panda3d/pandatool/src/assimp/assimpLoader.cxx

651 lines
21 KiB
C++

// Filename: assimpLoader.cxx
// Created by: rdb (29Mar11)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) Carnegie Mellon University. All rights reserved.
//
// All use of this software is subject to the terms of the revised BSD
// license. You should have received a copy of this license along
// with this source code in a file named "LICENSE."
//
////////////////////////////////////////////////////////////////////
#include "assimpLoader.h"
#include "geomNode.h"
#include "luse.h"
#include "geomVertexWriter.h"
#include "geomPoints.h"
#include "geomLines.h"
#include "geomTriangles.h"
#include "pnmFileTypeRegistry.h"
#include "pnmImage.h"
#include "materialAttrib.h"
#include "textureAttrib.h"
#include "cullFaceAttrib.h"
#include "ambientLight.h"
#include "directionalLight.h"
#include "spotlight.h"
#include "pointLight.h"
#include "look_at.h"
#include "texturePool.h"
#include "pandaIOSystem.h"
#include "pandaLogger.h"
#include "assimp/postprocess.h"
////////////////////////////////////////////////////////////////////
// Function: AssimpLoader::Constructor
// Access: Public
// Description:
////////////////////////////////////////////////////////////////////
AssimpLoader::
AssimpLoader() :
_error (false),
_geoms (NULL) {
PandaLogger::set_default();
_importer.SetIOHandler(new PandaIOSystem);
}
////////////////////////////////////////////////////////////////////
// Function: AssimpLoader::Destructor
// Access: Public
// Description:
////////////////////////////////////////////////////////////////////
AssimpLoader::
~AssimpLoader() {
_importer.FreeScene();
}
////////////////////////////////////////////////////////////////////
// Function: AssimpLoader::get_extensions
// Access: Public
// Description: Returns a space-separated list of extensions that
// Assimp can load, without the leading dots.
////////////////////////////////////////////////////////////////////
void AssimpLoader::
get_extensions(string &ext) const {
aiString aexts;
_importer.GetExtensionList(aexts);
// The format is like: *.mdc;*.mdl;*.mesh.xml;*.mot
char *sub = strtok(aexts.data, ";");
while (sub != NULL) {
ext += sub + 2;
sub = strtok(NULL, ";");
if (sub != NULL) {
ext += ' ';
}
}
}
////////////////////////////////////////////////////////////////////
// Function: AssimpLoader::read
// Access: Public
// Description: Reads from the indicated file.
////////////////////////////////////////////////////////////////////
bool AssimpLoader::
read(const Filename &filename) {
_filename = filename;
// I really don't know why we need to flip the winding order,
// but otherwise the models I tested with are showing inside out.
_scene = _importer.ReadFile(_filename.c_str(), aiProcess_Triangulate | aiProcess_GenUVCoords | aiProcess_FlipWindingOrder);
if (_scene == NULL) {
_error = true;
return false;
}
_error = false;
return true;
}
////////////////////////////////////////////////////////////////////
// Function: AssimpLoader::build_graph
// Access: Public
// Description: Converts scene graph structures into a Panda3D
// scene graph, with _root being the root node.
////////////////////////////////////////////////////////////////////
void AssimpLoader::
build_graph() {
nassertv(_scene != NULL); // read() must be called first
nassertv(!_error); // and have succeeded
// Protect the import process
MutexHolder holder(_lock);
_root = new ModelRoot(_filename.get_basename());
// Import all of the embedded textures first.
_textures = new PT(Texture)[_scene->mNumTextures];
for (size_t i = 0; i < _scene->mNumTextures; ++i) {
load_texture(i);
}
// Then the materials.
_mat_states = new CPT(RenderState)[_scene->mNumMaterials];
for (size_t i = 0; i < _scene->mNumMaterials; ++i) {
load_material(i);
}
// And then the meshes.
_geoms = new PT(Geom)[_scene->mNumMeshes];
_geom_matindices = new unsigned int[_scene->mNumMeshes];
for (size_t i = 0; i < _scene->mNumMeshes; ++i) {
load_mesh(i);
}
// And now the node structure.
if (_scene->mRootNode != NULL) {
load_node(*_scene->mRootNode, _root);
}
// And lastly, the lights.
for (size_t i = 0; i < _scene->mNumLights; ++i) {
load_light(*_scene->mLights[i]);
}
delete[] _textures;
delete[] _mat_states;
delete[] _geoms;
delete[] _geom_matindices;
}
////////////////////////////////////////////////////////////////////
// Function: AssimpLoader::load_texture
// Access: Private
// Description: Converts an aiTexture into a Texture.
