;
}
}
nassert_raise("Not a Light object.");
}
/**
* Completely removes any lighting operations that may have been set via
* set_light() or set_light_off() from this particular node.
*/
void NodePath::
clear_light() {
nassertv_always(!is_empty());
node()->clear_attrib(LightAttrib::get_class_slot());
node()->clear_effect(PolylightEffect::get_class_type());
}
/**
* Removes any reference to the indicated Light or PolylightNode from the
* NodePath.
*/
void NodePath::
clear_light(const NodePath &light) {
nassertv_always(!is_empty());
if (!light.is_empty()) {
Light *light_obj = light.node()->as_light();
if (light_obj != (Light *)NULL) {
const RenderAttrib *attrib =
node()->get_attrib(LightAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
CPT(LightAttrib) la = DCAST(LightAttrib, attrib);
la = DCAST(LightAttrib, la->remove_on_light(light));
la = DCAST(LightAttrib, la->remove_off_light(light));
if (la->is_identity()) {
node()->clear_attrib(LightAttrib::get_class_slot());
} else {
int priority = node()->get_state()->get_override(LightAttrib::get_class_slot());
node()->set_attrib(la, priority);
}
}
return;
} else if (light.node()->is_of_type(PolylightNode::get_class_type())) {
const RenderEffect *effect =
node()->get_effect(PolylightEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
CPT(PolylightEffect) ple = DCAST(PolylightEffect, effect);
ple = DCAST(PolylightEffect, ple->remove_light(light));
node()->set_effect(ple);
}
return;
}
}
nassert_raise("Not a Light object.");
}
/**
* Returns true if the indicated Light or PolylightNode has been specifically
* enabled on this particular node. This means that someone called
* set_light() on this node with the indicated light.
*/
bool NodePath::
has_light(const NodePath &light) const {
nassertr_always(!is_empty(), false);
if (!light.is_empty()) {
Light *light_obj = light.node()->as_light();
if (light_obj != (Light *)NULL) {
const RenderAttrib *attrib =
node()->get_attrib(LightAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const LightAttrib *la = DCAST(LightAttrib, attrib);
return la->has_on_light(light);
}
return false;
} else if (light.node()->is_of_type(PolylightNode::get_class_type())) {
const RenderEffect *effect =
node()->get_effect(PolylightEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
const PolylightEffect *ple = DCAST(PolylightEffect, effect);
return ple->has_light(light);
}
return false;
}
}
nassert_raise("Not a Light object.");
return false;
}
/**
* Returns true if all Lights have been specifically disabled on this
* particular node. This means that someone called set_light_off() on this
* node with no parameters.
*/
bool NodePath::
has_light_off() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(LightAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const LightAttrib *la = DCAST(LightAttrib, attrib);
return la->has_all_off();
}
return false;
}
/**
* Returns true if the indicated Light has been specifically disabled on this
* particular node. This means that someone called set_light_off() on this
* node with the indicated light.
*
* This interface does not support PolylightNodes, which cannot be turned off
* at a lower level.
*/
bool NodePath::
has_light_off(const NodePath &light) const {
nassertr_always(!is_empty(), false);
if (!light.is_empty()) {
Light *light_obj = light.node()->as_light();
if (light_obj != (Light *)NULL) {
const RenderAttrib *attrib =
node()->get_attrib(LightAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const LightAttrib *la = DCAST(LightAttrib, attrib);
return la->has_off_light(light);
}
}
}
nassert_raise("Not a Light object.");
return false;
}
/**
* Adds the indicated clipping plane to the list of planes that apply to
* geometry at this node and below. The clipping plane itself, a PlaneNode,
* should be parented into the scene graph elsewhere, to represent the plane's
* position in space; but until set_clip_plane() is called it will clip no
* geometry.
*/
void NodePath::
set_clip_plane(const NodePath &clip_plane, int priority) {
nassertv_always(!is_empty());
if (!clip_plane.is_empty() && clip_plane.node()->is_of_type(PlaneNode::get_class_type())) {
const RenderAttrib *attrib =
node()->get_attrib(ClipPlaneAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(ClipPlaneAttrib::get_class_slot()));
const ClipPlaneAttrib *la = DCAST(ClipPlaneAttrib, attrib);
// Modify the existing ClipPlaneAttrib to add the indicated clip_plane.
node()->set_attrib(la->add_on_plane(clip_plane), priority);
} else {
// Create a new ClipPlaneAttrib for this node.
CPT(ClipPlaneAttrib) la = DCAST(ClipPlaneAttrib, ClipPlaneAttrib::make());
node()->set_attrib(la->add_on_plane(clip_plane), priority);
}
return;
}
nassert_raise("Not a PlaneNode object.");
}
/**
* Sets the geometry at this level and below to render using no clip_planes at
* all. This is different from not specifying a clip_plane; rather, this
* specifically contradicts set_clip_plane() at a higher node level (or, with
* a priority, overrides a set_clip_plane() at a lower level).
*
* If no clip_planes are in effect on a particular piece of geometry, that
* geometry is rendered without being clipped (other than by the viewing
* frustum).
*/
void NodePath::
set_clip_plane_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(ClipPlaneAttrib::make_all_off(), priority);
}
/**
* Sets the geometry at this level and below to render without being clipped
* by the indicated PlaneNode. This is different from not specifying the
* PlaneNode; rather, this specifically contradicts set_clip_plane() at a
* higher node level (or, with a priority, overrides a set_clip_plane() at a
* lower level).
*/
void NodePath::
set_clip_plane_off(const NodePath &clip_plane, int priority) {
nassertv_always(!is_empty());
if (!clip_plane.is_empty() && clip_plane.node()->is_of_type(PlaneNode::get_class_type())) {
const RenderAttrib *attrib =
node()->get_attrib(ClipPlaneAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(ClipPlaneAttrib::get_class_slot()));
const ClipPlaneAttrib *la = DCAST(ClipPlaneAttrib, attrib);
// Modify the existing ClipPlaneAttrib to add the indicated clip_plane
// to the "off" list. This also, incidentally, removes it from the "on"
// list if it is there.
node()->set_attrib(la->add_off_plane(clip_plane), priority);
} else {
// Create a new ClipPlaneAttrib for this node that turns off the
// indicated clip_plane.
CPT(ClipPlaneAttrib) la = DCAST(ClipPlaneAttrib, ClipPlaneAttrib::make());
node()->set_attrib(la->add_off_plane(clip_plane), priority);
}
return;
}
nassert_raise("Not a PlaneNode object.");
}
/**
* Completely removes any clip planes that may have been set via
* set_clip_plane() or set_clip_plane_off() from this particular node.
*/
void NodePath::
clear_clip_plane() {
nassertv_always(!is_empty());
node()->clear_attrib(ClipPlaneAttrib::get_class_slot());
}
/**
* Removes any reference to the indicated clipping plane from the NodePath.
*/
void NodePath::
clear_clip_plane(const NodePath &clip_plane) {
nassertv_always(!is_empty());
if (!clip_plane.is_empty() && clip_plane.node()->is_of_type(PlaneNode::get_class_type())) {
const RenderAttrib *attrib =
node()->get_attrib(ClipPlaneAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
CPT(ClipPlaneAttrib) la = DCAST(ClipPlaneAttrib, attrib);
la = DCAST(ClipPlaneAttrib, la->remove_on_plane(clip_plane));
la = DCAST(ClipPlaneAttrib, la->remove_off_plane(clip_plane));
if (la->is_identity()) {
node()->clear_attrib(ClipPlaneAttrib::get_class_slot());
} else {
int priority = node()->get_state()->get_override(ClipPlaneAttrib::get_class_slot());
node()->set_attrib(la, priority);
}
}
return;
}
nassert_raise("Not a PlaneNode object.");
}
/**
* Returns true if the indicated clipping plane has been specifically applied
* to this particular node. This means that someone called set_clip_plane()
* on this node with the indicated clip_plane.
*/
bool NodePath::
has_clip_plane(const NodePath &clip_plane) const {
nassertr_always(!is_empty(), false);
if (!clip_plane.is_empty() && clip_plane.node()->is_of_type(PlaneNode::get_class_type())) {
const RenderAttrib *attrib =
node()->get_attrib(ClipPlaneAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const ClipPlaneAttrib *la = DCAST(ClipPlaneAttrib, attrib);
return la->has_on_plane(clip_plane);
}
return false;
}
nassert_raise("Not a PlaneNode object.");
return false;
}
/**
* Returns true if all clipping planes have been specifically disabled on this
* particular node. This means that someone called set_clip_plane_off() on
* this node with no parameters.
*/
bool NodePath::
has_clip_plane_off() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(ClipPlaneAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const ClipPlaneAttrib *la = DCAST(ClipPlaneAttrib, attrib);
return la->has_all_off();
}
return false;
}
/**
* Returns true if the indicated clipping plane has been specifically disabled
* on this particular node. This means that someone called
* set_clip_plane_off() on this node with the indicated clip_plane.
*/
bool NodePath::
has_clip_plane_off(const NodePath &clip_plane) const {
nassertr_always(!is_empty(), false);
if (!clip_plane.is_empty() && clip_plane.node()->is_of_type(PlaneNode::get_class_type())) {
const RenderAttrib *attrib =
node()->get_attrib(ClipPlaneAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const ClipPlaneAttrib *la = DCAST(ClipPlaneAttrib, attrib);
return la->has_off_plane(clip_plane);
}
}
nassert_raise("Not a PlaneNode object.");
return false;
}
/**
* Adds the indicated occluder to the list of occluders that apply to geometry
* at this node and below. The occluder itself, an OccluderNode, should be
* parented into the scene graph elsewhere, to represent the occluder's
* position in space; but until set_occluder() is called it will clip no
* geometry.
*/
void NodePath::
set_occluder(const NodePath &occluder) {
nassertv_always(!is_empty());
if (!occluder.is_empty() && occluder.node()->is_of_type(OccluderNode::get_class_type())) {
const RenderEffect *effect =
node()->get_effect(OccluderEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
const OccluderEffect *la = DCAST(OccluderEffect, effect);
// Modify the existing OccluderEffect to add the indicated occluder.
node()->set_effect(la->add_on_occluder(occluder));
} else {
// Create a new OccluderEffect for this node.
CPT(OccluderEffect) la = DCAST(OccluderEffect, OccluderEffect::make());
node()->set_effect(la->add_on_occluder(occluder));
}
return;
}
nassert_raise("Not an OccluderNode object.");
}
/**
* Completely removes any occluders that may have been set via set_occluder()
* from this particular node.
*/
void NodePath::
clear_occluder() {
nassertv_always(!is_empty());
node()->clear_effect(OccluderEffect::get_class_type());
}
/**
* Removes any reference to the indicated occluder from the NodePath.
*/
void NodePath::
clear_occluder(const NodePath &occluder) {
nassertv_always(!is_empty());
if (!occluder.is_empty() && occluder.node()->is_of_type(OccluderNode::get_class_type())) {
const RenderEffect *effect =
node()->get_effect(OccluderEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
CPT(OccluderEffect) la = DCAST(OccluderEffect, effect);
la = DCAST(OccluderEffect, la->remove_on_occluder(occluder));
if (la->is_identity()) {
node()->clear_effect(OccluderEffect::get_class_type());
} else {
node()->set_effect(la);
}
}
return;
}
nassert_raise("Not an OccluderNode object.");
}
/**
* Returns true if the indicated occluder has been specifically applied to
* this particular node. This means that someone called set_occluder() on
* this node with the indicated occluder.
*/
bool NodePath::
has_occluder(const NodePath &occluder) const {
nassertr_always(!is_empty(), false);
if (!occluder.is_empty() && occluder.node()->is_of_type(OccluderNode::get_class_type())) {
const RenderEffect *effect =
node()->get_effect(OccluderEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
const OccluderEffect *la = DCAST(OccluderEffect, effect);
return la->has_on_occluder(occluder);
}
return false;
}
nassert_raise("Not an OccluderNode object.");
return false;
}
/**
* Sets up a scissor region on the nodes rendered at this level and below.
* The four coordinates are understood to define a rectangle in screen space.
* These numbers are relative to the current DisplayRegion, where (0,0) is the
* lower-left corner of the DisplayRegion, and (1,1) is the upper-right
* corner.
*/
void NodePath::
set_scissor(PN_stdfloat left, PN_stdfloat right, PN_stdfloat bottom, PN_stdfloat top) {
set_effect(ScissorEffect::make_screen(LVecBase4(left, right, bottom, top)));
}
/**
* Sets up a scissor region on the nodes rendered at this level and below.
* The two points are understood to be relative to this node. When these
* points are projected into screen space, they define the diagonally-opposite
* points that determine the scissor region.
*/
void NodePath::
set_scissor(const LPoint3 &a, const LPoint3 &b) {
set_effect(ScissorEffect::make_node(a, b));
}
/**
* Sets up a scissor region on the nodes rendered at this level and below.
* The four points are understood to be relative to this node. When these
* points are projected into screen space, they define the bounding volume of
* the scissor region (the scissor region is the smallest onscreen rectangle
* that encloses all four points).
*/
void NodePath::
set_scissor(const LPoint3 &a, const LPoint3 &b,
const LPoint3 &c, const LPoint3 &d) {
set_effect(ScissorEffect::make_node(a, b, c, d));
}
/**
* Sets up a scissor region on the nodes rendered at this level and below.
* The two points are understood to be relative to the indicated other node.
* When these points are projected into screen space, they define the
* diagonally-opposite points that determine the scissor region.
*/
void NodePath::
set_scissor(const NodePath &other, const LPoint3 &a, const LPoint3 &b) {
set_effect(ScissorEffect::make_node(a, b, other));
}
/**
* Sets up a scissor region on the nodes rendered at this level and below.
* The four points are understood to be relative to the indicated other node.
* When these points are projected into screen space, they define the bounding
* volume of the scissor region (the scissor region is the smallest onscreen
* rectangle that encloses all four points).
*/
void NodePath::
set_scissor(const NodePath &other,
const LPoint3 &a, const LPoint3 &b,
const LPoint3 &c, const LPoint3 &d) {
set_effect(ScissorEffect::make_node(a, b, c, d, other));
}
/**
* Removes the scissor region that was defined at this node level by a
* previous call to set_scissor().
