panda3d/pandatool/src/mayaegg/mayaToEggConverter.cxx
2004-02-26 23:00:29 +00:00

2343 lines
77 KiB
C++

// Filename: mayaToEggConverter.cxx
// Created by: drose (10Nov99)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001 - 2004, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://etc.cmu.edu/panda3d/docs/license/ .
//
// To contact the maintainers of this program write to
// panda3d-general@lists.sourceforge.net .
//
////////////////////////////////////////////////////////////////////
#include "mayaToEggConverter.h"
#include "mayaShader.h"
#include "maya_funcs.h"
#include "config_mayaegg.h"
#include "mayaEggGroupUserData.h"
#include "eggData.h"
#include "eggGroup.h"
#include "eggTable.h"
#include "eggVertex.h"
#include "eggVertexPool.h"
#include "eggNurbsSurface.h"
#include "eggNurbsCurve.h"
#include "eggPolygon.h"
#include "eggPrimitive.h"
#include "eggTexture.h"
#include "eggTextureCollection.h"
#include "eggXfmSAnim.h"
#include "eggSAnimData.h"
#include "string_utils.h"
#include "dcast.h"
#include "pre_maya_include.h"
#include <maya/MArgList.h>
#include <maya/MColor.h>
#include <maya/MDagPath.h>
#include <maya/MFnCamera.h>
#include <maya/MFnDagNode.h>
#include <maya/MFnTransform.h>
#include <maya/MFnLight.h>
#include <maya/MFnNurbsSurface.h>
#include <maya/MFnNurbsCurve.h>
#include <maya/MFnMesh.h>
#include <maya/MFnMeshData.h>
#include <maya/MItMeshPolygon.h>
#include <maya/MFnPlugin.h>
#include <maya/MItDag.h>
#include <maya/MLibrary.h>
#include <maya/MMatrix.h>
#include <maya/MObject.h>
#include <maya/MPoint.h>
#include <maya/MPointArray.h>
#include <maya/MDoubleArray.h>
#include <maya/MIntArray.h>
#include <maya/MPxCommand.h>
#include <maya/MStatus.h>
#include <maya/MString.h>
#include <maya/MTransformationMatrix.h>
#include <maya/MVector.h>
#include <maya/MTesselationParams.h>
#include <maya/MAnimControl.h>
#include <maya/MGlobal.h>
#include <maya/MAnimUtil.h>
#include <maya/MFnSkinCluster.h>
#include <maya/MFnSingleIndexedComponent.h>
#include <maya/MFnDoubleIndexedComponent.h>
#include <maya/MFnBlendShapeDeformer.h>
#include <maya/MItDependencyGraph.h>
#include <maya/MDagPathArray.h>
#include <maya/MSelectionList.h>
#include "post_maya_include.h"
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::Constructor
// Access: Public
// Description:
////////////////////////////////////////////////////////////////////
MayaToEggConverter::
MayaToEggConverter(const string &program_name) :
_program_name(program_name)
{
// Make sure the library is properly initialized.
init_libmayaegg();
_from_selection = false;
_polygon_output = false;
_polygon_tolerance = 0.01;
_respect_maya_double_sided = maya_default_double_sided;
_always_show_vertex_color = maya_default_vertex_color;
_transform_type = TT_model;
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::Copy Constructor
// Access: Public
// Description:
////////////////////////////////////////////////////////////////////
MayaToEggConverter::
MayaToEggConverter(const MayaToEggConverter &copy) :
_from_selection(copy._from_selection),
_subsets(copy._subsets),
_maya(copy._maya),
_polygon_output(copy._polygon_output),
_polygon_tolerance(copy._polygon_tolerance),
_respect_maya_double_sided(copy._respect_maya_double_sided),
_always_show_vertex_color(copy._always_show_vertex_color),
_transform_type(copy._transform_type)
{
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::Destructor
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
MayaToEggConverter::
~MayaToEggConverter() {
close_api();
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::make_copy
// Access: Public, Virtual
// Description: Allocates and returns a new copy of the converter.
////////////////////////////////////////////////////////////////////
SomethingToEggConverter *MayaToEggConverter::
make_copy() {
return new MayaToEggConverter(*this);
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::get_name
// Access: Public, Virtual
// Description: Returns the English name of the file type this
// converter supports.
////////////////////////////////////////////////////////////////////
string MayaToEggConverter::
get_name() const {
return "Maya";
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::get_extension
// Access: Public, Virtual
// Description: Returns the common extension of the file type this
// converter supports.
////////////////////////////////////////////////////////////////////
string MayaToEggConverter::
get_extension() const {
return "mb";
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::get_additional_extensions
// Access: Public, Virtual
// Description: Returns a space-separated list of extension, in
// addition to the one returned by get_extension(), that
// are recognized by this converter.
////////////////////////////////////////////////////////////////////
string MayaToEggConverter::
get_additional_extensions() const {
return "ma";
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::convert_file
// Access: Public, Virtual
// Description: Handles the reading of the input file and converting
// it to egg. Returns true if successful, false
// otherwise.
//
// This is designed to be as generic as possible,
// generally in support of run-time loading.