////////////////////////////////////////////////////////////////////
void AssimpLoader::
load_texture(size_t index) {
const aiTexture &tex = *_scene->mTextures[index];
PT(Texture) ptex = new Texture;
if (tex.mHeight == 0) {
// Compressed texture.
assimp_cat.debug()
<< "Reading embedded compressed texture with format " << tex.achFormatHint << " and size " << tex.mWidth << "\n";
stringstream str;
str.write((char*) tex.pcData, tex.mWidth);
if (strncmp(tex.achFormatHint, "dds", 3) == 0) {
ptex->read_dds(str);
} else {
const PNMFileTypeRegistry *reg = PNMFileTypeRegistry::get_global_ptr();
PNMFileType *ftype;
PNMImage img;
// Work around a bug in Assimp, it sometimes writes jp instead of jpg
if (strncmp(tex.achFormatHint, "jp\0", 3) == 0) {
ftype = reg->get_type_from_extension("jpg");
} else {
ftype = reg->get_type_from_extension(tex.achFormatHint);
}
if (img.read(str, "", ftype)) {
ptex->load(img);
} else {
ptex = NULL;
}
}
} else {
assimp_cat.debug()
<< "Reading embedded raw texture with size " << tex.mWidth << "x" << tex.mHeight << "\n";
ptex->setup_2d_texture(tex.mWidth, tex.mHeight, Texture::T_unsigned_byte, Texture::F_rgba);
PTA_uchar data = ptex->modify_ram_image();
size_t p = 0;
for (size_t i = 0; i < tex.mWidth * tex.mHeight; ++i) {
const aiTexel &texel = tex.pcData[i];
data[p++] = texel.b;
data[p++] = texel.g;
data[p++] = texel.r;
data[p++] = texel.a;
}
}
//ostringstream path;
//path << "/tmp/" << index << ".png";
//ptex->write(path.str());
_textures[index] = ptex;
}
////////////////////////////////////////////////////////////////////
// Function: AssimpLoader::load_texture_stage
// Access: Private
// Description: Converts an aiMaterial into a RenderState.
////////////////////////////////////////////////////////////////////
void AssimpLoader::
load_texture_stage(const aiMaterial &mat, const aiTextureType &ttype, CPT(TextureAttrib) &tattr) {
aiString path;
aiTextureMapping mapping;
unsigned int uvindex;
PN_stdfloat blend;
aiTextureOp op;
aiTextureMapMode mapmode;
for (size_t i = 0; i < mat.GetTextureCount(ttype); ++i) {
mat.GetTexture(ttype, i, &path, &mapping, NULL, &blend, &op, &mapmode);
if (AI_SUCCESS != mat.Get(AI_MATKEY_UVWSRC(ttype, i), uvindex)) {
// If there's no texture coordinate set for this texture,
// assume that it's the same as the index on the stack.
//TODO: if there's only one set on the mesh,
// force everything to use just the first stage.
uvindex = i;
}
stringstream str;
str << uvindex;
PT(TextureStage) stage = new TextureStage(str.str());
if (uvindex > 0) {
stage->set_texcoord_name(InternalName::get_texcoord_name(str.str()));
}
PT(Texture) ptex = NULL;
// I'm not sure if this is the right way to handle it, as
// I couldn't find much information on embedded textures.
if (path.data[0] == '*') {
long num = strtol(path.data + 1, NULL, 10);
ptex = _textures[num];
} else if (path.length > 0) {
Filename fn = Filename::from_os_specific(string(path.data, path.length));
// Try to find the file by moving up twice in the hierarchy.
VirtualFileSystem *vfs = VirtualFileSystem::get_global_ptr();
Filename dir (_filename);
_filename.make_canonical();
dir = _filename.get_dirname();
// Quake 3 BSP doesn't specify an extension for textures.
if (vfs->is_regular_file(Filename(dir, fn))) {
fn = Filename(dir, fn);
} else if (vfs->is_regular_file(Filename(dir, fn + ".tga"))) {
fn = Filename(dir, fn + ".tga");
} else if (vfs->is_regular_file(Filename(dir, fn + ".jpg"))) {
fn = Filename(dir, fn + ".jpg");
} else {
dir = _filename.get_dirname();
if (vfs->is_regular_file(Filename(dir, fn))) {
fn = Filename(dir, fn);
} else if (vfs->is_regular_file(Filename(dir, fn + ".tga"))) {
fn = Filename(dir, fn + ".tga");
} else if (vfs->is_regular_file(Filename(dir, fn + ".jpg"))) {
fn = Filename(dir, fn + ".jpg");
}
}
ptex = TexturePool::load_texture(fn);
}
if (ptex != NULL) {
tattr = DCAST(TextureAttrib, tattr->add_on_stage(stage, ptex));
}
}
}
////////////////////////////////////////////////////////////////////
// Function: AssimpLoader::load_material
// Access: Private
// Description: Converts an aiMaterial into a RenderState.