*/
void NodePath::
clear_scissor() {
clear_effect(ScissorEffect::get_class_type());
}
/**
* Returns true if a scissor region was defined at this node by a previous
* call to set_scissor(). This does not check for scissor regions inherited
* from a parent class. It also does not check for the presence of a low-
* level ScissorAttrib, which is different from the ScissorEffect added by
* set_scissor.
*/
bool NodePath::
has_scissor() const {
return has_effect(ScissorEffect::get_class_type());
}
/**
* Assigns the geometry at this level and below to the named rendering bin.
* It is the user's responsibility to ensure that such a bin already exists,
* either via the cull-bin Configrc variable, or by explicitly creating a
* GeomBin of the appropriate type at runtime.
*
* There are two default bins created when Panda is started: "default" and
* "fixed". Normally, all geometry is assigned to "default" unless specified
* otherwise. This bin renders opaque geometry in state-sorted order,
* followed by transparent geometry sorted back-to-front. If any geometry is
* assigned to "fixed", this will be rendered following all the geometry in
* "default", in the order specified by draw_order for each piece of geometry
* so assigned.
*
* The draw_order parameter is meaningful only for GeomBinFixed type bins,
* e.g. "fixed". Other kinds of bins ignore it.
*/
void NodePath::
set_bin(const string &bin_name, int draw_order, int priority) {
nassertv_always(!is_empty());
node()->set_attrib(CullBinAttrib::make(bin_name, draw_order), priority);
}
/**
* Completely removes any bin adjustment that may have been set via set_bin()
* from this particular node.
*/
void NodePath::
clear_bin() {
nassertv_always(!is_empty());
node()->clear_attrib(CullBinAttrib::get_class_slot());
}
/**
* Returns true if the node has been assigned to the a particular rendering
* bin via set_bin(), false otherwise.
*/
bool NodePath::
has_bin() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(CullBinAttrib::get_class_slot());
}
/**
* Returns the name of the bin that this particular node was assigned to via
* set_bin(), or the empty string if no bin was assigned. See set_bin() and
* has_bin().
*/
string NodePath::
get_bin_name() const {
nassertr_always(!is_empty(), string());
const RenderAttrib *attrib =
node()->get_attrib(CullBinAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const CullBinAttrib *ba = DCAST(CullBinAttrib, attrib);
return ba->get_bin_name();
}
return string();
}
/**
* Returns the drawing order associated with the bin that this particular node
* was assigned to via set_bin(), or 0 if no bin was assigned. See set_bin()
* and has_bin().
*/
int NodePath::
get_bin_draw_order() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(CullBinAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const CullBinAttrib *ba = DCAST(CullBinAttrib, attrib);
return ba->get_draw_order();
}
return 0;
}
/**
* Adds the indicated texture to the list of textures that will be rendered on
* the default texture stage.
*
* This is the convenience single-texture variant of this method; it is now
* superceded by set_texture() that accepts a stage and texture. You may use
* this method if you just want to adjust the default stage.
*/
void NodePath::
set_texture(Texture *tex, int priority) {
nassertv_always(!is_empty());
PT(TextureStage) stage = TextureStage::get_default();
set_texture(stage, tex, priority);
}
/**
* Adds the indicated texture to the list of textures that will be rendered on
* the indicated multitexture stage. If there are multiple texture stages
* specified (possibly on multiple different nodes at different levels), they
* will all be applied to geometry together, according to the stage
* specification set up in the TextureStage object.
*/
void NodePath::
set_texture(TextureStage *stage, Texture *tex, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *tsa = DCAST(TextureAttrib, attrib);
int sg_priority = node()->get_state()->get_override(TextureAttrib::get_class_slot());
// Modify the existing TextureAttrib to add the indicated texture.
node()->set_attrib(tsa->add_on_stage(stage, tex, priority), sg_priority);
} else {
// Create a new TextureAttrib for this node.
CPT(TextureAttrib) tsa = DCAST(TextureAttrib, TextureAttrib::make());
node()->set_attrib(tsa->add_on_stage(stage, tex, priority));
}
}
/**
* Adds the indicated texture to the list of textures that will be rendered on
* the default texture stage.
*
* The given sampler state will override the sampling settings on the texture
* itself. Note that this method makes a copy of the sampler settings that
* you give; further changes to this object will not be reflected.
*
* This is the convenience single-texture variant of this method; it is now
* superceded by set_texture() that accepts a stage and texture. You may use
* this method if you just want to adjust the default stage.
*/
void NodePath::
set_texture(Texture *tex, const SamplerState &sampler, int priority) {
nassertv_always(!is_empty());
PT(TextureStage) stage = TextureStage::get_default();
set_texture(stage, tex, sampler, priority);
}
/**
* Adds the indicated texture to the list of textures that will be rendered on
* the indicated multitexture stage. If there are multiple texture stages
* specified (possibly on multiple different nodes at different levels), they
* will all be applied to geometry together, according to the stage
* specification set up in the TextureStage object.
*
* The given sampler state will override the sampling settings on the texture
* itself. Note that this method makes a copy of the sampler settings that
* you give; further changes to this object will not be reflected.
*/
void NodePath::
set_texture(TextureStage *stage, Texture *tex, const SamplerState &sampler, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *tsa = DCAST(TextureAttrib, attrib);
int sg_priority = node()->get_state()->get_override(TextureAttrib::get_class_slot());
// Modify the existing TextureAttrib to add the indicated texture.
node()->set_attrib(tsa->add_on_stage(stage, tex, sampler, priority), sg_priority);
} else {
// Create a new TextureAttrib for this node.
CPT(TextureAttrib) tsa = DCAST(TextureAttrib, TextureAttrib::make());
node()->set_attrib(tsa->add_on_stage(stage, tex, sampler, priority));
}
}
/**
* Sets the geometry at this level and below to render using no texture, on
* any stage. This is different from not specifying a texture; rather, this
* specifically contradicts set_texture() at a higher node level (or, with a
* priority, overrides a set_texture() at a lower level).
*/
void NodePath::
set_texture_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(TextureAttrib::make_all_off(), priority);
}
/**
* Sets the geometry at this level and below to render using no texture, on
* the indicated stage. This is different from not specifying a texture;
* rather, this specifically contradicts set_texture() at a higher node level
* (or, with a priority, overrides a set_texture() at a lower level).
*/
void NodePath::
set_texture_off(TextureStage *stage, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *tsa = DCAST(TextureAttrib, attrib);
int sg_priority = node()->get_state()->get_override(TextureAttrib::get_class_slot());
// Modify the existing TextureAttrib to add the indicated texture to the
// "off" list. This also, incidentally, removes it from the "on" list if
// it is there.
node()->set_attrib(tsa->add_off_stage(stage, priority), sg_priority);
} else {
// Create a new TextureAttrib for this node that turns off the indicated
// stage.
CPT(TextureAttrib) tsa = DCAST(TextureAttrib, TextureAttrib::make());
node()->set_attrib(tsa->add_off_stage(stage, priority));
}
}
/**
* Completely removes any texture adjustment that may have been set via
* set_texture() or set_texture_off() from this particular node. This allows
* whatever textures might be otherwise affecting the geometry to show
* instead.
*/
void NodePath::
clear_texture() {
nassertv_always(!is_empty());
node()->clear_attrib(TextureAttrib::get_class_slot());
}
/**
* Removes any reference to the indicated texture stage from the NodePath.
*/
void NodePath::
clear_texture(TextureStage *stage) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
CPT(TextureAttrib) tsa = DCAST(TextureAttrib, attrib);
tsa = DCAST(TextureAttrib, tsa->remove_on_stage(stage));
tsa = DCAST(TextureAttrib, tsa->remove_off_stage(stage));
if (tsa->is_identity()) {
node()->clear_attrib(TextureAttrib::get_class_slot());
} else {
int priority = node()->get_state()->get_override(TextureAttrib::get_class_slot());
node()->set_attrib(tsa, priority);
}
}
}
/**
* Returns true if a texture has been applied to this particular node via
* set_texture(), false otherwise. This is not the same thing as asking
* whether the geometry at this node will be rendered with texturing, as there
* may be a texture in effect from a higher or lower level.
*/
bool NodePath::
has_texture() const {
return get_texture() != (Texture *)NULL;
}
/**
* Returns true if texturing has been specifically enabled on this particular
* node for the indicated stage. This means that someone called set_texture()
* on this node with the indicated stage name, or the stage_name is the
* default stage_name, and someone called set_texture() on this node.
*/
bool NodePath::
has_texture(TextureStage *stage) const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
return ta->has_on_stage(stage);
}
return false;
}
/**
* Returns true if texturing has been specifically disabled on this particular
* node via set_texture_off(), false otherwise. This is not the same thing as
* asking whether the geometry at this node will be rendered untextured, as
* there may be a texture in effect from a higher or lower level.
*/
bool NodePath::
has_texture_off() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
return ta->has_all_off();
}
return false;
}
/**
* Returns true if texturing has been specifically disabled on this particular
* node for the indicated stage. This means that someone called
* set_texture_off() on this node with the indicated stage name, or that
* someone called set_texture_off() on this node to remove all stages.
*/
bool NodePath::
has_texture_off(TextureStage *stage) const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
return ta->has_off_stage(stage);
}
return false;
}
/**
* Returns the base-level texture that has been set on this particular node,
* or NULL if no texture has been set. This is not necessarily the texture
* that will be applied to the geometry at or below this level, as another
* texture at a higher or lower level may override.
*
* See also find_texture().
*/
Texture *NodePath::
get_texture() const {
nassertr_always(!is_empty(), NULL);
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
return ta->get_texture();
}
return NULL;
}
/**
* Returns the texture that has been set on the indicated stage for this
* particular node, or NULL if no texture has been set for this stage.
*/
Texture *NodePath::
get_texture(TextureStage *stage) const {
nassertr_always(!is_empty(), NULL);
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
return ta->get_on_texture(stage);
}
return NULL;
}
/**
* Returns the sampler state that has been given for the base-level texture
* that has been set on this particular node. If no sampler state was given,
* this returns the texture's default sampler settings.
*
* It is an error to call this if there is no base-level texture applied to
* this particular node.
*/
const SamplerState &NodePath::
get_texture_sampler() const {
return get_texture_sampler(TextureStage::get_default());
}
/**
* Returns the sampler state that has been given for the indicated texture
* stage that has been set on this particular node. If no sampler state was
* given, this returns the texture's default sampler settings.
*
* It is an error to call this if there is no texture set for this stage on
* this particular node.
*/
const SamplerState &NodePath::
get_texture_sampler(TextureStage *stage) const {
nassertr_always(!is_empty(), SamplerState::get_default());
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_slot());
nassertr_always(attrib != NULL, SamplerState::get_default());
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
return ta->get_on_sampler(stage);
}
/**
*
*/
void NodePath::
set_shader(const Shader *sha, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ShaderAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(ShaderAttrib::get_class_slot()));
const ShaderAttrib *sa = DCAST(ShaderAttrib, attrib);
node()->set_attrib(sa->set_shader(sha, priority));
} else {
// Create a new ShaderAttrib for this node.
CPT(ShaderAttrib) sa = DCAST(ShaderAttrib, ShaderAttrib::make());
node()->set_attrib(sa->set_shader(sha, priority));
}
}
/**
*
*/
void NodePath::
set_shader_off(int priority) {
set_shader(NULL, priority);
}
/**
*
*/
void NodePath::
set_shader_auto(int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ShaderAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(ShaderAttrib::get_class_slot()));
const ShaderAttrib *sa = DCAST(ShaderAttrib, attrib);
node()->set_attrib(sa->set_shader_auto(priority));
} else {
// Create a new ShaderAttrib for this node.
CPT(ShaderAttrib) sa = DCAST(ShaderAttrib, ShaderAttrib::make());
node()->set_attrib(sa->set_shader_auto(priority));
}
}
/**
* overloaded for auto shader customization
*/
void NodePath::
set_shader_auto(BitMask32 shader_switch, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ShaderAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(ShaderAttrib::get_class_slot()));
const ShaderAttrib *sa = DCAST(ShaderAttrib, attrib);
node()->set_attrib(sa->set_shader_auto(shader_switch, priority));
} else {
// Create a new ShaderAttrib for this node.
CPT(ShaderAttrib) sa = DCAST(ShaderAttrib, ShaderAttrib::make());
node()->set_attrib(sa->set_shader_auto(shader_switch, priority));
}
}
/**
*
*/
void NodePath::
clear_shader() {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ShaderAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const ShaderAttrib *sa = DCAST(ShaderAttrib, attrib);
node()->set_attrib(sa->clear_shader());
}
}
/**
*
*/
const Shader *NodePath::
get_shader() const {
nassertr_always(!is_empty(), NULL);
const RenderAttrib *attrib =
node()->get_attrib(ShaderAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const ShaderAttrib *sa = DCAST(ShaderAttrib, attrib);
return sa->get_shader();
}
return NULL;
}
/**
*
*/
void NodePath::
set_shader_input(const ShaderInput *inp) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ShaderAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const ShaderAttrib *sa = DCAST(ShaderAttrib, attrib);
node()->set_attrib(sa->set_shader_input(inp));
} else {
// Create a new ShaderAttrib for this node.
CPT(ShaderAttrib) sa = DCAST(ShaderAttrib, ShaderAttrib::make());
node()->set_attrib(sa->set_shader_input(inp));
}
}
/**
*
*/
const ShaderInput *NodePath::
get_shader_input(CPT_InternalName id) const {
nassertr_always(!is_empty(), NULL);
const RenderAttrib *attrib =
node()->get_attrib(ShaderAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const ShaderAttrib *sa = DCAST(ShaderAttrib, attrib);
return sa->get_shader_input(id);
}
return NULL;
}
/**
* Returns the geometry instance count, or 0 if disabled. See
* set_instance_count.
*/
int NodePath::
get_instance_count() const {
nassertr_always(!is_empty(), 0);
const RenderAttrib *attrib =
node()->get_attrib(ShaderAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const ShaderAttrib *sa = DCAST(ShaderAttrib, attrib);
return sa->get_instance_count();
}
return 0;
}
/**
*
*/
void NodePath::
clear_shader_input(CPT_InternalName id) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ShaderAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const ShaderAttrib *sa = DCAST(ShaderAttrib, attrib);
node()->set_attrib(sa->clear_shader_input(id));
}
}
/**
* Sets the geometry instance count, or 0 if geometry instancing should be
* disabled. Do not confuse with instanceTo which only applies to animation
* instancing.