// Also see convert_maya().
////////////////////////////////////////////////////////////////////
bool MayaToEggConverter::
convert_file(const Filename &filename) {
if (!open_api()) {
mayaegg_cat.error()
<< "Maya is not available.\n";
return false;
}
// We must ensure our Maya pointers are cleared before we reset the
// Maya scene, because resetting the Maya scene will invalidate all
// the Maya pointers we are holding and cause a crash if we try to
// free them later.
clear();
if (!_maya->read(filename)) {
mayaegg_cat.error()
<< "Unable to read " << filename << "\n";
return false;
}
if (_character_name.empty()) {
_character_name = filename.get_basename_wo_extension();
}
return convert_maya();
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::clear_subsets
// Access: Public
// Description: Empties the list of subset nodes added via
// add_subset(). The entire file will once again be
// converted.
////////////////////////////////////////////////////////////////////
void MayaToEggConverter::
clear_subsets() {
_subsets.clear();
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::add_subset
// Access: Public
// Description: Adds a name pattern to the list of subset nodes. If
// the list of subset nodes is not empty, then only a
// subset of the nodes in the maya file will be
// converted: those whose names match one of the
// patterns given on this list.
////////////////////////////////////////////////////////////////////
void MayaToEggConverter::
add_subset(const GlobPattern &glob) {
_subsets.push_back(glob);
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::set_from_selection
// Access: Public
// Description: Sets the flag that indicates whether the currently
// selected Maya geometry will be converted. If this is
// true, and the selection is nonempty, then only the
// selected geometry will be converted. If this is
// false, the entire file will be converted.
////////////////////////////////////////////////////////////////////
void MayaToEggConverter::
set_from_selection(bool from_selection) {
_from_selection = from_selection;
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::get_input_units
// Access: Public, Virtual
// Description: This may be called after convert_file() has been
// called and returned true, indicating a successful
// conversion. It will return the distance units
// represented by the converted egg file, if known, or
// DU_invalid if not known.
////////////////////////////////////////////////////////////////////
DistanceUnit MayaToEggConverter::
get_input_units() {
return _maya->get_units();
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::convert_maya
// Access: Public
// Description: Fills up the egg_data structure according to the
// global maya model data. Returns true if successful,
// false if there is an error.
////////////////////////////////////////////////////////////////////
bool MayaToEggConverter::
convert_maya() {
clear();
if (!open_api()) {
mayaegg_cat.error()
<< "Maya is not available.\n";
return false;
}
if (_egg_data->get_coordinate_system() == CS_default) {
_egg_data->set_coordinate_system(_maya->get_coordinate_system());
}
mayaegg_cat.info()
<< "Converting from Maya.\n";
// Figure out the animation parameters.
double start_frame, end_frame, frame_inc, input_frame_rate, output_frame_rate;
if (has_start_frame()) {
start_frame = get_start_frame();
} else {
start_frame = MAnimControl::minTime().value();
}
if (has_end_frame()) {
end_frame = get_end_frame();
} else {
end_frame = MAnimControl::maxTime().value();
}
if (has_frame_inc()) {
frame_inc = get_frame_inc();
} else {
frame_inc = 1.0;
}
if (has_input_frame_rate()) {
input_frame_rate = get_input_frame_rate();
} else {
MTime time(1.0, MTime::kSeconds);
input_frame_rate = time.as(MTime::uiUnit());
}
if (has_output_frame_rate()) {
output_frame_rate = get_output_frame_rate();
} else {
output_frame_rate = input_frame_rate;
}
frame_inc = frame_inc * input_frame_rate / output_frame_rate;
bool all_ok = _tree.build_hierarchy();
if (all_ok) {
if (_from_selection) {
all_ok = _tree.tag_selected();
} else if (!_subsets.empty()) {
Subsets::const_iterator si;
for (si = _subsets.begin(); si != _subsets.end(); ++si) {
if (!_tree.tag_named(*si)) {
mayaegg_cat.info()
<< "No node matching " << *si << " found.\n";
}
}
} else {
_tree.tag_all();
}
}
if (all_ok) {
switch (get_animation_convert()) {
case AC_pose:
// pose: set to a specific frame, then get out the static geometry.
mayaegg_cat.info(false)
<< "frame " << start_frame << "\n";
MGlobal::viewFrame(MTime(start_frame, MTime::uiUnit()));
// fall through
case AC_none:
// none: just get out a static model, no animation.
all_ok = convert_hierarchy(&get_egg_data());
break;
case AC_flip:
case AC_strobe:
// flip or strobe: get out a series of static models, one per
// frame, under a sequence node for AC_flip.
all_ok = convert_flip(start_frame, end_frame, frame_inc,
output_frame_rate);
break;
case AC_model:
// model: get out an animatable model with joints and vertex
// membership.
all_ok = convert_char_model();
break;
case AC_chan:
// chan: get out a series of animation tables.
all_ok = convert_char_chan(start_frame, end_frame, frame_inc,
output_frame_rate);
break;
case AC_both:
// both: Put a model and its animation into the same egg file.