////////////////////////////////////////////////////////////////////
void AssimpLoader::
load_material(size_t index) {
const aiMaterial &mat = *_scene->mMaterials[index];
CPT(RenderState) state = RenderState::make_empty();
aiColor3D col;
bool have;
int ival;
PN_stdfloat fval;
// XXX a lot of this is untested.
// First do the material attribute.
PT(Material) pmat = new Material;
have = false;
if (AI_SUCCESS == mat.Get(AI_MATKEY_COLOR_DIFFUSE, col)) {
pmat->set_diffuse(LColor(col.r, col.g, col.b, 1));
have = true;
}
if (AI_SUCCESS == mat.Get(AI_MATKEY_COLOR_SPECULAR, col)) {
if (AI_SUCCESS == mat.Get(AI_MATKEY_SHININESS_STRENGTH, fval)) {
pmat->set_specular(LColor(col.r * fval, col.g * fval, col.b * fval, 1));
} else {
pmat->set_specular(LColor(col.r, col.g, col.b, 1));
}
have = true;
}
if (AI_SUCCESS == mat.Get(AI_MATKEY_COLOR_AMBIENT, col)) {
pmat->set_specular(LColor(col.r, col.g, col.b, 1));
have = true;
}
if (AI_SUCCESS == mat.Get(AI_MATKEY_COLOR_EMISSIVE, col)) {
pmat->set_emission(LColor(col.r, col.g, col.b, 1));
have = true;
}
if (AI_SUCCESS == mat.Get(AI_MATKEY_COLOR_TRANSPARENT, col)) {
//FIXME: ???
}
if (AI_SUCCESS == mat.Get(AI_MATKEY_SHININESS, fval)) {
pmat->set_shininess(fval);
have = true;
}
if (have) {
state = state->add_attrib(MaterialAttrib::make(pmat));
}
// Wireframe.
if (AI_SUCCESS == mat.Get(AI_MATKEY_ENABLE_WIREFRAME, ival)) {
if (ival) {
state = state->add_attrib(RenderModeAttrib::make(RenderModeAttrib::M_wireframe));
} else {
state = state->add_attrib(RenderModeAttrib::make(RenderModeAttrib::M_filled));
}
}
// Backface culling. Not sure if this is also supposed to
// set the twoside flag in the material, I'm guessing not.
if (AI_SUCCESS == mat.Get(AI_MATKEY_TWOSIDED, ival)) {
if (ival) {
state = state->add_attrib(CullFaceAttrib::make(CullFaceAttrib::M_cull_none));
} else {
state = state->add_attrib(CullFaceAttrib::make_default());
}
}
// And let's not forget the textures!
CPT(TextureAttrib) tattr = DCAST(TextureAttrib, TextureAttrib::make());
load_texture_stage(mat, aiTextureType_DIFFUSE, tattr);
load_texture_stage(mat, aiTextureType_LIGHTMAP, tattr);
if (tattr->get_num_on_stages() > 0) {
state = state->add_attrib(tattr);
}
_mat_states[index] = state;
}
////////////////////////////////////////////////////////////////////
// Function: AssimpLoader::load_mesh
// Access: Private
// Description: Converts an aiMesh into a Geom.
////////////////////////////////////////////////////////////////////
void AssimpLoader::
load_mesh(size_t index) {
const aiMesh &mesh = *_scene->mMeshes[index];
// Create the vertex format.
PT(GeomVertexArrayFormat) aformat = new GeomVertexArrayFormat;
aformat->add_column(InternalName::get_vertex(), 3, Geom::NT_stdfloat, Geom::C_point);
if (mesh.HasNormals()) {
aformat->add_column(InternalName::get_normal(), 3, Geom::NT_stdfloat, Geom::C_vector);
}
if (mesh.HasVertexColors(0)) {
aformat->add_column(InternalName::get_color(), 4, Geom::NT_stdfloat, Geom::C_color);
}
unsigned int num_uvs = mesh.GetNumUVChannels();
if (num_uvs > 0) {
// UV sets are named texcoord, texcoord.1, texcoord.2...