*/
void NodePath::
set_instance_count(int instance_count) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ShaderAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const ShaderAttrib *sa = DCAST(ShaderAttrib, attrib);
node()->set_attrib(sa->set_instance_count(instance_count));
} else {
// Create a new ShaderAttrib for this node.
CPT(ShaderAttrib) sa = DCAST(ShaderAttrib, ShaderAttrib::make());
node()->set_attrib(sa->set_instance_count(instance_count));
}
}
/**
* Sets the texture matrix on the current node to the indicated transform for
* the given stage.
*/
void NodePath::
set_tex_transform(TextureStage *stage, const TransformState *transform) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TexMatrixAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TexMatrixAttrib *tma = DCAST(TexMatrixAttrib, attrib);
// Modify the existing TexMatrixAttrib to add the indicated stage.
node()->set_attrib(tma->add_stage(stage, transform));
} else {
// Create a new TexMatrixAttrib for this node.
node()->set_attrib(TexMatrixAttrib::make(stage, transform));
}
}
/**
* Removes all texture matrices from the current node.
*/
void NodePath::
clear_tex_transform() {
nassertv_always(!is_empty());
node()->clear_attrib(TexMatrixAttrib::get_class_slot());
}
/**
* Removes the texture matrix on the current node for the given stage.
*/
void NodePath::
clear_tex_transform(TextureStage *stage) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TexMatrixAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
CPT(TexMatrixAttrib) tma = DCAST(TexMatrixAttrib, attrib);
tma = DCAST(TexMatrixAttrib, tma->remove_stage(stage));
if (tma->is_empty()) {
node()->clear_attrib(TexMatrixAttrib::get_class_slot());
} else {
node()->set_attrib(tma);
}
}
}
/**
* Returns true if there is an explicit texture matrix on the current node for
* the given stage.
*/
bool NodePath::
has_tex_transform(TextureStage *stage) const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(TexMatrixAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TexMatrixAttrib *tma = DCAST(TexMatrixAttrib, attrib);
return tma->has_stage(stage);
}
return false;
}
/**
* Returns the texture matrix on the current node for the given stage, or
* identity transform if there is no explicit transform set for the given
* stage.
*/
CPT(TransformState) NodePath::
get_tex_transform(TextureStage *stage) const {
nassertr_always(!is_empty(), NULL);
const RenderAttrib *attrib =
node()->get_attrib(TexMatrixAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TexMatrixAttrib *tma = DCAST(TexMatrixAttrib, attrib);
return tma->get_transform(stage);
}
return TransformState::make_identity();
}
/**
* Sets the texture matrix on the current node to the indicated transform for
* the given stage.
*/
void NodePath::
set_tex_transform(const NodePath &other, TextureStage *stage, const TransformState *transform) {
nassertv(_error_type == ET_ok && other._error_type == ET_ok);
nassertv_always(!is_empty());
CPT(RenderState) state = get_state(other);
const RenderAttrib *attrib =
state->get_attrib(TexMatrixAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TexMatrixAttrib *tma = DCAST(TexMatrixAttrib, attrib);
// Modify the existing TexMatrixAttrib to add the indicated stage.
state = state->add_attrib(tma->add_stage(stage, transform));
} else {
// Create a new TexMatrixAttrib for this node.
state = state->add_attrib(TexMatrixAttrib::make(stage, transform));
}
// Now compose that with our parent's state.
CPT(RenderState) rel_state;
if (has_parent()) {
rel_state = other.get_state(get_parent());
} else {
rel_state = other.get_state(NodePath());
}
CPT(RenderState) new_state = rel_state->compose(state);
// And apply only the TexMatrixAttrib to the current node, leaving the
// others unchanged.
node()->set_attrib(new_state->get_attrib(TexMatrixAttrib::get_class_slot()));
}
/**
* Returns the texture matrix on the current node for the given stage,
* relative to the other node.
*/
CPT(TransformState) NodePath::
get_tex_transform(const NodePath &other, TextureStage *stage) const {
nassertr(_error_type == ET_ok && other._error_type == ET_ok, TransformState::make_identity());
CPT(RenderState) state = get_state(other);
const RenderAttrib *attrib =
state->get_attrib(TexMatrixAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TexMatrixAttrib *tma = DCAST(TexMatrixAttrib, attrib);
return tma->get_transform(stage);
}
return TransformState::make_identity();
}
/**
* Enables automatic texture coordinate generation for the indicated texture
* stage.
*/
void NodePath::
set_tex_gen(TextureStage *stage, RenderAttrib::TexGenMode mode, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TexGenAttrib::get_class_slot());
CPT(TexGenAttrib) tga;
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(TextureAttrib::get_class_slot()));
tga = DCAST(TexGenAttrib, attrib);
} else {
tga = DCAST(TexGenAttrib, TexGenAttrib::make());
}
node()->set_attrib(tga->add_stage(stage, mode), priority);
}
/**
* Enables automatic texture coordinate generation for the indicated texture
* stage. This version of this method is useful when setting M_constant,
* which requires a constant texture coordinate value.
*/
void NodePath::
set_tex_gen(TextureStage *stage, RenderAttrib::TexGenMode mode,
const LTexCoord3 &constant_value, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TexGenAttrib::get_class_slot());
CPT(TexGenAttrib) tga;
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(TextureAttrib::get_class_slot()));
tga = DCAST(TexGenAttrib, attrib);
} else {
tga = DCAST(TexGenAttrib, TexGenAttrib::make());
}
node()->set_attrib(tga->add_stage(stage, mode, constant_value), priority);
}
/**
* Removes the texture coordinate generation mode from all texture stages on
* this node.
*/
void NodePath::
clear_tex_gen() {
nassertv_always(!is_empty());
node()->clear_attrib(TexGenAttrib::get_class_slot());
}
/**
* Disables automatic texture coordinate generation for the indicated texture
* stage.
*/
void NodePath::
clear_tex_gen(TextureStage *stage) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TexGenAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
CPT(TexGenAttrib) tga = DCAST(TexGenAttrib, attrib);
tga = DCAST(TexGenAttrib, tga->remove_stage(stage));
if (tga->is_empty()) {
node()->clear_attrib(TexGenAttrib::get_class_slot());
} else {
node()->set_attrib(tga);
}
}
}
/**
* Returns true if there is a mode for automatic texture coordinate generation
* on the current node for the given stage.
*/
bool NodePath::
has_tex_gen(TextureStage *stage) const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(TexGenAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TexGenAttrib *tga = DCAST(TexGenAttrib, attrib);
return tga->has_stage(stage);
}
return false;
}
/**
* Returns the texture coordinate generation mode for the given stage, or
* M_off if there is no explicit mode set for the given stage.
*/
RenderAttrib::TexGenMode NodePath::
get_tex_gen(TextureStage *stage) const {
nassertr_always(!is_empty(), TexGenAttrib::M_off);
const RenderAttrib *attrib =
node()->get_attrib(TexGenAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TexGenAttrib *tga = DCAST(TexGenAttrib, attrib);
return tga->get_mode(stage);
}
return TexGenAttrib::M_off;
}
/**
* Establishes a TexProjectorEffect on this node, which can be used to
* establish projective texturing (but see also the
* NodePath::project_texture() convenience function), or it can be used to
* bind this node's texture transform to particular node's position in space,
* allowing a LerpInterval (for instance) to adjust this node's texture
* coordinates.
*
* If to is a LensNode, then the fourth parameter, lens_index, can be provided
* to select a particular lens to apply. Otherwise lens_index is not used.
*/
void NodePath::
set_tex_projector(TextureStage *stage, const NodePath &from, const NodePath &to,
int lens_index) {
nassertv_always(!is_empty());
const RenderEffect *effect =
node()->get_effect(TexProjectorEffect::get_class_type());
CPT(TexProjectorEffect) tpe;
if (effect != (const RenderEffect *)NULL) {
tpe = DCAST(TexProjectorEffect, effect);
} else {
tpe = DCAST(TexProjectorEffect, TexProjectorEffect::make());
}
node()->set_effect(tpe->add_stage(stage, from, to, lens_index));
}
/**
* Removes the TexProjectorEffect for the indicated stage from this node.
*/
void NodePath::
clear_tex_projector(TextureStage *stage) {
nassertv_always(!is_empty());
const RenderEffect *effect =
node()->get_effect(TexProjectorEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
CPT(TexProjectorEffect) tpe = DCAST(TexProjectorEffect, effect);
tpe = DCAST(TexProjectorEffect, tpe->remove_stage(stage));
if (tpe->is_empty()) {
node()->clear_effect(TexProjectorEffect::get_class_type());
} else {
node()->set_effect(tpe);
}
}
}
/**
* Removes the TexProjectorEffect for all stages from this node.
*/
void NodePath::
clear_tex_projector() {
nassertv_always(!is_empty());
node()->clear_effect(TexProjectorEffect::get_class_type());
}
/**
* Returns true if this node has a TexProjectorEffect for the indicated stage,
* false otherwise.
*/
bool NodePath::
has_tex_projector(TextureStage *stage) const {
nassertr_always(!is_empty(), false);
const RenderEffect *effect =
node()->get_effect(TexProjectorEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
const TexProjectorEffect *tpe = DCAST(TexProjectorEffect, effect);
return tpe->has_stage(stage);
}
return false;
}
/**
* Returns the "from" node associated with the TexProjectorEffect on the
* indicated stage. The relative transform between the "from" and the "to"
* nodes is automatically applied to the texture transform each frame.
*/
NodePath NodePath::
get_tex_projector_from(TextureStage *stage) const {
nassertr_always(!is_empty(), NodePath::fail());
const RenderEffect *effect =
node()->get_effect(TexProjectorEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
const TexProjectorEffect *tpe = DCAST(TexProjectorEffect, effect);
return tpe->get_from(stage);
}
return NodePath::not_found();
}
/**
* Returns the "to" node associated with the TexProjectorEffect on the
* indicated stage. The relative transform between the "from" and the "to"
* nodes is automatically applied to the texture transform each frame.
*/
NodePath NodePath::
get_tex_projector_to(TextureStage *stage) const {
nassertr_always(!is_empty(), NodePath::fail());
const RenderEffect *effect =
node()->get_effect(TexProjectorEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
const TexProjectorEffect *tpe = DCAST(TexProjectorEffect, effect);
return tpe->get_to(stage);
}
return NodePath::not_found();
}
/**
* A convenience function to enable projective texturing at this node level
* and below, using the indicated NodePath (which should contain a LensNode)
* as the projector.
*/
void NodePath::
project_texture(TextureStage *stage, Texture *tex, const NodePath &projector) {
nassertv(!projector.is_empty() && projector.node()->is_of_type(LensNode::get_class_type()));
set_texture(stage, tex);
set_tex_gen(stage, TexGenAttrib::M_world_position);
set_tex_projector(stage, NodePath(), projector);
}
/**
* Returns true if there are at least some vertices at this node and below
* that contain a reference to the indicated vertex data column name, false
* otherwise.
*
* This is particularly useful for testing whether a particular model has a
* given texture coordinate set (but see has_texcoord()).
*/
bool NodePath::
has_vertex_column(const InternalName *name) const {
nassertr_always(!is_empty(), false);
return r_has_vertex_column(node(), name);
}
/**
* Returns a list of all vertex array columns stored on some geometry found at
* this node level and below.
*/
InternalNameCollection NodePath::
find_all_vertex_columns() const {
nassertr_always(!is_empty(), InternalNameCollection());
InternalNames vertex_columns;
r_find_all_vertex_columns(node(), vertex_columns);
InternalNameCollection tc;
InternalNames::iterator ti;
for (ti = vertex_columns.begin(); ti != vertex_columns.end(); ++ti) {
tc.add_name(*ti);
}
return tc;
}
/**
* Returns a list of all vertex array columns stored on some geometry found at
* this node level and below that match the indicated name (which may contain
* wildcard characters).
*/
InternalNameCollection NodePath::
find_all_vertex_columns(const string &name) const {
nassertr_always(!is_empty(), InternalNameCollection());
InternalNames vertex_columns;
r_find_all_vertex_columns(node(), vertex_columns);
GlobPattern glob(name);
InternalNameCollection tc;
InternalNames::iterator ti;
for (ti = vertex_columns.begin(); ti != vertex_columns.end(); ++ti) {
const InternalName *name = (*ti);
if (glob.matches(name->get_name())) {
tc.add_name(name);
}
}
return tc;
}
/**
* Returns a list of all texture coordinate sets used by any geometry at this
* node level and below.
*/
InternalNameCollection NodePath::
find_all_texcoords() const {
nassertr_always(!is_empty(), InternalNameCollection());
InternalNames vertex_columns;
r_find_all_vertex_columns(node(), vertex_columns);
CPT(InternalName) texcoord_name = InternalName::get_texcoord();
InternalNameCollection tc;
InternalNames::iterator ti;
for (ti = vertex_columns.begin(); ti != vertex_columns.end(); ++ti) {
if ((*ti)->get_top() == texcoord_name) {
tc.add_name(*ti);
}
}
return tc;
}
/**
* Returns a list of all texture coordinate sets used by any geometry at this
* node level and below that match the indicated name (which may contain
* wildcard characters).
*/
InternalNameCollection NodePath::
find_all_texcoords(const string &name) const {
nassertr_always(!is_empty(), InternalNameCollection());
InternalNames vertex_columns;
r_find_all_vertex_columns(node(), vertex_columns);
GlobPattern glob(name);
CPT_InternalName texcoord_name = InternalName::get_texcoord();
InternalNameCollection tc;
InternalNames::iterator ti;
for (ti = vertex_columns.begin(); ti != vertex_columns.end(); ++ti) {
const InternalName *name = (*ti);
if (name->get_top() == texcoord_name) {
// This is a texture coordinate name. Figure out the basename of the
// texture coordinates.
int index = name->find_ancestor("texcoord");
nassertr(index != -1, InternalNameCollection());
string net_basename = name->get_net_basename(index - 1);
if (glob.matches(net_basename)) {
tc.add_name(name);
}
}
}
return tc;
}
/**
* Returns the first texture found applied to geometry at this node or below
* that matches the indicated name (which may contain wildcards). Returns the
* texture if it is found, or NULL if it is not.