_animation_convert = AC_model;
if (!convert_char_model()) {
all_ok = false;
}
_animation_convert = AC_chan;
if (!convert_char_chan(start_frame, end_frame, frame_inc,
output_frame_rate)) {
all_ok = false;
}
break;
case AC_invalid:
break;
};
reparent_decals(&get_egg_data());
}
if (all_ok) {
mayaegg_cat.info()
<< "Converted, no errors.\n";
} else {
mayaegg_cat.info()
<< "Errors encountered in conversion.\n";
}
return all_ok;
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::open_api
// Access: Public
// Description: Attempts to open the Maya API if it was not already
// open, and returns true if successful, or false if
// there is an error.
////////////////////////////////////////////////////////////////////
bool MayaToEggConverter::
open_api() {
if (_maya == (MayaApi *)NULL || !_maya->is_valid()) {
_maya = MayaApi::open_api(_program_name);
}
return _maya->is_valid();
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::close_api
// Access: Public
// Description: Closes the Maya API, if it was previously opened.
// Caution! Maya appears to call exit() when its API is
// closed.
////////////////////////////////////////////////////////////////////
void MayaToEggConverter::
close_api() {
// We have to clear the shaders, at least, before we release the
// Maya API.
clear();
_maya.clear();
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::clear
// Access: Public
// Description: Frees all of the Maya pointers kept within this
// object, in preparation for loading a new scene or
// releasing the Maya API.
////////////////////////////////////////////////////////////////////
void MayaToEggConverter::
clear() {
_tree.clear();
_textures.clear();
_shaders.clear();
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::convert_flip
// Access: Private
// Description: Converts the animation as a series of models that
// cycle (flip) from one to the next at the appropriate
// frame rate. This is the most likely to convert
// precisely (since we ask Maya to tell us the vertex
// position each time) but it is the most wasteful in
// terms of memory utilization (since a complete of the
// model is stored for each frame).
////////////////////////////////////////////////////////////////////
bool MayaToEggConverter::
convert_flip(double start_frame, double end_frame, double frame_inc,
double output_frame_rate) {
bool all_ok = true;
EggGroup *sequence_node = new EggGroup(_character_name);
get_egg_data().add_child(sequence_node);
if (_animation_convert == AC_flip) {
sequence_node->set_switch_flag(true);
sequence_node->set_switch_fps(output_frame_rate);
}
MTime frame(start_frame, MTime::uiUnit());
MTime frame_stop(end_frame, MTime::uiUnit());
while (frame <= frame_stop) {
mayaegg_cat.info(false)
<< "frame " << frame.value() << "\n";
ostringstream name_strm;
name_strm << "frame" << frame.value();
EggGroup *frame_root = new EggGroup(name_strm.str());
sequence_node->add_child(frame_root);
MGlobal::viewFrame(frame);
if (!convert_hierarchy(frame_root)) {
all_ok = false;
}
frame += frame_inc;
}
return all_ok;
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::convert_char_model
// Access: Private
// Description: Converts the file as an animatable character
// model, with joints and vertex membership.
////////////////////////////////////////////////////////////////////
bool MayaToEggConverter::
convert_char_model() {
if (has_neutral_frame()) {
MTime frame(get_neutral_frame(), MTime::uiUnit());
mayaegg_cat.info(false)
<< "neutral frame " << frame.value() << "\n";
MGlobal::viewFrame(frame);
}
// It's also important for us to reset all the blend shape sliders
// to 0 before we get out the model. Otherwise, the model we
// convert will have the current positions of the sliders baked in.
_tree.reset_sliders();
EggGroup *char_node = new EggGroup(_character_name);
get_egg_data().add_child(char_node);
char_node->set_dart_type(EggGroup::DT_default);
return convert_hierarchy(char_node);
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::convert_char_chan
// Access: Private
// Description: Converts the animation as a series of tables to apply
// to the character model, as retrieved earlier via
// AC_model.
////////////////////////////////////////////////////////////////////
bool MayaToEggConverter::
convert_char_chan(double start_frame, double end_frame, double frame_inc,
double output_frame_rate) {
// MStatus status;
EggTable *root_table_node = new EggTable();
get_egg_data().add_child(root_table_node);
EggTable *bundle_node = new EggTable(_character_name);
bundle_node->set_table_type(EggTable::TT_bundle);
root_table_node->add_child(bundle_node);
EggTable *skeleton_node = new EggTable("<skeleton>");
bundle_node->add_child(skeleton_node);
EggTable *morph_node = new EggTable("morph");
bundle_node->add_child(morph_node);
// Set the frame rate before we start asking for anim tables to be
// created.
_tree._fps = output_frame_rate;
_tree.clear_egg(&get_egg_data(), NULL, skeleton_node, morph_node);
// Now we can get the animation data by walking through all of the
// frames, one at a time, and getting the joint angles at each
// frame.
// This is just a temporary EggGroup to receive the transform for
// each joint each frame.