aformat->add_column(InternalName::get_texcoord(), 3, Geom::NT_stdfloat, Geom::C_texcoord);
for (unsigned int u = 1; u < num_uvs; ++u) {
ostringstream out;
out << u;
aformat->add_column(InternalName::get_texcoord_name(out.str()), 3, Geom::NT_stdfloat, Geom::C_texcoord);
}
}
//TODO: if there is only one UV set, hackily iterate over the texture stages and clear the texcoord name things
PT(GeomVertexFormat) format = new GeomVertexFormat;
format->add_array(aformat);
// Create the GeomVertexData.
string name (mesh.mName.data, mesh.mName.length);
PT(GeomVertexData) vdata = new GeomVertexData(name, GeomVertexFormat::register_format(format), Geom::UH_static);
vdata->unclean_set_num_rows(mesh.mNumVertices);
// Read out the vertices.
GeomVertexWriter vertex (vdata, InternalName::get_vertex());
for (size_t i = 0; i < mesh.mNumVertices; ++i) {
const aiVector3D &vec = mesh.mVertices[i];
vertex.add_data3(vec.x, vec.y, vec.z);
}
// Now the normals, if any.
if (mesh.HasNormals()) {
GeomVertexWriter normal (vdata, InternalName::get_normal());
for (size_t i = 0; i < mesh.mNumVertices; ++i) {
const aiVector3D &vec = mesh.mNormals[i];
normal.add_data3(vec.x, vec.y, vec.z);
}
}
// Vertex colors, if any. We only import the first set.
if (mesh.HasVertexColors(0)) {
GeomVertexWriter color (vdata, InternalName::get_color());
for (size_t i = 0; i < mesh.mNumVertices; ++i) {
const aiColor4D &col = mesh.mColors[0][i];
color.add_data4(col.r, col.g, col.b, col.a);
}
}
// Now the texture coordinates.
if (num_uvs > 0) {
// UV sets are named texcoord, texcoord.1, texcoord.2...
GeomVertexWriter texcoord0 (vdata, InternalName::get_texcoord());
for (size_t i = 0; i < mesh.mNumVertices; ++i) {
const aiVector3D &vec = mesh.mTextureCoords[0][i];
texcoord0.add_data3(vec.x, vec.y, vec.z);
}
for (unsigned int u = 1; u < num_uvs; ++u) {
ostringstream out;
out << u;
GeomVertexWriter texcoord (vdata, InternalName::get_texcoord_name(out.str()));
for (size_t i = 0; i < mesh.mNumVertices; ++i) {
const aiVector3D &vec = mesh.mTextureCoords[u][i];
texcoord.add_data3(vec.x, vec.y, vec.z);
}
}
}
// Now read out the primitives.
// Keep in mind that we called ReadFile with the aiProcess_Triangulate
// flag earlier, so we don't have to worry about polygons.
PT(GeomPoints) points = new GeomPoints(Geom::UH_static);
PT(GeomLines) lines = new GeomLines(Geom::UH_static);
PT(GeomTriangles) triangles = new GeomTriangles(Geom::UH_static);
// Now add the vertex indices.
for (size_t i = 0; i < mesh.mNumFaces; ++i) {
const aiFace &face = mesh.mFaces[i];
if (face.mNumIndices == 0) {
// It happens, strangely enough.
continue;
} else if (face.mNumIndices == 1) {
points->add_vertex(face.mIndices[0]);
points->close_primitive();
} else if (face.mNumIndices == 2) {
lines->add_vertices(face.mIndices[0], face.mIndices[1]);
lines->close_primitive();
} else if (face.mNumIndices == 3) {
triangles->add_vertices(face.mIndices[0], face.mIndices[1], face.mIndices[2]);
triangles->close_primitive();
} else {
nassertd(false) continue;
}
}
// Create a geom and add the primitives to it.
PT(Geom) geom = new Geom(vdata);
if (points->get_num_primitives() > 0) {
geom->add_primitive(points);
}
if (lines->get_num_primitives() > 0) {
geom->add_primitive(lines);
}
if (triangles->get_num_primitives() > 0) {
geom->add_primitive(triangles);
}
_geoms[index] = geom;
_geom_matindices[index] = mesh.mMaterialIndex;
}
////////////////////////////////////////////////////////////////////
// Function: AssimpLoader::load_node
// Access: Private
// Description: Converts an aiNode into a PandaNode.