*/
Texture *NodePath::
find_texture(const string &name) const {
nassertr_always(!is_empty(), NULL);
GlobPattern glob(name);
return r_find_texture(node(), get_net_state(), glob);
}
/**
* Returns the first texture found applied to geometry at this node or below
* that is assigned to the indicated texture stage. Returns the texture if it
* is found, or NULL if it is not.
*/
Texture *NodePath::
find_texture(TextureStage *stage) const {
nassertr_always(!is_empty(), NULL);
return r_find_texture(node(), stage);
}
/**
* Returns a list of a textures applied to geometry at this node and below.
*/
TextureCollection NodePath::
find_all_textures() const {
nassertr_always(!is_empty(), TextureCollection());
Textures textures;
r_find_all_textures(node(), get_net_state(), textures);
TextureCollection tc;
Textures::iterator ti;
for (ti = textures.begin(); ti != textures.end(); ++ti) {
tc.add_texture(*ti);
}
return tc;
}
/**
* Returns a list of a textures applied to geometry at this node and below
* that match the indicated name (which may contain wildcard characters).
*/
TextureCollection NodePath::
find_all_textures(const string &name) const {
nassertr_always(!is_empty(), TextureCollection());
Textures textures;
r_find_all_textures(node(), get_net_state(), textures);
GlobPattern glob(name);
TextureCollection tc;
Textures::iterator ti;
for (ti = textures.begin(); ti != textures.end(); ++ti) {
Texture *texture = (*ti);
if (glob.matches(texture->get_name())) {
tc.add_texture(texture);
}
}
return tc;
}
/**
* Returns a list of a textures on geometry at this node and below that are
* assigned to the indicated texture stage.
*/
TextureCollection NodePath::
find_all_textures(TextureStage *stage) const {
nassertr_always(!is_empty(), TextureCollection());
Textures textures;
r_find_all_textures(node(), stage, textures);
TextureCollection tc;
Textures::iterator ti;
for (ti = textures.begin(); ti != textures.end(); ++ti) {
Texture *texture = (*ti);
tc.add_texture(texture);
}
return tc;
}
/**
* Returns the first TextureStage found applied to geometry at this node or
* below that matches the indicated name (which may contain wildcards).
* Returns the TextureStage if it is found, or NULL if it is not.
*/
TextureStage *NodePath::
find_texture_stage(const string &name) const {
nassertr_always(!is_empty(), NULL);
GlobPattern glob(name);
return r_find_texture_stage(node(), get_net_state(), glob);
}
/**
* Returns a list of a TextureStages applied to geometry at this node and
* below.
*/
TextureStageCollection NodePath::
find_all_texture_stages() const {
nassertr_always(!is_empty(), TextureStageCollection());
TextureStages texture_stages;
r_find_all_texture_stages(node(), get_net_state(), texture_stages);
TextureStageCollection tc;
TextureStages::iterator ti;
for (ti = texture_stages.begin(); ti != texture_stages.end(); ++ti) {
tc.add_texture_stage(*ti);
}
return tc;
}
/**
* Searches through all TextureStages at this node and below. Any
* TextureStages that share the same name as the indicated TextureStage object
* are replaced with this object, thus ensuring that all geometry at this node
* and below with a particular TextureStage name is using the same
* TextureStage object.
*/
void NodePath::
unify_texture_stages(TextureStage *stage) {
nassertv_always(!is_empty());
r_unify_texture_stages(node(), stage);
}
/**
* Returns a list of a TextureStages applied to geometry at this node and
* below that match the indicated name (which may contain wildcard
* characters).
*/
TextureStageCollection NodePath::
find_all_texture_stages(const string &name) const {
nassertr_always(!is_empty(), TextureStageCollection());
TextureStages texture_stages;
r_find_all_texture_stages(node(), get_net_state(), texture_stages);
GlobPattern glob(name);
TextureStageCollection tc;
TextureStages::iterator ti;
for (ti = texture_stages.begin(); ti != texture_stages.end(); ++ti) {
TextureStage *texture_stage = (*ti);
if (glob.matches(texture_stage->get_name())) {
tc.add_texture_stage(texture_stage);
}
}
return tc;
}
/**
* Returns the first material found applied to geometry at this node or below
* that matches the indicated name (which may contain wildcards). Returns the
* material if it is found, or NULL if it is not.
*/
Material *NodePath::
find_material(const string &name) const {
nassertr_always(!is_empty(), NULL);
GlobPattern glob(name);
return r_find_material(node(), get_net_state(), glob);
}
/**
* Returns a list of a materials applied to geometry at this node and below.
*/
MaterialCollection NodePath::
find_all_materials() const {
nassertr_always(!is_empty(), MaterialCollection());
Materials materials;
r_find_all_materials(node(), get_net_state(), materials);
MaterialCollection tc;
Materials::iterator ti;
for (ti = materials.begin(); ti != materials.end(); ++ti) {
tc.add_material(*ti);
}
return tc;
}
/**
* Returns a list of a materials applied to geometry at this node and below
* that match the indicated name (which may contain wildcard characters).
*/
MaterialCollection NodePath::
find_all_materials(const string &name) const {
nassertr_always(!is_empty(), MaterialCollection());
Materials materials;
r_find_all_materials(node(), get_net_state(), materials);
GlobPattern glob(name);
MaterialCollection tc;
Materials::iterator ti;
for (ti = materials.begin(); ti != materials.end(); ++ti) {
Material *material = (*ti);
if (glob.matches(material->get_name())) {
tc.add_material(material);
}
}
return tc;
}
/**
* Sets the geometry at this level and below to render using the indicated
* material.
*
* Previously, this operation made a copy of the material structure, but
* nowadays it assigns the pointer directly.
*/
void NodePath::
set_material(Material *mat, int priority) {
nassertv_always(!is_empty());
nassertv(mat != NULL);
node()->set_attrib(MaterialAttrib::make(mat), priority);
}
/**
* Sets the geometry at this level and below to render using no material.
* This is normally the default, but it may be useful to use this to
* contradict set_material() at a higher node level (or, with a priority, to
* override a set_material() at a lower level).
*/
void NodePath::
set_material_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(MaterialAttrib::make_off(), priority);
}
/**
* Completely removes any material adjustment that may have been set via
* set_material() from this particular node.
*/
void NodePath::
clear_material() {
nassertv_always(!is_empty());
node()->clear_attrib(MaterialAttrib::get_class_slot());
}
/**
* Returns true if a material has been applied to this particular node via
* set_material(), false otherwise.
*/
bool NodePath::
has_material() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(MaterialAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const MaterialAttrib *ma = DCAST(MaterialAttrib, attrib);
return !ma->is_off();
}
return false;
}
/**
* Returns the material that has been set on this particular node, or NULL if
* no material has been set. This is not necessarily the material that will
* be applied to the geometry at or below this level, as another material at a
* higher or lower level may override.
*
* See also find_material().
*/
PT(Material) NodePath::
get_material() const {
nassertr_always(!is_empty(), NULL);
const RenderAttrib *attrib =
node()->get_attrib(MaterialAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const MaterialAttrib *ma = DCAST(MaterialAttrib, attrib);
return ma->get_material();
}
return NULL;
}
/**
* Sets the geometry at this level and below to render using the indicated
* fog.
*/
void NodePath::
set_fog(Fog *fog, int priority) {
nassertv_always(!is_empty());
node()->set_attrib(FogAttrib::make(fog), priority);
}
/**
* Sets the geometry at this level and below to render using no fog. This is
* normally the default, but it may be useful to use this to contradict
* set_fog() at a higher node level (or, with a priority, to override a
* set_fog() at a lower level).
*/
void NodePath::
set_fog_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(FogAttrib::make_off(), priority);
}
/**
* Completely removes any fog adjustment that may have been set via set_fog()
* or set_fog_off() from this particular node. This allows whatever fogs
* might be otherwise affecting the geometry to show instead.
*/
void NodePath::
clear_fog() {
nassertv_always(!is_empty());
node()->clear_attrib(FogAttrib::get_class_slot());
}
/**
* Returns true if a fog has been applied to this particular node via
* set_fog(), false otherwise. This is not the same thing as asking whether
* the geometry at this node will be rendered with fog, as there may be a fog
* in effect from a higher or lower level.
*/
bool NodePath::
has_fog() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(FogAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const FogAttrib *fa = DCAST(FogAttrib, attrib);
return !fa->is_off();
}
return false;
}
/**
* Returns true if a fog has been specifically disabled on this particular
* node via set_fog_off(), false otherwise. This is not the same thing as
* asking whether the geometry at this node will be rendered unfogged, as
* there may be a fog in effect from a higher or lower level.
*/
bool NodePath::
has_fog_off() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(FogAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const FogAttrib *fa = DCAST(FogAttrib, attrib);
return fa->is_off();
}
return false;
}
/**
* Returns the fog that has been set on this particular node, or NULL if no
* fog has been set. This is not necessarily the fog that will be applied to
* the geometry at or below this level, as another fog at a higher or lower
* level may override.
*/
Fog *NodePath::
get_fog() const {
nassertr_always(!is_empty(), NULL);
const RenderAttrib *attrib =
node()->get_attrib(FogAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const FogAttrib *fa = DCAST(FogAttrib, attrib);
return fa->get_fog();
}
return NULL;
}
/**
* Sets up the geometry at this level and below (unless overridden) to render
* in wireframe mode.
*/
void NodePath::
set_render_mode_wireframe(int priority) {
nassertv_always(!is_empty());
const RenderModeAttrib *rma;
node()->get_state()->get_attrib_def(rma);
node()->set_attrib(RenderModeAttrib::make(RenderModeAttrib::M_wireframe, rma->get_thickness(), rma->get_perspective()), priority);
}
/**
* Sets up the geometry at this level and below (unless overridden) to render
* in filled (i.e. not wireframe) mode.
*/
void NodePath::
set_render_mode_filled(int priority) {
nassertv_always(!is_empty());
const RenderModeAttrib *rma;
node()->get_state()->get_attrib_def(rma);
node()->set_attrib(RenderModeAttrib::make(RenderModeAttrib::M_filled, rma->get_thickness(), rma->get_perspective()), priority);
}
/**
* Sets up the geometry at this level and below (unless overridden) to render
* in filled, but overlay the wireframe on top with a fixed color. This is
* useful for debug visualizations.
*/
void NodePath::
set_render_mode_filled_wireframe(const LColor &wireframe_color, int priority) {
nassertv_always(!is_empty());
const RenderModeAttrib *rma;
node()->get_state()->get_attrib_def(rma);
node()->set_attrib(RenderModeAttrib::make(RenderModeAttrib::M_filled_wireframe, rma->get_thickness(), rma->get_perspective(), wireframe_color), priority);
}
/**
* Sets up the point geometry at this level and below to render as perspective
* sprites (that is, billboarded quads). The thickness, as specified with
* set_render_mode_thickness(), is the width of each point in 3-D units,
* unless it is overridden on a per-vertex basis. This does not affect
* geometry other than points.
*
* If you want the quads to be individually textured, you should also set a
* TexGenAttrib::M_point_sprite on the node.
*/
void NodePath::
set_render_mode_perspective(bool perspective, int priority) {
nassertv_always(!is_empty());
const RenderModeAttrib *rma;
node()->get_state()->get_attrib_def(rma);
node()->set_attrib(RenderModeAttrib::make(rma->get_mode(), rma->get_thickness(), perspective, rma->get_wireframe_color()), priority);
}
/**
* Sets up the point geometry at this level and below to render as thick
* points (that is, billboarded quads). The thickness is in pixels, unless
* set_render_mode_perspective is also true, in which case it is in 3-D units.
*
* If you want the quads to be individually textured, you should also set a
* TexGenAttrib::M_point_sprite on the node.
*/
void NodePath::
set_render_mode_thickness(PN_stdfloat thickness, int priority) {
nassertv_always(!is_empty());
const RenderModeAttrib *rma;
node()->get_state()->get_attrib_def(rma);
node()->set_attrib(RenderModeAttrib::make(rma->get_mode(), thickness, rma->get_perspective(), rma->get_wireframe_color()), priority);
}
/**
* Sets up the geometry at this level and below (unless overridden) to render
* in the specified mode and with the indicated line and/or point thickness.
*/
void NodePath::
set_render_mode(RenderModeAttrib::Mode mode, PN_stdfloat thickness, int priority) {
nassertv_always(!is_empty());
node()->set_attrib(RenderModeAttrib::make(mode, thickness), priority);
}
/**
* Completely removes any render mode adjustment that may have been set on
* this node via set_render_mode_wireframe() or set_render_mode_filled().
*/
void NodePath::
clear_render_mode() {
nassertv_always(!is_empty());
node()->clear_attrib(RenderModeAttrib::get_class_slot());
}
/**
* Returns true if a render mode has been explicitly set on this particular
* node via set_render_mode() (or set_render_mode_wireframe() or
* set_render_mode_filled()), false otherwise.
*/
bool NodePath::
has_render_mode() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(RenderModeAttrib::get_class_slot());
}
/**
* Returns the render mode that has been specifically set on this node via
* set_render_mode(), or M_unchanged if nothing has been set.
*/
RenderModeAttrib::Mode NodePath::
get_render_mode() const {
nassertr_always(!is_empty(), RenderModeAttrib::M_unchanged);
const RenderAttrib *attrib =
node()->get_attrib(RenderModeAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const RenderModeAttrib *ta = DCAST(RenderModeAttrib, attrib);
return ta->get_mode();
}
return RenderModeAttrib::M_unchanged;
}
/**
* Returns the render mode thickness that has been specifically set on this
* node via set_render_mode(), or 1.0 if nothing has been set.
*/
PN_stdfloat NodePath::
get_render_mode_thickness() const {
nassertr_always(!is_empty(), 0.0f);
const RenderAttrib *attrib =
node()->get_attrib(RenderModeAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const RenderModeAttrib *ta = DCAST(RenderModeAttrib, attrib);
return ta->get_thickness();
}
return 1.0f;
}
/**
* Returns the flag that has been set on this node via
* set_render_mode_perspective(), or false if no flag has been set.
*/
bool NodePath::
get_render_mode_perspective() const {
nassertr_always(!is_empty(), 0.0f);
const RenderAttrib *attrib =
node()->get_attrib(RenderModeAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const RenderModeAttrib *ta = DCAST(RenderModeAttrib, attrib);
return ta->get_perspective();
}
return false;
}
/**
* Specifically sets or disables two-sided rendering mode on this particular
* node. If no other nodes override, this will cause backfacing polygons to
* be drawn (in two-sided mode, true) or culled (in one-sided mode, false).