PT(EggGroup) tgroup = new EggGroup;
int num_nodes = _tree.get_num_nodes();
int num_sliders = _tree.get_num_blend_descs();
int i;
MTime frame(start_frame, MTime::uiUnit());
MTime frame_stop(end_frame, MTime::uiUnit());
while (frame <= frame_stop) {
if (mayaegg_cat.is_debug()) {
mayaegg_cat.debug(false)
<< "frame " << frame.value() << "\n";
} else {
// We have to write to cerr instead of mayaegg_cat to allow
// flushing without writing a newline.
cerr << "." << flush;
}
MGlobal::viewFrame(frame);
for (i = 0; i < num_nodes; i++) {
MayaNodeDesc *node_desc = _tree.get_node(i);
if (node_desc->is_joint()) {
if (mayaegg_cat.is_spam()) {
mayaegg_cat.spam()
<< "joint " << node_desc->get_name() << "\n";
}
get_joint_transform(node_desc->get_dag_path(), tgroup);
EggXfmSAnim *anim = _tree.get_egg_anim(node_desc);
if (!anim->add_data(tgroup->get_transform())) {
mayaegg_cat.error()
<< "Invalid transform on " << node_desc->get_name()
<< " frame " << frame.value() << ".\n";
}
}
}
for (i = 0; i < num_sliders; i++) {
MayaBlendDesc *blend_desc = _tree.get_blend_desc(i);
if (mayaegg_cat.is_spam()) {
mayaegg_cat.spam()
<< "slider " << blend_desc->get_name() << "\n";
}
EggSAnimData *anim = _tree.get_egg_slider(blend_desc);
anim->add_data(blend_desc->get_slider());
}
frame += frame_inc;
}
// Now optimize all of the tables we just filled up, for no real
// good reason, except that it makes the resulting egg file a little
// easier to read.
for (i = 0; i < num_nodes; i++) {
MayaNodeDesc *node_desc = _tree.get_node(i);
if (node_desc->is_joint()) {
_tree.get_egg_anim(node_desc)->optimize();
}
}
for (i = 0; i < num_sliders; i++) {
MayaBlendDesc *blend_desc = _tree.get_blend_desc(i);
EggSAnimData *anim = _tree.get_egg_slider(blend_desc);
anim->optimize();
}
mayaegg_cat.info(false)
<< "\n";
return true;
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::convert_hierarchy
// Access: Private
// Description: Generates egg structures for each node in the Maya
// hierarchy.
////////////////////////////////////////////////////////////////////
bool MayaToEggConverter::
convert_hierarchy(EggGroupNode *egg_root) {
int num_nodes = _tree.get_num_nodes();
_tree.clear_egg(&get_egg_data(), egg_root, NULL, NULL);
for (int i = 0; i < num_nodes; i++) {
MayaNodeDesc *node = _tree.get_node(i);
if (!process_model_node(node)) {
return false;
}
}
return true;
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::process_model_node
// Access: Private
// Description: Converts the indicated Maya node (given a MDagPath,
// similar in concept to Panda's NodePath) to the
// corresponding Egg structure. Returns true if
// successful, false if an error was encountered.
////////////////////////////////////////////////////////////////////
bool MayaToEggConverter::
process_model_node(MayaNodeDesc *node_desc) {
if (!node_desc->has_dag_path()) {
// If the node has no Maya equivalent, never mind.
return true;
}
MDagPath dag_path = node_desc->get_dag_path();
MStatus status;
MFnDagNode dag_node(dag_path, &status);
if (!status) {
status.perror("MFnDagNode constructor");
mayaegg_cat.error() << dag_path.fullPathName().asChar() << "\n";
return false;
}
MObject node = dag_path.transform(&status);
if (!status) {
status.perror("dag_path.transform()");
return false;
}
string path = dag_path.fullPathName().asChar();
if (mayaegg_cat.is_debug()) {
mayaegg_cat.debug()
<< path << ": " << dag_node.typeName();
if (MAnimUtil::isAnimated(dag_path)) {
mayaegg_cat.debug(false)
<< " (animated)";
}
mayaegg_cat.debug(false) << "\n";
}
if (dag_node.inUnderWorld()) {
if (mayaegg_cat.is_debug()) {
mayaegg_cat.debug()
<< "Ignoring underworld node " << path
<< "\n";
}
} else if (dag_node.isIntermediateObject()) {
if (mayaegg_cat.is_debug()) {
mayaegg_cat.debug()
<< "Ignoring intermediate object " << path
<< "\n";
}
} else if (dag_path.hasFn(MFn::kCamera)) {
if (mayaegg_cat.is_debug()) {
mayaegg_cat.debug()
<< "Ignoring camera node " << path
<< "\n";
}
} else if (dag_path.hasFn(MFn::kLight)) {
if (mayaegg_cat.is_debug()) {
mayaegg_cat.debug()
<< "Ignoring light node " << path
<< "\n";
}
} else if (dag_path.hasFn(MFn::kNurbsSurface)) {
EggGroup *egg_group = _tree.get_egg_group(node_desc);
get_transform(node_desc, dag_path, egg_group);
if (node_desc->is_tagged()) {
MFnNurbsSurface surface(dag_path, &status);
if (!status) {
mayaegg_cat.info()
<< "Error in node " << path
<< ":\n"
<< " it appears to have a NURBS surface, but does not.\n";
} else {
make_nurbs_surface(node_desc, dag_path, surface, egg_group);
}
}
} else if (dag_path.hasFn(MFn::kNurbsCurve)) {
// Only convert NurbsCurves if we aren't making an animated model.