////////////////////////////////////////////////////////////////////
void AssimpLoader::
load_node(const aiNode &node, PandaNode *parent) {
PT(PandaNode) pnode;
// Create the node and give it a name.
string name (node.mName.data, node.mName.length);
if (node.mNumMeshes > 0) {
pnode = new GeomNode(name);
} else {
pnode = new PandaNode(name);
}
parent->add_child(pnode);
// Load in the transformation matrix.
const aiMatrix4x4 &t = node.mTransformation;
if (!t.IsIdentity()) {
LMatrix4 mat(t.a1, t.b1, t.c1, t.d1,
t.a2, t.b2, t.c2, t.d2,
t.a3, t.b3, t.c3, t.d3,
t.a4, t.b4, t.c4, t.d4);
pnode->set_transform(TransformState::make_mat(mat));
}
for (size_t i = 0; i < node.mNumChildren; ++i) {
load_node(*node.mChildren[i], pnode);
}
if (node.mNumMeshes > 0) {
// Remember, we created this as GeomNode earlier.
PT(GeomNode) gnode = DCAST(GeomNode, pnode);
size_t meshIndex;
// If there's only mesh, don't bother using a per-geom state.
if (node.mNumMeshes == 1) {
meshIndex = node.mMeshes[0];
gnode->add_geom(_geoms[meshIndex]);
gnode->set_state(_mat_states[_geom_matindices[meshIndex]]);
} else {
for (size_t i = 0; i < node.mNumMeshes; ++i) {
meshIndex = node.mMeshes[i];
gnode->add_geom(_geoms[node.mMeshes[i]],
_mat_states[_geom_matindices[meshIndex]]);
}
}
}
}
////////////////////////////////////////////////////////////////////
// Function: AssimpLoader::load_light
// Access: Private
// Description: Converts an aiLight into a LightNode.
////////////////////////////////////////////////////////////////////
void AssimpLoader::
load_light(const aiLight &light) {
string name (light.mName.data, light.mName.length);
assimp_cat.debug() << "Found light '" << name << "'\n";
aiColor3D col;
aiVector3D vec;
switch (light.mType) {
case aiLightSource_DIRECTIONAL: {
PT(DirectionalLight) dlight = new DirectionalLight(name);
_root->add_child(dlight);
col = light.mColorDiffuse;
dlight->set_color(LColor(col.r, col.g, col.b, 1));
col = light.mColorSpecular;
dlight->set_specular_color(LColor(col.r, col.g, col.b, 1));
vec = light.mPosition;
dlight->set_point(LPoint3(vec.x, vec.y, vec.z));
vec = light.mDirection;
dlight->set_direction(LVector3(vec.x, vec.y, vec.z));
break; }
case aiLightSource_POINT: {
PT(PointLight) plight = new PointLight(name);
_root->add_child(plight);
col = light.mColorDiffuse;
plight->set_color(LColor(col.r, col.g, col.b, 1));
col = light.mColorSpecular;
plight->set_specular_color(LColor(col.r, col.g, col.b, 1));
vec = light.mPosition;
plight->set_point(LPoint3(vec.x, vec.y, vec.z));
plight->set_attenuation(LVecBase3(light.mAttenuationConstant,
light.mAttenuationLinear,
light.mAttenuationQuadratic));
break; }
case aiLightSource_SPOT: {
PT(Spotlight) plight = new Spotlight(name);
_root->add_child(plight);
col = light.mColorDiffuse;
plight->set_color(LColor(col.r, col.g, col.b, 1));
col = light.mColorSpecular;
plight->set_specular_color(LColor(col.r, col.g, col.b, 1));
plight->set_attenuation(LVecBase3(light.mAttenuationConstant,
light.mAttenuationLinear,
light.mAttenuationQuadratic));
plight->get_lens()->set_fov(light.mAngleOuterCone);
//TODO: translate mAngleInnerCone to an exponent, somehow
// This *should* be about right.
vec = light.mDirection;
LPoint3 pos (light.mPosition.x, light.mPosition.y, light.mPosition.z);
LQuaternion quat;
::look_at(quat, LPoint3(vec.x, vec.y, vec.z), LVector3::up());
plight->set_transform(TransformState::make_pos_quat_scale(pos, quat, LVecBase3(1, 1, 1)));
break; }
case aiLightSource_AMBIENT:
// This is handled below.
break;
default:
assimp_cat.warning() << "Light '" << name << "' has an unknown type!\n";
return;
}
// If there's an ambient color, add it as ambient light.
col = light.mColorAmbient;
LVecBase4 ambient (col.r, col.g, col.b, 0);
if (ambient != LVecBase4::zero()) {
PT(AmbientLight) alight = new AmbientLight(name);
alight->set_color(ambient);
_root->add_child(alight);
}
}