*/
void NodePath::
set_two_sided(bool two_sided, int priority) {
nassertv_always(!is_empty());
CullFaceAttrib::Mode mode =
two_sided ?
CullFaceAttrib::M_cull_none :
CullFaceAttrib::M_cull_clockwise;
node()->set_attrib(CullFaceAttrib::make(mode), priority);
}
/**
* Completely removes any two-sided adjustment that may have been set on this
* node via set_two_sided(). The geometry at this level and below will
* subsequently be rendered either two-sided or one-sided, according to
* whatever other nodes may have had set_two_sided() on it, or according to
* the initial state otherwise.
*/
void NodePath::
clear_two_sided() {
nassertv_always(!is_empty());
node()->clear_attrib(CullFaceAttrib::get_class_slot());
}
/**
* Returns true if a two-sided adjustment has been explicitly set on this
* particular node via set_two_sided(). If this returns true, then
* get_two_sided() may be called to determine which has been set.
*/
bool NodePath::
has_two_sided() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(CullFaceAttrib::get_class_slot());
}
/**
* Returns true if two-sided rendering has been specifically set on this node
* via set_two_sided(), or false if one-sided rendering has been specifically
* set, or if nothing has been specifically set. See also has_two_sided().
* This does not necessarily imply that the geometry will or will not be
* rendered two-sided, as there may be other nodes that override.
*/
bool NodePath::
get_two_sided() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(CullFaceAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const CullFaceAttrib *cfa = DCAST(CullFaceAttrib, attrib);
return (cfa->get_actual_mode() == CullFaceAttrib::M_cull_none);
}
return false;
}
/**
* Specifically sets or disables the testing of the depth buffer on this
* particular node. This is normally on in the 3-d scene graph and off in the
* 2-d scene graph; it should be on for rendering most 3-d objects properly.
*/
void NodePath::
set_depth_test(bool depth_test, int priority) {
nassertv_always(!is_empty());
DepthTestAttrib::PandaCompareFunc mode =
depth_test ?
DepthTestAttrib::M_less :
DepthTestAttrib::M_none;
node()->set_attrib(DepthTestAttrib::make(mode), priority);
}
/**
* Completely removes any depth-test adjustment that may have been set on this
* node via set_depth_test().
*/
void NodePath::
clear_depth_test() {
nassertv_always(!is_empty());
node()->clear_attrib(DepthTestAttrib::get_class_slot());
}
/**
* Returns true if a depth-test adjustment has been explicitly set on this
* particular node via set_depth_test(). If this returns true, then
* get_depth_test() may be called to determine which has been set.
*/
bool NodePath::
has_depth_test() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(DepthTestAttrib::get_class_slot());
}
/**
* Returns true if depth-test rendering has been specifically set on this node
* via set_depth_test(), or false if depth-test rendering has been
* specifically disabled. If nothing has been specifically set, returns true.
* See also has_depth_test().
*/
bool NodePath::
get_depth_test() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(DepthTestAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const DepthTestAttrib *dta = DCAST(DepthTestAttrib, attrib);
return (dta->get_mode() != DepthTestAttrib::M_none);
}
return true;
}
/**
* Specifically sets or disables the writing to the depth buffer on this
* particular node. This is normally on in the 3-d scene graph and off in the
* 2-d scene graph; it should be on for rendering most 3-d objects properly.
*/
void NodePath::
set_depth_write(bool depth_write, int priority) {
nassertv_always(!is_empty());
DepthWriteAttrib::Mode mode =
depth_write ?
DepthWriteAttrib::M_on :
DepthWriteAttrib::M_off;
node()->set_attrib(DepthWriteAttrib::make(mode), priority);
}
/**
* Completely removes any depth-write adjustment that may have been set on
* this node via set_depth_write().
*/
void NodePath::
clear_depth_write() {
nassertv_always(!is_empty());
node()->clear_attrib(DepthWriteAttrib::get_class_slot());
}
/**
* Returns true if a depth-write adjustment has been explicitly set on this
* particular node via set_depth_write(). If this returns true, then
* get_depth_write() may be called to determine which has been set.
*/
bool NodePath::
has_depth_write() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(DepthWriteAttrib::get_class_slot());
}
/**
* Returns true if depth-write rendering has been specifically set on this
* node via set_depth_write(), or false if depth-write rendering has been
* specifically disabled. If nothing has been specifically set, returns true.
* See also has_depth_write().
*/
bool NodePath::
get_depth_write() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(DepthWriteAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const DepthWriteAttrib *dta = DCAST(DepthWriteAttrib, attrib);
return (dta->get_mode() != DepthWriteAttrib::M_off);
}
return true;
}
/**
* This instructs the graphics driver to apply an offset or bias to the
* generated depth values for rendered polygons, before they are written to
* the depth buffer. This can be used to shift polygons forward slightly, to
* resolve depth conflicts, or self-shadowing artifacts on thin objects. The
* bias is always an integer number, and each integer increment represents the
* smallest possible increment in Z that is sufficient to completely resolve
* two coplanar polygons. Positive numbers are closer towards the camera.
*/
void NodePath::
set_depth_offset(int bias, int priority) {
nassertv_always(!is_empty());
node()->set_attrib(DepthOffsetAttrib::make(bias), priority);
}
/**
* Completely removes any depth-offset adjustment that may have been set on
* this node via set_depth_offset().
*/
void NodePath::
clear_depth_offset() {
nassertv_always(!is_empty());
node()->clear_attrib(DepthOffsetAttrib::get_class_slot());
}
/**
* Returns true if a depth-offset adjustment has been explicitly set on this
* particular node via set_depth_offset(). If this returns true, then
* get_depth_offset() may be called to determine which has been set.
*/
bool NodePath::
has_depth_offset() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(DepthOffsetAttrib::get_class_slot());
}
/**
* Returns the depth offset value if it has been specified using
* set_depth_offset, or 0 if not.
*/
int NodePath::
get_depth_offset() const {
nassertr_always(!is_empty(), 0);
const RenderAttrib *attrib =
node()->get_attrib(DepthOffsetAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const DepthOffsetAttrib *doa = DCAST(DepthOffsetAttrib, attrib);
return doa->get_offset();
}
return 0;
}
/**
* Performs a billboard-type rotate to the indicated camera node, one time
* only, and leaves the object rotated. This is similar in principle to
* heads_up().
*/
void NodePath::
do_billboard_axis(const NodePath &camera, PN_stdfloat offset) {
nassertv_always(!is_empty());
CPT(TransformState) transform = camera.get_transform(get_parent());
const LMatrix4 &rel_mat = transform->get_mat();
LVector3 up = LVector3::up();
LVector3 rel_pos = -rel_mat.get_row3(3);
LQuaternion quat;
::heads_up(quat, rel_pos, up);
set_quat(quat);
// Also slide the geometry towards the camera according to the offset
// factor.
if (offset != 0.0f) {
LVector3 translate = rel_mat.get_row3(3);
translate.normalize();
translate *= offset;
set_pos(translate);
}
}
/**
* Performs a billboard-type rotate to the indicated camera node, one time
* only, and leaves the object rotated. This is similar in principle to
* look_at(), although the point_eye billboard effect cannot be achieved using
* the ordinary look_at() call.
*/
void NodePath::
do_billboard_point_eye(const NodePath &camera, PN_stdfloat offset) {
nassertv_always(!is_empty());
CPT(TransformState) transform = camera.get_transform(get_parent());
const LMatrix4 &rel_mat = transform->get_mat();
LVector3 up = LVector3::up() * rel_mat;
LVector3 rel_pos = LVector3::forward() * rel_mat;
LQuaternion quat;
::look_at(quat, rel_pos, up);
set_quat(quat);
// Also slide the geometry towards the camera according to the offset
// factor.
if (offset != 0.0f) {
LVector3 translate = rel_mat.get_row3(3);
translate.normalize();
translate *= offset;
set_pos(translate);
}
}
/**
* Performs a billboard-type rotate to the indicated camera node, one time
* only, and leaves the object rotated. This is similar in principle to
* look_at().
*/
void NodePath::
do_billboard_point_world(const NodePath &camera, PN_stdfloat offset) {
nassertv_always(!is_empty());
CPT(TransformState) transform = camera.get_transform(get_parent());
const LMatrix4 &rel_mat = transform->get_mat();
LVector3 up = LVector3::up();
LVector3 rel_pos = -rel_mat.get_row3(3);
LQuaternion quat;
::look_at(quat, rel_pos, up);
set_quat(quat);
// Also slide the geometry towards the camera according to the offset
// factor.
if (offset != 0.0f) {
LVector3 translate = rel_mat.get_row3(3);
translate.normalize();
translate *= offset;
set_pos(translate);
}
}
/**
* Puts a billboard transition on the node such that it will rotate in two
* dimensions around the up axis, towards a specified "camera" instead of to
* the viewing camera.
*/
void NodePath::
set_billboard_axis(const NodePath &camera, PN_stdfloat offset) {
nassertv_always(!is_empty());
CPT(RenderEffect) billboard = BillboardEffect::make
(LVector3::up(), false, true,
offset, camera, LPoint3(0.0f, 0.0f, 0.0f));
node()->set_effect(billboard);
}
/**
* Puts a billboard transition on the node such that it will rotate in three
* dimensions about the origin, keeping its up vector oriented to the top of
* the camera, towards a specified "camera" instead of to the viewing camera.
*/
void NodePath::
set_billboard_point_eye(const NodePath &camera, PN_stdfloat offset) {
nassertv_always(!is_empty());
CPT(RenderEffect) billboard = BillboardEffect::make
(LVector3::up(), true, false,
offset, camera, LPoint3(0.0f, 0.0f, 0.0f));
node()->set_effect(billboard);
}
/**
* Puts a billboard transition on the node such that it will rotate in three
* dimensions about the origin, keeping its up vector oriented to the sky,
* towards a specified "camera" instead of to the viewing camera.
*/
void NodePath::
set_billboard_point_world(const NodePath &camera, PN_stdfloat offset) {
nassertv_always(!is_empty());
CPT(RenderEffect) billboard = BillboardEffect::make
(LVector3::up(), false, false,
offset, camera, LPoint3(0.0f, 0.0f, 0.0f));
node()->set_effect(billboard);
}
/**
* Removes any billboard effect from the node.
*/
void NodePath::
clear_billboard() {
nassertv_always(!is_empty());
node()->clear_effect(BillboardEffect::get_class_type());
}
/**
* Returns true if there is any billboard effect on the node.
*/
bool NodePath::
has_billboard() const {
nassertr_always(!is_empty(), false);
return node()->has_effect(BillboardEffect::get_class_type());
}
/**
* Puts a compass effect on the node, so that it will retain a fixed rotation
* relative to the reference node (or render if the reference node is empty)
* regardless of the transforms above it.
*/
void NodePath::
set_compass(const NodePath &reference) {
nassertv_always(!is_empty());
node()->set_effect(CompassEffect::make(reference));
}
/**
* Removes any compass effect from the node.
*/
void NodePath::
clear_compass() {
nassertv_always(!is_empty());
node()->clear_effect(CompassEffect::get_class_type());
}
/**
* Returns true if there is any compass effect on the node.
*/
bool NodePath::
has_compass() const {
nassertr_always(!is_empty(), false);
return node()->has_effect(CompassEffect::get_class_type());
}
/**
* Specifically sets or disables transparent rendering mode on this particular
* node. If no other nodes override, this will cause items with a non-1 value
* for alpha color to be rendered partially transparent.
*/
void NodePath::
set_transparency(TransparencyAttrib::Mode mode, int priority) {
nassertv_always(!is_empty());
node()->set_attrib(TransparencyAttrib::make(mode), priority);
}
/**
* Completely removes any transparency adjustment that may have been set on
* this node via set_transparency(). The geometry at this level and below will
* subsequently be rendered either transparent or not, to whatever other nodes
* may have had set_transparency() on them.
*/
void NodePath::
clear_transparency() {
nassertv_always(!is_empty());
node()->clear_attrib(TransparencyAttrib::get_class_slot());
}
/**
* Returns true if a transparent-rendering adjustment has been explicitly set
* on this particular node via set_transparency(). If this returns true, then
* get_transparency() may be called to determine whether transparency has been
* explicitly enabled or explicitly disabled for this node.
*/
bool NodePath::
has_transparency() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(TransparencyAttrib::get_class_slot());
}
/**
* Returns the transparent rendering that has been specifically set on this
* node via set_transparency(), or M_none if nontransparent rendering has been
* specifically set, or if nothing has been specifically set. See also
* has_transparency(). This does not necessarily imply that the geometry will
* or will not be rendered transparent, as there may be other nodes that
* override.
*/
TransparencyAttrib::Mode NodePath::
get_transparency() const {
nassertr_always(!is_empty(), TransparencyAttrib::M_none);
const RenderAttrib *attrib =
node()->get_attrib(TransparencyAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TransparencyAttrib *ta = DCAST(TransparencyAttrib, attrib);
return ta->get_mode();
}
return TransparencyAttrib::M_none;
}
/**
* Specifies the antialiasing type that should be applied at this node and
* below. See AntialiasAttrib.
*/
void NodePath::
set_antialias(unsigned short mode, int priority) {
nassertv_always(!is_empty());
node()->set_attrib(AntialiasAttrib::make(mode), priority);
}
/**
* Completely removes any antialias setting that may have been set on this
* node via set_antialias().
*/
void NodePath::
clear_antialias() {
nassertv_always(!is_empty());
node()->clear_attrib(AntialiasAttrib::get_class_slot());
}
/**
* Returns true if an antialias setting has been explicitly mode on this
* particular node via set_antialias(). If this returns true, then
* get_antialias() may be called to determine what the setting was.
*/
bool NodePath::
has_antialias() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(AntialiasAttrib::get_class_slot());
}
/**
* Returns the antialias setting that has been specifically set on this node
* via set_antialias(), or M_none if no setting has been made.
*/
unsigned short NodePath::
get_antialias() const {
nassertr_always(!is_empty(), AntialiasAttrib::M_none);
const RenderAttrib *attrib =
node()->get_attrib(AntialiasAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const AntialiasAttrib *ta = DCAST(AntialiasAttrib, attrib);
return ta->get_mode();
}
return AntialiasAttrib::M_none;
}
/**
* Returns true if an audio volume has been applied to the referenced node,
* false otherwise. It is still possible that volume at this node might have
* been scaled by an ancestor node.