// Animated models, as a general rule, don't want these sorts of
// things in them.
if (_animation_convert != AC_model) {
EggGroup *egg_group = _tree.get_egg_group(node_desc);
get_transform(node_desc, dag_path, egg_group);
if (node_desc->is_tagged()) {
MFnNurbsCurve curve(dag_path, &status);
if (!status) {
mayaegg_cat.info()
<< "Error in node " << path << ":\n"
<< " it appears to have a NURBS curve, but does not.\n";
} else {
make_nurbs_curve(dag_path, curve, egg_group);
}
}
}
} else if (dag_path.hasFn(MFn::kMesh)) {
EggGroup *egg_group = _tree.get_egg_group(node_desc);
get_transform(node_desc, dag_path, egg_group);
if (node_desc->is_tagged()) {
MFnMesh mesh(dag_path, &status);
if (!status) {
mayaegg_cat.info()
<< "Error in node " << path << ":\n"
<< " it appears to have a polygon mesh, but does not.\n";
} else {
make_polyset(node_desc, dag_path, mesh, egg_group);
}
}
} else if (dag_path.hasFn(MFn::kLocator)) {
EggGroup *egg_group = _tree.get_egg_group(node_desc);
if (mayaegg_cat.is_debug()) {
mayaegg_cat.debug()
<< "Locator at " << path << "\n";
}
if (node_desc->is_tagged()) {
// Presumably, the locator's position has some meaning to the
// end-user, so we will implicitly tag it with the DCS flag so it
// won't get flattened out.
if (_animation_convert != AC_model) {
// For now, don't set the DCS flag on locators within
// character models, since egg-optchar doesn't understand
// this. Perhaps there's no reason to ever change this, since
// locators within character models may not be meaningful.
egg_group->set_dcs_type(EggGroup::DC_net);
}
get_transform(node_desc, dag_path, egg_group);
make_locator(dag_path, dag_node, egg_group);
}
} else {
// Just a generic node.
EggGroup *egg_group = _tree.get_egg_group(node_desc);
get_transform(node_desc, dag_path, egg_group);
}
return true;
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::get_transform
// Access: Private
// Description: Extracts the transform on the indicated Maya node,
// and applies it to the corresponding Egg node.
////////////////////////////////////////////////////////////////////
void MayaToEggConverter::
get_transform(MayaNodeDesc *node_desc, const MDagPath &dag_path,
EggGroup *egg_group) {
if (_animation_convert == AC_model) {
// When we're getting an animated model, we only get transforms
// for joints, and they get converted in a special way.
if (node_desc->is_joint()) {
get_joint_transform(dag_path, egg_group);
}
return;
}
MStatus status;
MObject transformNode = dag_path.transform(&status);
if (!status && status.statusCode() == MStatus::kInvalidParameter) {
// This node has no transform - i.e., it's the world node
return;
}
// Billboards always get the transform set.
if (egg_group->get_billboard_type() == EggGroup::BT_none) {
switch (_transform_type) {
case TT_all:
break;
case TT_model:
if (!egg_group->get_model_flag() &&
egg_group->get_dcs_type() == EggGroup::DC_none) {
return;
}
break;
case TT_dcs:
if (egg_group->get_dcs_type() == EggGroup::DC_none) {
return;
}
break;
case TT_none:
case TT_invalid:
return;
}
}
// Extract the matrix from the dag path.
MMatrix mat = dag_path.inclusiveMatrix(&status);
if (!status) {
status.perror("Can't get transform matrix");
return;
}
LMatrix4d m4d(mat[0][0], mat[0][1], mat[0][2], mat[0][3],
mat[1][0], mat[1][1], mat[1][2], mat[1][3],
mat[2][0], mat[2][1], mat[2][2], mat[2][3],
mat[3][0], mat[3][1], mat[3][2], mat[3][3]);
// Maya has a rotate pivot, separate from its transform. Usually we
// care more about the rotate pivot than we do about the transform,
// so get the rotate pivot too.
MFnTransform transform(transformNode, &status);
if (!status) {
status.perror("MFnTransform constructor");
return;
}
MPoint pivot = transform.rotatePivot(MSpace::kObject, &status);
if (!status) {
status.perror("Can't get rotate pivot");
return;
}
// We need to convert the pivot to world coordinates. (Maya can
// only tell it to us in local coordinates.)
LPoint3d p3d(pivot[0], pivot[1], pivot[2]);
p3d = p3d * m4d;
// Now recenter the matrix about the pivot point.
m4d.set_row(3, p3d);
// Convert the recentered matrix into the group's space and store
// it.
m4d = m4d * egg_group->get_node_frame_inv();
if (!m4d.almost_equal(LMatrix4d::ident_mat(), 0.0001)) {
egg_group->add_matrix(m4d);
}
return;
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::get_joint_transform
// Access: Private
// Description: Extracts the transform on the indicated Maya node,
// as appropriate for a joint in an animated character,
// and applies it to the indicated node. This is
// different from get_transform() in that it does not
// respect the _transform_type flag, and it does not
// consider the relative transforms within the egg file.