*/
bool NodePath::
has_audio_volume() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(AudioVolumeAttrib::get_class_slot());
}
/**
* Completely removes any audio volume from the referenced node. This is
* preferable to simply setting the audio volume to identity, as it also
* removes the overhead associated with having an audio volume at all.
*/
void NodePath::
clear_audio_volume() {
nassertv_always(!is_empty());
node()->clear_attrib(AudioVolumeAttrib::get_class_slot());
}
/**
* Sets the audio volume component of the transform
*/
void NodePath::
set_audio_volume(PN_stdfloat volume, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(AudioVolumeAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(AudioVolumeAttrib::get_class_slot()));
CPT(AudioVolumeAttrib) ava = DCAST(AudioVolumeAttrib, attrib);
// Modify the existing AudioVolumeAttrib to add the indicated volume.
node()->set_attrib(ava->set_volume(volume), priority);
} else {
// Create a new AudioVolumeAttrib for this node.
node()->set_attrib(AudioVolumeAttrib::make(volume), priority);
}
}
/**
* Disables any audio volume attribute inherited from above. This is not the
* same thing as clear_audio_volume(), which undoes any previous
* set_audio_volume() operation on this node; rather, this actively disables
* any set_audio_volume() that might be inherited from a parent node.
*
* It is legal to specify a new volume on the same node with a subsequent call
* to set_audio_volume(); this new scale will apply to lower nodes.
*/
void NodePath::
set_audio_volume_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(AudioVolumeAttrib::make_off(), priority);
}
/**
* Returns the complete audio volume that has been applied to this node via a
* previous call to set_audio_volume(), or 1. (identity) if no volume has been
* applied to this particular node.
*/
PN_stdfloat NodePath::
get_audio_volume() const {
const RenderAttrib *attrib =
node()->get_attrib(AudioVolumeAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const AudioVolumeAttrib *ava = DCAST(AudioVolumeAttrib, attrib);
return ava->get_volume();
}
return 1.0f;
}
/**
* Returns the complete audio volume for this node taking highers nodes in the
* graph into account.
*/
PN_stdfloat NodePath::
get_net_audio_volume() const {
CPT(RenderState) net_state = get_net_state();
const RenderAttrib *attrib = net_state->get_attrib(AudioVolumeAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const AudioVolumeAttrib *ava = DCAST(AudioVolumeAttrib, attrib);
if (ava != (const AudioVolumeAttrib *)NULL) {
return ava->get_volume();
}
}
return 1.0f;
}
/**
* Returns the NodePath at or above the referenced node that is hidden to the
* indicated camera(s), or an empty NodePath if no ancestor of the referenced
* node is hidden (and the node should be visible).
*/
NodePath NodePath::
get_hidden_ancestor(DrawMask camera_mask, Thread *current_thread) const {
int pipeline_stage = current_thread->get_pipeline_stage();
NodePathComponent *comp;
for (comp = _head;
comp != (NodePathComponent *)NULL;
comp = comp->get_next(pipeline_stage, current_thread)) {
PandaNode *node = comp->get_node();
if (node->is_overall_hidden() ||
((node->get_draw_show_mask() | ~node->get_draw_control_mask()) & camera_mask).is_zero()) {
NodePath result;
result._head = comp;
return result;
}
}
return not_found();
}
/**
* Removes the referenced node (and the entire subgraph below this node) from
* the scene graph in any normal sense. The node will no longer be visible
* and is not tested for collisions; furthermore, no normal scene graph
* traversal will visit the node. The node's bounding volume no longer
* contributes to its parent's bounding volume.
*
* A stashed node cannot be located by a normal find() operation (although a
* special find string can still retrieve it).
*/
void NodePath::
stash(int sort, Thread *current_thread) {
nassertv_always(!is_singleton() && !is_empty());
nassertv(verify_complete());
int pipeline_stage = current_thread->get_pipeline_stage();
bool reparented = PandaNode::reparent(_head->get_next(pipeline_stage, current_thread),
_head, sort, true, pipeline_stage,
current_thread);
nassertv(reparented);
}
/**
* Undoes the effect of a previous stash() on this node: makes the referenced
* node (and the entire subgraph below this node) once again part of the scene
* graph.
*/
void NodePath::
unstash(int sort, Thread *current_thread) {
nassertv_always(!is_singleton() && !is_empty());
nassertv(verify_complete());
int pipeline_stage = current_thread->get_pipeline_stage();
bool reparented = PandaNode::reparent(_head->get_next(pipeline_stage, current_thread),
_head, sort, false, pipeline_stage,
current_thread);
nassertv(reparented);
}
/**
* Unstashes this node and all stashed child nodes.
*/
void NodePath::
unstash_all(Thread *current_thread) {
NodePathCollection stashed_descendents = find_all_matches("**/@@*");
stashed_descendents.unstash();
unstash(0, current_thread);
}
/**
* Returns the NodePath at or above the referenced node that is stashed, or an
* empty NodePath if no ancestor of the referenced node is stashed (and the
* node should be visible).
*/
NodePath NodePath::
get_stashed_ancestor(Thread *current_thread) const {
NodePathComponent *comp = _head;
if (comp != (NodePathComponent *)NULL) {
int pipeline_stage = current_thread->get_pipeline_stage();
NodePathComponent *next = comp->get_next(pipeline_stage, current_thread);
while (next != (NodePathComponent *)NULL) {
PandaNode *node = comp->get_node();
PandaNode *parent_node = next->get_node();
if (parent_node->find_stashed(node) >= 0) {
NodePath result;
result._head = comp;
return result;
}
comp = next;
next = next->get_next(pipeline_stage, current_thread);
}
}
return not_found();
}
/**
* Returns true if all of the nodes described in the NodePath are connected,
* or false otherwise.
*/
bool NodePath::
verify_complete(Thread *current_thread) const {
if (is_empty()) {
return true;
}
#ifdef HAVE_THREADS
if (Thread::is_true_threads()) {
// In a threaded environment, we can't reliably test this, since a sub-
// thread may be mucking with the NodePath's ancestry as we try to
// validate it. NodePaths are inherently not thread-safe, but generally
// that's not an issue.
return true;
}
#endif // HAVE_THREADS
PStatTimer timer(_verify_complete_pcollector);
const NodePathComponent *comp = _head;
nassertr(comp != (const NodePathComponent *)NULL, false);
int pipeline_stage = current_thread->get_pipeline_stage();
PandaNode *node = comp->get_node();
nassertr(node != (const PandaNode *)NULL, false);
int length = comp->get_length(pipeline_stage, current_thread);
comp = comp->get_next(pipeline_stage, current_thread);
length--;
while (comp != (const NodePathComponent *)NULL) {
PandaNode *next_node = comp->get_node();
nassertr(next_node != (const PandaNode *)NULL, false);
if (node->find_parent(next_node) < 0) {
pgraph_cat.warning()
<< *this << " is incomplete; " << *node << " is not a child of "
<< *next_node << "\n";
return false;
}
if (comp->get_length(pipeline_stage, current_thread) != length) {
pgraph_cat.warning()
<< *this << " is incomplete; length at " << *next_node
<< " indicates " << comp->get_length(pipeline_stage, current_thread)
<< " while length at " << *node << " indicates " << length << "\n";
return false;
}
node = next_node;
comp = comp->get_next(pipeline_stage, current_thread);
length--;
}
return true;
}
/**
* Walks through the scene graph beginning at the bottom node, and internally
* adjusts any GeomVertexFormats for optimal rendering on the indicated GSG.
* If this step is not done prior to rendering, the formats will be optimized
* at render time instead, for a small cost.
*
* It is not normally necessary to do this on a model loaded directly from
* disk, since the loader will do this by default.
*/
void NodePath::
premunge_scene(GraphicsStateGuardianBase *gsg) {
nassertv_always(!is_empty());
CPT(RenderState) state = RenderState::make_empty();
if (has_parent()) {
state = get_parent().get_net_state();
}
SceneGraphReducer gr(gsg);
gr.premunge(node(), state);
}
/**
* Walks through the scene graph beginning at the bottom node, and does
* whatever initialization is required to render the scene properly with the
* indicated GSG. It is not strictly necessary to call this, since the GSG
* will initialize itself when the scene is rendered, but this may take some
* of the overhead away from that process.
*
* In particular, this will ensure that textures and vertex buffers within the
* scene are loaded into graphics memory.
*/
void NodePath::
prepare_scene(GraphicsStateGuardianBase *gsg) {
nassertv_always(!is_empty());
node()->prepare_scene(gsg, get_net_state());
}
/**
* Causes the bounding volume of the bottom node and all of its descendants
* (that is, the bounding volume associated with the the bottom arc) to be
* rendered, if possible. The rendering method is less than optimal; this is
* intended primarily for debugging.
*/
void NodePath::
show_bounds() {
nassertv_always(!is_empty());
node()->set_effect(ShowBoundsEffect::make(false));
}
/**
* Similar to show_bounds(), this draws a bounding box representing the
* "tight" bounds of this node and all of its descendants. The bounding box
* is recomputed every frame by reexamining all of the vertices; this is far
* from efficient, but this is intended for debugging.
*/
void NodePath::
show_tight_bounds() {
nassertv_always(!is_empty());
node()->set_effect(ShowBoundsEffect::make(true));
}
/**
* Stops the rendering of the bounding volume begun with show_bounds().
*/
void NodePath::
hide_bounds() {
nassertv_always(!is_empty());
node()->clear_effect(ShowBoundsEffect::get_class_type());
}
/**
* Returns a newly-allocated bounding volume containing the bottom node and
* all of its descendants. This is the bounding volume on the bottom arc,
* converted to the local coordinate space of the node.
*/
PT(BoundingVolume) NodePath::
get_bounds(Thread *current_thread) const {
nassertr_always(!is_empty(), new BoundingSphere);
return node()->get_bounds(current_thread)->make_copy();
}
/**
* Forces the recomputing of all the bounding volumes at every node in the
* subgraph beginning at this node and below.
*
* This should not normally need to be called, since the bounding volumes are
* supposed to be recomputed automatically when necessary. It may be useful
* when debugging, to verify that the bounding volumes have not become
* inadvertently stale; it may also be useful to force animated characters to
* update their bounding volumes (which does not presently happen
* automatically).
*/
void NodePath::
force_recompute_bounds() {
nassertv_always(!is_empty());
r_force_recompute_bounds(node());
}
/**
* Writes a description of the bounding volume containing the bottom node and
* all of its descendants to the indicated output stream.
*/
void NodePath::
write_bounds(ostream &out) const {
get_bounds()->write(out);
}
/**
* Calculates the minimum and maximum vertices of all Geoms at this NodePath's
* bottom node and below. This is a tight bounding box; it will generally be
* tighter than the bounding volume returned by get_bounds() (but it is more
* expensive to compute).
*
* The bounding box is computed relative to the parent node's coordinate
* system by default. You can optionally specify a different NodePath to
* compute the bounds relative to. Note that the box is always axis-aligned
* against the given NodePath's coordinate system, so you might get a
* differently sized box depending on which node you pass.
*
* The return value is true if any points are within the bounding volume, or
* false if none are.
*/
bool NodePath::
calc_tight_bounds(LPoint3 &min_point, LPoint3 &max_point,
const NodePath &other, Thread *current_thread) const {
min_point.set(0.0f, 0.0f, 0.0f);
max_point.set(0.0f, 0.0f, 0.0f);
nassertr_always(!is_empty(), false);
CPT(TransformState) transform = TransformState::make_identity();
if (!other.is_empty()) {
transform = get_transform(other)->compose(get_transform()->get_inverse());
}
bool found_any = false;
node()->calc_tight_bounds(min_point, max_point, found_any,
MOVE(transform), current_thread);
return found_any;
}
/**
* Analyzes the geometry below this node and reports the number of vertices,
* triangles, etc. This is the same information reported by the bam-info
* program.
*/
/*
NB: Had to remove this function to avoid circular dependency when
moving SceneGraphAnalyzer into pgraphnodes, attempting to reduce size
of pgraph. This function is now defined as a Python extension
function instead.
void NodePath::
analyze() const {
nassertv_always(!is_empty());
SceneGraphAnalyzer sga;
sga.add_node(node());
if (sga.get_num_lod_nodes() == 0) {
sga.write(nout);
} else {
nout << "At highest LOD:\n";
SceneGraphAnalyzer sga2;
sga2.set_lod_mode(SceneGraphAnalyzer::LM_highest);
sga2.add_node(node());
sga2.write(nout);
nout << "\nAt lowest LOD:\n";
sga2.clear();
sga2.set_lod_mode(SceneGraphAnalyzer::LM_lowest);
sga2.add_node(node());
sga2.write(nout);
nout << "\nAll nodes:\n";
sga.write(nout);
}
}
*/
/**
* Lightly flattens out the hierarchy below this node by applying transforms,
* colors, and texture matrices from the nodes onto the vertices, but does not
* remove any nodes.
*
* This can result in improved rendering performance because there will be
* fewer transforms in the resulting scene graph, but the number of nodes will
* remain the same.
*
* In particular, any NodePaths that reference nodes within this hierarchy
* will not be damaged. However, since this operation will remove transforms
* from the scene graph, it may be dangerous to apply to nodes where you
* expect to dynamically modify the transform, or where you expect the
* geometry to remain in a particular local coordinate system.
*
* The return value is always 0, since flatten_light does not remove any
* nodes.
*/
int NodePath::
flatten_light() {
nassertr_always(!is_empty(), 0);
SceneGraphReducer gr;
gr.apply_attribs(node());
return 0;
}
/**
* A more thorough flattening than flatten_light(), this first applies all the
* transforms, colors, and texture matrices from the nodes onto the vertices,
* and then removes unneeded grouping nodes--nodes that have exactly one
* child, for instance, but have no special properties in themselves.
*
* This results in improved performance over flatten_light() because the
* number of nodes in the scene graph is reduced.
*
* The return value is the number of nodes removed.
*/
int NodePath::
flatten_medium() {
nassertr_always(!is_empty(), 0);
SceneGraphReducer gr;
gr.apply_attribs(node());
int num_removed = gr.flatten(node(), 0);
if (flatten_geoms) {
gr.make_compatible_state(node());
gr.collect_vertex_data(node());
gr.unify(node(), true);
}
return num_removed;
}
/**
* The strongest possible flattening. This first applies all of the
* transforms to the vertices, as in flatten_medium(), but then it will
* combine sibling nodes together when possible, in addition to removing
* unnecessary parent-child nodes. This can result in substantially fewer
* nodes, but any nicely-grouped hierachical bounding volumes may be lost.
*
* It is generally a good idea to apply this kind of flattening only to nodes
* that will be culled largely as a single unit, like a car. Applying this to
* an entire scene may result in overall poorer performance because of less-
* effective culling.
*/
int NodePath::
flatten_strong() {
nassertr_always(!is_empty(), 0);
SceneGraphReducer gr;
gr.apply_attribs(node());
int num_removed = gr.flatten(node(), ~0);
if (flatten_geoms) {
gr.make_compatible_state(node());
gr.collect_vertex_data(node(), ~(SceneGraphReducer::CVD_format | SceneGraphReducer::CVD_name | SceneGraphReducer::CVD_animation_type));
gr.unify(node(), false);
}
return num_removed;
}
/**
* Removes textures from Geoms at this node and below by applying the texture
* colors to the vertices. This is primarily useful to simplify a low-LOD
* model. The texture colors are replaced by flat colors that approximate the
* original textures.
*
* Only the bottommost texture on each Geom is used (if there is more than
* one), and it is applied as if it were M_modulate, and WM_repeat, regardless
* of its actual settings. If the texture has a simple_ram_image, this may be
* used if the main image isn't resident.
*
* After this call, there will be no texturing specified at this level and
* below. Of course, there might still be texturing inherited from above.
*/
void NodePath::
apply_texture_colors() {
nassertv_always(!is_empty());
SceneGraphReducer gr;
gr.apply_attribs(node(), SceneGraphReducer::TT_apply_texture_color | SceneGraphReducer::TT_tex_matrix | SceneGraphReducer::TT_other);
}
/**
* Returns the lowest ancestor of this node that contains a tag definition
* with the indicated key, if any, or an empty NodePath if no ancestor of this
* node contains this tag definition. See set_tag().
*/
NodePath NodePath::
find_net_tag(const string &key) const {
if (is_empty()) {
return NodePath::not_found();
}
if (has_tag(key)) {
return *this;
}
return get_parent().find_net_tag(key);
}
/**
* Writes the contents of this node and below out to a bam file with the
* indicated filename. This file may then be read in again, as is, at some
* later point. Returns true if successful, false on some kind of error.
*/
bool NodePath::
write_bam_file(const Filename &filename) const {
nassertr_always(!is_empty(), false);
BamFile bam_file;
bool okflag = false;
if (bam_file.open_write(filename)) {
// Tell the BamWriter which node is the root node, for making NodePaths
// relative to when writing them out to the file.
bam_file.get_writer()->set_root_node(node());
if (bam_file.write_object(node())) {
okflag = true;
}
bam_file.close();
}
return okflag;
}
/**
* Writes the contents of this node and below out to the indicated stream.
*/
bool NodePath::
write_bam_stream(ostream &out) const {
nassertr_always(!is_empty(), false);
BamFile bam_file;
bool okflag = false;
if (bam_file.open_write(out)) {
// Tell the BamWriter which node is the root node, for making NodePaths
// relative to when writing them out to the file.
bam_file.get_writer()->set_root_node(node());
if (bam_file.write_object(node())) {
okflag = true;
}
bam_file.close();
}
return okflag;
}
/**
* Converts the NodePath object into a single stream of data using a
* BamWriter, and stores that data in the indicated string. Returns true on
* success, false on failure.
*
* If the BamWriter is NULL, this behaves the same way as
* NodePath::write_bam_stream() and PandaNode::encode_to_bam_stream(), in the
* sense that it only writes this node and all nodes below it.
*
* However, if the BamWriter is not NULL, it behaves very differently. In
* this case, it encodes the *entire graph* of all nodes connected to the
* NodePath, including all parent nodes and siblings. This is necessary for
* correct streaming of related NodePaths and restoration of instances, etc.,
* but it does mean you must detach() a node before writing it if you want to
* limit the nodes that get written.
*
* This method is used by __reduce__ to handle streaming of NodePaths to a
* pickle file. The BamWriter case is used by the direct.stdpy.pickle module,
* while the saner, non-BamWriter case is used when the standard pickle module
* calls this function.
*/
bool NodePath::
encode_to_bam_stream(string &data, BamWriter *writer) const {
data.clear();
ostringstream stream;
DatagramOutputFile dout;
if (!dout.open(stream)) {
return false;
}
BamWriter local_writer;
bool used_local_writer = false;
if (writer == NULL) {
// Create our own writer.
if (!dout.write_header(_bam_header)) {
return false;
}
writer = &local_writer;
used_local_writer = true;
}
writer->set_target(&dout);
int num_nodes = get_num_nodes();
if (used_local_writer && num_nodes > 1) {
// In this case--no BamWriter--we only write the bottom node.
num_nodes = 1;
}
// Tell the BamWriter which node is the root node, for making NodePaths
// relative to when writing them out to the file.
writer->set_root_node(node());
// Write an initial Datagram to represent the error type and number of
// nodes.
Datagram dg;
dg.add_uint8(_error_type);
dg.add_int32(num_nodes);
if (!dout.put_datagram(dg)) {
writer->set_target(NULL);
return false;
}
// Now write the nodes, one at a time.
for (int i = 0; i < num_nodes; ++i) {
PandaNode *node = get_node(num_nodes - i - 1);
nassertr(node != NULL, false);
if (!writer->write_object(node)) {
writer->set_target(NULL);
return false;
}
}
writer->set_target(NULL);
data = stream.str();
return true;
}
/**
* Reads the string created by a previous call to encode_to_bam_stream(), and
* extracts and returns the NodePath on that string. Returns NULL on error.
*/
NodePath NodePath::
decode_from_bam_stream(const string &data, BamReader *reader) {
NodePath result;
istringstream stream(data);
DatagramInputFile din;
if (!din.open(stream)) {
return NodePath::fail();
}
BamReader local_reader;
if (reader == NULL) {
// Create a local reader.
string head;
if (!din.read_header(head, _bam_header.size())) {
return NodePath::fail();
}
if (head != _bam_header) {
return NodePath::fail();
}
reader = &local_reader;
}
reader->set_source(&din);
// One initial datagram to encode the error type, and the number of nodes.
Datagram dg;
if (!din.get_datagram(dg)) {
return NodePath::fail();
}
DatagramIterator dgi(dg);
ErrorType error_type = (ErrorType)dgi.get_uint8();
int num_nodes = dgi.get_int32();
if (num_nodes == 0) {
// An empty NodePath.
result._error_type = error_type;
} else {
// A real NodePath. Ignore error_type.
for (int i = 0; i < num_nodes; ++i) {
TypedWritable *object = reader->read_object();
if (object == (TypedWritable *)NULL ||
!object->is_of_type(PandaNode::get_class_type())) {
reader->set_source(NULL);
return NodePath::fail();
}
if (!reader->resolve()) {
reader->set_source(NULL);
return NodePath::fail();
}
PandaNode *node = DCAST(PandaNode, object);
result = NodePath(result, node);
}
}
reader->set_source(NULL);
return result;
}
/**
* Walks up from both NodePaths to find the first node that both have in
* common, if any. Fills a_count and b_count with the number of nodes below
* the common node in each path.
*
* The return value is the NodePathComponent of the node they have in common,
* or NULL if they have nothing in common.
*/
NodePathComponent *NodePath::
find_common_ancestor(const NodePath &a, const NodePath &b,
int &a_count, int &b_count, Thread *current_thread) {
nassertr(!a.is_empty() && !b.is_empty(), NULL);
NodePathComponent *ac = a._head;
NodePathComponent *bc = b._head;
a_count = 0;
b_count = 0;
int pipeline_stage = current_thread->get_pipeline_stage();
// Shorten up the longer one until they are the same length.
while (ac->get_length(pipeline_stage, current_thread) > bc->get_length(pipeline_stage, current_thread)) {
nassertr(ac != (NodePathComponent *)NULL, NULL);
ac = ac->get_next(pipeline_stage, current_thread);
a_count++;
}
while (bc->get_length(pipeline_stage, current_thread) > ac->get_length(pipeline_stage, current_thread)) {
nassertr(bc != (NodePathComponent *)NULL, NULL);
bc = bc->get_next(pipeline_stage, current_thread);
b_count++;
}
// Now shorten them both up until we reach the same component.
while (ac != bc) {
// These shouldn't go to NULL unless they both go there together.
nassertr(ac != (NodePathComponent *)NULL, NULL);
nassertr(bc != (NodePathComponent *)NULL, NULL);
ac = ac->get_next(pipeline_stage, current_thread);
a_count++;
bc = bc->get_next(pipeline_stage, current_thread);
b_count++;
}
return ac;
}
/**
* Recursively determines the net state changes to the indicated component
* node from the root of the graph.
*/
CPT(RenderState) NodePath::
r_get_net_state(NodePathComponent *comp, Thread *current_thread) const {
if (comp == (NodePathComponent *)NULL) {
return RenderState::make_empty();
} else {
CPT(RenderState) state = comp->get_node()->get_state(current_thread);
int pipeline_stage = current_thread->get_pipeline_stage();
return r_get_net_state(comp->get_next(pipeline_stage, current_thread), current_thread)->compose(state);
}
}
/**
* Recursively determines the net state changes to the indicated component
* node from the nth node above it. If n exceeds the length of the path, this
* returns the net transform from the root of the graph.
*/
CPT(RenderState) NodePath::
r_get_partial_state(NodePathComponent *comp, int n,
Thread *current_thread) const {
if (n == 0 || comp == (NodePathComponent *)NULL) {
return RenderState::make_empty();
} else {
CPT(RenderState) state = comp->get_node()->get_state(current_thread);
int pipeline_stage = current_thread->get_pipeline_stage();
return r_get_partial_state(comp->get_next(pipeline_stage, current_thread), n - 1, current_thread)->compose(state);
}
}
/**
* Recursively determines the net transform to the indicated component node
* from the root of the graph.
*/
CPT(TransformState) NodePath::
r_get_net_transform(NodePathComponent *comp, Thread *current_thread) const {
if (comp == (NodePathComponent *)NULL) {
return TransformState::make_identity();
} else {
int pipeline_stage = current_thread->get_pipeline_stage();
CPT(TransformState) net_transform = r_get_net_transform(comp->get_next(pipeline_stage, current_thread), current_thread);
PandaNode *node = comp->get_node();
CPT(TransformState) transform = node->get_transform(current_thread);
CPT(RenderEffects) effects = node->get_effects(current_thread);
if (effects->has_adjust_transform()) {
effects->adjust_transform(net_transform, transform, node);
}
return net_transform->compose(transform);
}
}
/**
* Recursively determines the net transform to the indicated component node
* from the nth node above it. If n exceeds the length of the path, this
* returns the net transform from the root of the graph.
*
* If any node in the path had a net_transform effect applied, returns NULL--
* in this case the partial transform cannot be easily determined.
*/
CPT(TransformState) NodePath::
r_get_partial_transform(NodePathComponent *comp, int n,
Thread *current_thread) const {
if (n == 0 || comp == (NodePathComponent *)NULL) {
return TransformState::make_identity();
} else {
if (comp->get_node()->get_effects(current_thread)->has_adjust_transform()) {
return NULL;
}
CPT(TransformState) transform = comp->get_node()->get_transform(current_thread);
int pipeline_stage = current_thread->get_pipeline_stage();
CPT(TransformState) partial = r_get_partial_transform(comp->get_next(pipeline_stage, current_thread), n - 1, current_thread);
if (partial == (const TransformState *)NULL) {
return NULL;
}
return partial->compose(transform);
}
}
/**
* Recursively determines the net "previous" transform to the indicated
* component node from the root of the graph.
*/
CPT(TransformState) NodePath::
r_get_net_prev_transform(NodePathComponent *comp, Thread *current_thread) const {
if (comp == (NodePathComponent *)NULL) {
return TransformState::make_identity();
} else {
CPT(TransformState) transform = comp->get_node()->get_prev_transform(current_thread);
int pipeline_stage = current_thread->get_pipeline_stage();
return r_get_net_prev_transform(comp->get_next(pipeline_stage, current_thread), current_thread)->compose(transform);
}
}
/**
* Recursively determines the net "previous" transform to the indicated
* component node from the nth node above it. If n exceeds the length of the
* path, this returns the net previous transform from the root of the graph.
*/
CPT(TransformState) NodePath::
r_get_partial_prev_transform(NodePathComponent *comp, int n, Thread *current_thread) const {
if (n == 0 || comp == (NodePathComponent *)NULL) {
return TransformState::make_identity();
} else {
CPT(TransformState) transform = comp->get_node()->get_prev_transform(current_thread);
int pipeline_stage = current_thread->get_pipeline_stage();
return r_get_partial_prev_transform(comp->get_next(pipeline_stage, current_thread), n - 1, current_thread)->compose(transform);
}
}
/**
* Finds up to max_matches matches against the given path string from this
* node and deeper. The max_matches count indicates the maximum number of
* matches to return, or -1 not to limit the number returned.
*/
void NodePath::
find_matches(NodePathCollection &result, const string &path,
int max_matches) const {
if (is_empty()) {
pgraph_cat.warning()
<< "Attempt to extend an empty NodePath by '" << path
<< "'.\n";
return;
}
FindApproxPath approx_path;
if (approx_path.add_string(path)) {
find_matches(result, approx_path, max_matches);
}
}
/**
* Finds up to max_matches matches against the given approx_path from this
* node and deeper. The max_matches count indicates the maximum number of
* matches to return, or -1 not to limit the number returned.
*/
void NodePath::
find_matches(NodePathCollection &result, FindApproxPath &approx_path,
int max_matches) const {
if (is_empty()) {
pgraph_cat.warning()
<< "Attempt to extend an empty NodePath by: " << approx_path << ".\n";
return;
}
// We start with just one entry on the level.
FindApproxLevelEntry *level =
new FindApproxLevelEntry(WorkingNodePath(*this), approx_path);
nassertv(level->_node_path.is_valid());
find_matches(result, level, max_matches);
}
/**
* The fundamental implementation of find_matches(), given a starting level (a
* linked list of FindApproxLevelEntry objects).