////////////////////////////////////////////////////////////////////
void MayaToEggConverter::
get_joint_transform(const MDagPath &dag_path, EggGroup *egg_group) {
// First, make sure there's not a transform on the group already.
egg_group->clear_transform();
MStatus status;
MObject transformNode = dag_path.transform(&status);
// This node has no transform - i.e., it's the world node
if (!status && status.statusCode() == MStatus::kInvalidParameter) {
return;
}
MFnDagNode transform(transformNode, &status);
if (!status) {
status.perror("MFnDagNode constructor");
return;
}
MTransformationMatrix matrix(transform.transformationMatrix());
if (mayaegg_cat.is_spam()) {
mayaegg_cat.spam()
<< " translation: " << matrix.translation(MSpace::kWorld)
<< "\n";
double d[3];
MTransformationMatrix::RotationOrder rOrder;
matrix.getRotation(d, rOrder, MSpace::kWorld);
mayaegg_cat.spam()
<< " rotation: ["
<< d[0] << ", "
<< d[1] << ", "
<< d[2] << "]\n";
matrix.getScale(d, MSpace::kWorld);
mayaegg_cat.spam()
<< " scale: ["
<< d[0] << ", "
<< d[1] << ", "
<< d[2] << "]\n";
matrix.getShear(d, MSpace::kWorld);
mayaegg_cat.spam()
<< " shear: ["
<< d[0] << ", "
<< d[1] << ", "
<< d[2] << "]\n";
}
MMatrix mat = matrix.asMatrix();
MMatrix ident_mat;
ident_mat.setToIdentity();
if (!mat.isEquivalent(ident_mat, 0.0001)) {
egg_group->set_transform
(LMatrix4d(mat[0][0], mat[0][1], mat[0][2], mat[0][3],
mat[1][0], mat[1][1], mat[1][2], mat[1][3],
mat[2][0], mat[2][1], mat[2][2], mat[2][3],
mat[3][0], mat[3][1], mat[3][2], mat[3][3]));
}
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::make_nurbs_surface
// Access: Private
// Description: Converts the indicated Maya NURBS surface to a
// corresponding egg structure, and attaches it to the
// indicated egg group.
////////////////////////////////////////////////////////////////////
void MayaToEggConverter::
make_nurbs_surface(MayaNodeDesc *node_desc, const MDagPath &dag_path,
MFnNurbsSurface &surface, EggGroup *egg_group) {
MStatus status;
string name = surface.name().asChar();
if (mayaegg_cat.is_spam()) {
mayaegg_cat.spam()
<< " numCVs: "
<< surface.numCVsInU()
<< " * "
<< surface.numCVsInV()
<< "\n";
mayaegg_cat.spam()
<< " numKnots: "
<< surface.numKnotsInU()
<< " * "
<< surface.numKnotsInV()
<< "\n";
mayaegg_cat.spam()
<< " numSpans: "
<< surface.numSpansInU()
<< " * "
<< surface.numSpansInV()
<< "\n";
}
MayaShader *shader = _shaders.find_shader_for_node(surface.object());
if (_polygon_output) {
// If we want polygon output only, tesselate the NURBS and output
// that.
MTesselationParams params;
params.setFormatType(MTesselationParams::kStandardFitFormat);
params.setOutputType(MTesselationParams::kQuads);
params.setStdFractionalTolerance(_polygon_tolerance);
// We'll create the tesselation as a sibling of the NURBS surface.
// That way we inherit all of the transformations.
MDagPath polyset_path = dag_path;
MObject polyset_parent = polyset_path.node();
MObject polyset =
surface.tesselate(params, polyset_parent, &status);
if (!status) {
status.perror("MFnNurbsSurface::tesselate");
return;
}
status = polyset_path.push(polyset);
if (!status) {
status.perror("MDagPath::push");
}
MFnMesh polyset_fn(polyset, &status);
if (!status) {
status.perror("MFnMesh constructor");
return;
}
make_polyset(node_desc, polyset_path, polyset_fn, egg_group, shader);
// Now remove the polyset we created.
MFnDagNode parent_node(polyset_parent, &status);
if (!status) {
status.perror("MFnDagNode constructor");
return;
}
status = parent_node.removeChild(polyset);
if (!status) {
status.perror("MFnDagNode::removeChild");
}
return;
}
MPointArray cv_array;
status = surface.getCVs(cv_array, MSpace::kWorld);
if (!status) {
status.perror("MFnNurbsSurface::getCVs");
return;
}
// Also get out all the alternate blend shapes for the surface by
// applying each morph slider one at a time.
pvector<MPointArray> morph_cvs;
if (_animation_convert == AC_model) {
int num_sliders = node_desc->get_num_blend_descs();
morph_cvs.reserve(num_sliders);
for (int i = 0; i < num_sliders; i++) {
MayaBlendDesc *blend_desc = node_desc->get_blend_desc(i);
// Temporarily push the slider up to 1.0 so we can see what the
// surface looks like at that value.
blend_desc->set_slider(1.0);
MPointArray cv_array;
status = surface.getCVs(cv_array, MSpace::kWorld);
blend_desc->set_slider(0.0);
if (!status) {
status.perror("MFnNurbsSurface::getCVs");
return;
}
morph_cvs.push_back(cv_array);
}
}
MDoubleArray u_knot_array, v_knot_array;
status = surface.getKnotsInU(u_knot_array);
if (!status) {
status.perror("MFnNurbsSurface::getKnotsInU");
return;
}
status = surface.getKnotsInV(v_knot_array);
if (!status) {
status.perror("MFnNurbsSurface::getKnotsInV");
return;
}
MFnNurbsSurface::Form u_form = surface.formInU();
MFnNurbsSurface::Form v_form = surface.formInV();
int u_degree = surface.degreeU();
int v_degree = surface.degreeV();
int u_cvs = surface.numCVsInU();
int v_cvs = surface.numCVsInV();
// Maya repeats CVS at the end for a periodic surface, and doesn't
// count them in the joint weight array, below.
int maya_u_cvs = (u_form == MFnNurbsSurface::kPeriodic) ? u_cvs - u_degree : u_cvs;
int maya_v_cvs = (v_form == MFnNurbsSurface::kPeriodic) ? v_cvs - v_degree : v_cvs;
int u_knots = surface.numKnotsInU();
int v_knots = surface.numKnotsInV();
assert(u_knots == u_cvs + u_degree - 1);
assert(v_knots == v_cvs + v_degree - 1);
string vpool_name = name + ".cvs";
EggVertexPool *vpool = new EggVertexPool(vpool_name);
egg_group->add_child(vpool);
EggNurbsSurface *egg_nurbs = new EggNurbsSurface(name);
egg_nurbs->setup(u_degree + 1, v_degree + 1,
u_knots + 2, v_knots + 2);
int i;
egg_nurbs->set_u_knot(0, u_knot_array[0]);
for (i = 0; i < u_knots; i++) {
egg_nurbs->set_u_knot(i + 1, u_knot_array[i]);
}
egg_nurbs->set_u_knot(u_knots + 1, u_knot_array[u_knots - 1]);
egg_nurbs->set_v_knot(0, v_knot_array[0]);
for (i = 0; i < v_knots; i++) {
egg_nurbs->set_v_knot(i + 1, v_knot_array[i]);
}
egg_nurbs->set_v_knot(v_knots + 1, v_knot_array[v_knots - 1]);
LMatrix4d vertex_frame_inv = egg_group->get_vertex_frame_inv();
for (i = 0; i < egg_nurbs->get_num_cvs(); i++) {
int ui = egg_nurbs->get_u_index(i);
int vi = egg_nurbs->get_v_index(i);
int maya_vi = v_cvs * ui + vi;
double v[4];
status = cv_array[maya_vi].get(v);
if (!status) {
status.perror("MPoint::get");
} else {
EggVertex *vert = vpool->add_vertex(new EggVertex, i);
LPoint4d p4d(v[0], v[1], v[2], v[3]);
p4d = p4d * vertex_frame_inv;
vert->set_pos(p4d);
// Now generate the morph targets for the vertex.
if (!morph_cvs.empty()) {
// Morph deltas are given in 3-d space, not in 4-d homogenous
// space.
LPoint3d p3d(v[0] / v[3], v[1] / v[3], v[2] / v[3]);
for (unsigned int si = 0; si < morph_cvs.size(); si++) {
MayaBlendDesc *blend_desc = node_desc->get_blend_desc(si);
status = morph_cvs[si][maya_vi].get(v);
if (!status) {
status.perror("MPoint::get");
} else {
LPoint3d m3d(v[0] / v[3], v[1] / v[3], v[2] / v[3]);
LVector3d delta = m3d - p3d;
if (!delta.almost_equal(LVector3d::zero())) {
EggMorphVertex dxyz(blend_desc->get_name(), delta);
vert->_dxyzs.insert(dxyz);
}
}
}
}
egg_nurbs->add_vertex(vert);
}
}
// Now consider the trim curves, if any.
unsigned num_trims = surface.numRegions();
int trim_curve_index = 0;
for (unsigned ti = 0; ti < num_trims; ti++) {
unsigned num_loops = surface.numBoundaries(ti);
if (num_loops > 0) {
egg_nurbs->_trims.push_back(EggNurbsSurface::Trim());
EggNurbsSurface::Trim &egg_trim = egg_nurbs->_trims.back();
for (unsigned li = 0; li < num_loops; li++) {
egg_trim.push_back(EggNurbsSurface::Loop());
EggNurbsSurface::Loop &egg_loop = egg_trim.back();
MFnNurbsSurface::BoundaryType type =
surface.boundaryType(ti, li, &status);
bool keep_loop = false;
if (!status) {
status.perror("MFnNurbsSurface::BoundaryType");
} else {
keep_loop = (type == MFnNurbsSurface::kInner ||
type == MFnNurbsSurface::kOuter);
}
if (keep_loop) {
unsigned num_edges = surface.numEdges(ti, li);
for (unsigned ei = 0; ei < num_edges; ei++) {
MObjectArray edge = surface.edge(ti, li, ei, true, &status);
if (!status) {
status.perror("MFnNurbsSurface::edge");
} else {
unsigned num_segs = edge.length();
for (unsigned si = 0; si < num_segs; si++) {
MObject segment = edge[si];
if (segment.hasFn(MFn::kNurbsCurve)) {
MFnNurbsCurve curve(segment, &status);
if (!status) {
mayaegg_cat.error()
<< "Trim curve appears to be a nurbs curve, but isn't.\n";
} else {
// Finally, we have a valid curve!