*/
void NodePath::
find_matches(NodePathCollection &result, FindApproxLevelEntry *level,
int max_matches) const {
int num_levels_remaining = _max_search_depth;
FindApproxLevelEntry *deleted_entries = NULL;
while (num_levels_remaining > 0 && level != NULL) {
if (pgraph_cat.is_spam()) {
pgraph_cat.spam()
<< "find_matches pass: " << result << ", "
<< max_matches << ", " << num_levels_remaining << "\n";
level->write_level(pgraph_cat.spam(false), 4);
}
num_levels_remaining--;
FindApproxLevelEntry *next_level = NULL;
// For each node in the current level, build up the set of possible
// matches in the next level.
FindApproxLevelEntry *entry = level;
while (entry != (FindApproxLevelEntry *)NULL) {
if (entry->consider_node(result, next_level, max_matches, 0)) {
// If we found the requisite number of matches, we can stop. Delete
// all remaining entries and return immediately.
while (entry != (FindApproxLevelEntry *)NULL) {
FindApproxLevelEntry *next = entry->_next;
delete entry;
entry = next;
}
while (next_level != (FindApproxLevelEntry *)NULL) {
FindApproxLevelEntry *next = next_level->_next;
delete next_level;
next_level = next;
}
while (deleted_entries != (FindApproxLevelEntry *)NULL) {
FindApproxLevelEntry *next = deleted_entries->_next;
delete deleted_entries;
deleted_entries = next;
}
return;
}
// Move the entry to the delete chain so we can delete it before we
// return from this method. (We can't delete it immediately, because
// there might be WorkingNodePaths in the next_level that reference the
// WorkingNodePath object within the entry.)
FindApproxLevelEntry *next = entry->_next;
entry->_next = deleted_entries;
deleted_entries = entry;
entry = next;
}
// Make sure the remaining entries from this level are added to the delete
// chain.
while (entry != (FindApproxLevelEntry *)NULL) {
FindApproxLevelEntry *next = entry->_next;
entry->_next = deleted_entries;
deleted_entries = entry;
entry = next;
}
level = next_level;
}
// Now it's safe to delete all entries on the delete chain.
while (deleted_entries != (FindApproxLevelEntry *)NULL) {
FindApproxLevelEntry *next = deleted_entries->_next;
delete deleted_entries;
deleted_entries = next;
}
}
/**
* The recursive implementation of clear_model_nodes(). This walks through
* the subgraph defined by the indicated node and below.
*/
int NodePath::
r_clear_model_nodes(PandaNode *node) {
int count = 0;
if (node->is_of_type(ModelNode::get_class_type())) {
ModelNode *mnode;
DCAST_INTO_R(mnode, node, count);
mnode->set_preserve_transform(ModelNode::PT_drop_node);
++count;
}
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
count += r_clear_model_nodes(cr.get_child(i));
}
return count;
}
/**
* The recursive implementation of adjust_all_priorities(). This walks
* through the subgraph defined by the indicated node and below.
*/
void NodePath::
r_adjust_all_priorities(PandaNode *node, int adjustment) {
node->set_state(node->get_state()->adjust_all_priorities(adjustment));
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
gnode->set_geom_state(i, gnode->get_geom_state(i)->adjust_all_priorities(adjustment));
}
}
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
r_adjust_all_priorities(cr.get_child(i), adjustment);
}
}
/**
*
*/
void NodePath::
r_force_recompute_bounds(PandaNode *node) {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
const Geom *geom = gnode->get_geom(i);
geom->mark_bounds_stale();
}
}
node->mark_bounds_stale();
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
r_force_recompute_bounds(cr.get_child(i));
}
}
/**
* Recursively applies the indicated collide mask to the nodes at and below
* this node.
*/
void NodePath::
r_set_collide_mask(PandaNode *node,
CollideMask and_mask, CollideMask or_mask,
TypeHandle node_type) {
if (node->is_of_type(node_type)) {
CollideMask into_collide_mask = node->get_into_collide_mask();
into_collide_mask = (into_collide_mask & and_mask) | or_mask;
node->set_into_collide_mask(into_collide_mask);
}
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
r_set_collide_mask(cr.get_child(i), and_mask, or_mask, node_type);
}
}
/**
*
*/
bool NodePath::
r_has_vertex_column(PandaNode *node, const InternalName *name) const {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_R(gnode, node, false);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
const Geom *geom = gnode->get_geom(i);
CPT(GeomVertexData) vdata = geom->get_vertex_data();
if (vdata->has_column(name)) {
return true;
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
if (r_has_vertex_column(child, name)) {
return true;
}
}
return false;
}
/**
*
*/
void NodePath::
r_find_all_vertex_columns(PandaNode *node,
NodePath::InternalNames &vertex_columns) const {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; ++i) {
const Geom *geom = gnode->get_geom(i);
const GeomVertexFormat *format = geom->get_vertex_data()->get_format();
int num_arrays = format->get_num_arrays();
for (int j = 0; j < num_arrays; ++j) {
const GeomVertexArrayFormat *array = format->get_array(j);
int num_columns = array->get_num_columns();
for (int k = 0; k < num_columns; ++k) {
const GeomVertexColumn *column = array->get_column(k);
vertex_columns.insert(column->get_name());
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
r_find_all_vertex_columns(child, vertex_columns);
}
}
/**
*
*/
Texture *NodePath::
r_find_texture(PandaNode *node, const RenderState *state,
const GlobPattern &glob) const {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_R(gnode, node, NULL);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state =
state->compose(gnode->get_geom_state(i));
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
for (int i = 0; i < ta->get_num_on_stages(); i++) {
Texture *texture = ta->get_on_texture(ta->get_on_stage(i));
if (texture != (Texture *)NULL) {
if (glob.matches(texture->get_name())) {
return texture;
}
}
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
CPT(RenderState) next_state = state->compose(child->get_state());
Texture *result = r_find_texture(child, next_state, glob);
if (result != (Texture *)NULL) {
return result;
}
}
return NULL;
}
/**
*
*/
void NodePath::
r_find_all_textures(PandaNode *node, const RenderState *state,
NodePath::Textures &textures) const {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state =
state->compose(gnode->get_geom_state(i));
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
for (int i = 0; i < ta->get_num_on_stages(); i++) {
Texture *texture = ta->get_on_texture(ta->get_on_stage(i));
if (texture != (Texture *)NULL) {
textures.insert(texture);
}
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
CPT(RenderState) next_state = state->compose(child->get_state());
r_find_all_textures(child, next_state, textures);
}
}
/**
*
*/
Texture * NodePath::
r_find_texture(PandaNode *node, TextureStage *stage) const {
// Look for a TextureAttrib on the node.
const RenderAttrib *attrib =
node->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
if (ta->has_on_stage(stage)) {
return ta->get_on_texture(stage);
}
}
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_R(gnode, node, NULL);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state = gnode->get_geom_state(i);
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
if (ta->has_on_stage(stage)) {
return ta->get_on_texture(stage);
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
Texture *result = r_find_texture(child, stage);
if (result != (Texture *)NULL) {
return result;
}
}
return NULL;
}
/**
*
*/
void NodePath::
r_find_all_textures(PandaNode *node, TextureStage *stage,
NodePath::Textures &textures) const {
// Look for a TextureAttrib on the node.
const RenderAttrib *attrib =
node->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
if (ta->has_on_stage(stage)) {
textures.insert(ta->get_on_texture(stage));
}
}
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state = gnode->get_geom_state(i);
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
if (ta->has_on_stage(stage)) {
textures.insert(ta->get_on_texture(stage));
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
r_find_all_textures(child, stage, textures);
}
}
/**
*
*/
TextureStage * NodePath::
r_find_texture_stage(PandaNode *node, const RenderState *state,
const GlobPattern &glob) const {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_R(gnode, node, NULL);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state =
state->compose(gnode->get_geom_state(i));
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
for (int i = 0; i < ta->get_num_on_stages(); i++) {
TextureStage *texture_stage = ta->get_on_stage(i);
if (texture_stage != (TextureStage *)NULL) {
if (glob.matches(texture_stage->get_name())) {
return texture_stage;
}
}
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
CPT(RenderState) next_state = state->compose(child->get_state());
TextureStage *result = r_find_texture_stage(child, next_state, glob);
if (result != (TextureStage *)NULL) {
return result;
}
}
return NULL;
}
/**
*
*/
void NodePath::
r_find_all_texture_stages(PandaNode *node, const RenderState *state,
NodePath::TextureStages &texture_stages) const {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state =
state->compose(gnode->get_geom_state(i));
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
for (int i = 0; i < ta->get_num_on_stages(); i++) {
TextureStage *texture_stage = ta->get_on_stage(i);
if (texture_stage != (TextureStage *)NULL) {
texture_stages.insert(texture_stage);
}
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
CPT(RenderState) next_state = state->compose(child->get_state());
r_find_all_texture_stages(child, next_state, texture_stages);
}
}
/**
*
*/
void NodePath::
r_unify_texture_stages(PandaNode *node, TextureStage *stage) {
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
node->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
CPT(RenderAttrib) new_attrib = ta->unify_texture_stages(stage);
if (new_attrib != ta) {
node->set_attrib(new_attrib);
}
}
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) state = gnode->get_geom_state(i);
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
state->get_attrib(TextureAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
CPT(RenderAttrib) new_attrib = ta->unify_texture_stages(stage);
if (new_attrib != ta) {
CPT(RenderState) new_state = state->add_attrib(new_attrib);
gnode->set_geom_state(i, new_state);
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
r_unify_texture_stages(child, stage);
}
}
/**
*
*/
Material *NodePath::
r_find_material(PandaNode *node, const RenderState *state,
const GlobPattern &glob) const {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_R(gnode, node, NULL);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state =
state->compose(gnode->get_geom_state(i));
// Look for a MaterialAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(MaterialAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const MaterialAttrib *ta = DCAST(MaterialAttrib, attrib);
if (!ta->is_off()) {
Material *material = ta->get_material();
if (material != (Material *)NULL) {
if (glob.matches(material->get_name())) {
return material;
}
}
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
CPT(RenderState) next_state = state->compose(child->get_state());
Material *result = r_find_material(child, next_state, glob);
if (result != (Material *)NULL) {
return result;
}
}
return NULL;
}
/**
*
*/
void NodePath::
r_find_all_materials(PandaNode *node, const RenderState *state,
NodePath::Materials &materials) const {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state =
state->compose(gnode->get_geom_state(i));
// Look for a MaterialAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(MaterialAttrib::get_class_slot());
if (attrib != (const RenderAttrib *)NULL) {
const MaterialAttrib *ta = DCAST(MaterialAttrib, attrib);
if (!ta->is_off()) {
Material *material = ta->get_material();
if (material != (Material *)NULL) {
materials.insert(material);
}
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
CPT(RenderState) next_state = state->compose(child->get_state());
r_find_all_materials(child, next_state, materials);
}
}
/**
* Writes the contents of this object to the datagram for shipping out to a
* Bam file.
*/
void NodePath::
write_datagram(BamWriter *manager, Datagram &dg) const {
PandaNode *root = DCAST(PandaNode, manager->get_root_node());
// We have no root node to measure from.
if (root == (PandaNode *)NULL || root == node()) {
manager->write_pointer(dg, node());
manager->write_pointer(dg, NULL);
return;
}
Thread *current_thread = Thread::get_current_thread();
int pipeline_stage = current_thread->get_pipeline_stage();
// Record the chain of nodes from the root to this node.
pvector<PandaNode *> path;
NodePathComponent *comp = _head;
while (comp != NULL) {
PandaNode *node = comp->get_node();
path.push_back(node);
if (node == root) {
break;
}
comp = comp->get_next(pipeline_stage, current_thread);
}
if (comp == (NodePathComponent *)NULL) {
// We did not encounter the root node. Not much we can do.
manager->write_pointer(dg, node());
manager->write_pointer(dg, NULL);
return;
}
// Write out the nodes in reverse order, for fast reconstructing.
for (int i = path.size() - 1; i >= 0; --i) {
manager->write_pointer(dg, path[i]);
}
manager->write_pointer(dg, NULL);
}
/**
* Receives an array of pointers, one for each time manager->read_pointer()
* was called in fillin(). Returns the number of pointers processed.
*/
int NodePath::
complete_pointers(TypedWritable **p_list, BamReader *manager) {
int pi = 0;
PT(PandaNode) node = DCAST(PandaNode, p_list[pi++]);
if (node.is_null()) {
// An empty NodePath.
_head = (NodePathComponent *)NULL;
return pi;
}
Thread *current_thread = Thread::get_current_thread();
int pipeline_stage = current_thread->get_pipeline_stage();
// Take an arbitrary path to the root of the NodePath. This probably won't
// be ambiguous, as this is usually the root of the model or scene we are
// currently loading.
PT(NodePathComponent) comp = node->get_generic_component(false, pipeline_stage, current_thread);
nassertd(!comp.is_null()) {
while (p_list[pi++]) {}
return pi;
}
// Build up the chain of NodePathComponents leading up to this node.
while (p_list[pi] != NULL) {
PT(PandaNode) node = DCAST(PandaNode, p_list[pi++]);
LightReMutexHolder holder(node->_paths_lock);
// First, walk through the list of NodePathComponents we already have on
// the child, looking for one that already exists, referencing the
// indicated parent component.
PandaNode::Paths::const_iterator it;
for (it = node->_paths.begin(); it != node->_paths.end(); ++it) {
if ((*it)->get_next(pipeline_stage, current_thread) == comp) {
// If we already have such a component, use that.
comp = (*it);
break;
}
}
if (it == node->_paths.end()) {
// We don't already have a NodePathComponent referring to this parent-
// child relationship. Create a new one. Note that we can't verify
// that they are actually related because we may not have completed the
// node's pointers yet, so we trust that the .bam is right.
comp = new NodePathComponent(node, comp, pipeline_stage, current_thread);
node->_paths.insert(comp);
}
}
// One more for the final NULL node.
++pi;
_head = comp;
return pi;
}
/**
* This internal function is called by make_from_bam to read in all of the
* relevant data from the BamFile for the new NodePath.
*/
void NodePath::
fillin(DatagramIterator &scan, BamReader *manager) {
while(manager->read_pointer(scan)) {};
}