EggNurbsCurve *egg_curve =
make_trim_curve(curve, name, egg_group, trim_curve_index);
trim_curve_index++;
if (egg_curve != (EggNurbsCurve *)NULL) {
egg_loop.push_back(egg_curve);
}
}
} else {
mayaegg_cat.error()
<< "Trim curve segment is not a nurbs curve.\n";
}
}
}
}
}
}
}
}
// We add the NURBS to the group down here, after all of the vpools
// for the trim curves have been added.
egg_group->add_child(egg_nurbs);
if (shader != (MayaShader *)NULL) {
set_shader_attributes(*egg_nurbs, *shader);
}
// Now try to find the skinning information for the surface.
bool got_weights = false;
pvector<EggGroup *> joints;
MFloatArray weights;
if (_animation_convert == AC_model) {
got_weights =
get_vertex_weights(dag_path, surface, joints, weights);
}
if (got_weights && !joints.empty()) {
int num_joints = joints.size();
int num_weights = (int)weights.length();
int num_verts = num_weights / num_joints;
// The number of weights should be an even multiple of verts *
// joints.
nassertv(num_weights == num_verts * num_joints);
for (i = 0; i < egg_nurbs->get_num_cvs(); i++) {
int ui = egg_nurbs->get_u_index(i) % maya_u_cvs;
int vi = egg_nurbs->get_v_index(i) % maya_v_cvs;
int maya_vi = maya_v_cvs * ui + vi;
nassertv(maya_vi < num_verts);
EggVertex *vert = vpool->get_vertex(i);
for (int ji = 0; ji < num_joints; ++ji) {
float weight = weights[maya_vi * num_joints + ji];
if (weight != 0.0f) {
EggGroup *joint = joints[ji];
if (joint != (EggGroup *)NULL) {
joint->ref_vertex(vert, weight);
}
}
}
}
}
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::make_trim_curve
// Access: Private
// Description: Converts the indicated Maya NURBS trim curve to a
// corresponding egg structure, and returns it, or NULL
// if there is a problem.
////////////////////////////////////////////////////////////////////
EggNurbsCurve *MayaToEggConverter::
make_trim_curve(const MFnNurbsCurve &curve, const string &nurbs_name,
EggGroupNode *egg_group, int trim_curve_index) {
if (mayaegg_cat.is_spam()) {
mayaegg_cat.spam()
<< "Trim curve:\n";
mayaegg_cat.spam()
<< " numCVs: "
<< curve.numCVs()
<< "\n";
mayaegg_cat.spam()
<< " numKnots: "
<< curve.numKnots()
<< "\n";
mayaegg_cat.spam()
<< " numSpans: "
<< curve.numSpans()
<< "\n";
}
MStatus status;
MPointArray cv_array;
status = curve.getCVs(cv_array, MSpace::kWorld);
if (!status) {
status.perror("MFnNurbsCurve::getCVs");
return (EggNurbsCurve *)NULL;
}
MDoubleArray knot_array;
status = curve.getKnots(knot_array);
if (!status) {
status.perror("MFnNurbsCurve::getKnots");
return (EggNurbsCurve *)NULL;
}
/*
MFnNurbsCurve::Form form = curve.form();
*/
int degree = curve.degree();
int cvs = curve.numCVs();
int knots = curve.numKnots();
assert(knots == cvs + degree - 1);
string trim_name = "trim" + format_string(trim_curve_index);
string vpool_name = nurbs_name + "." + trim_name;
EggVertexPool *vpool = new EggVertexPool(vpool_name);
egg_group->add_child(vpool);
EggNurbsCurve *egg_curve = new EggNurbsCurve(trim_name);
egg_curve->setup(degree + 1, knots + 2);
int i;
egg_curve->set_knot(0, knot_array[0]);
for (i = 0; i < knots; i++) {
egg_curve->set_knot(i + 1, knot_array[i]);
}
egg_curve->set_knot(knots + 1, knot_array[knots - 1]);
for (i = 0; i < egg_curve->get_num_cvs(); i++) {
double v[4];
MStatus status = cv_array[i].get(v);
if (!status) {
status.perror("MPoint::get");
} else {
EggVertex vert;
vert.set_pos(LPoint3d(v[0], v[1], v[3]));
egg_curve->add_vertex(vpool->create_unique_vertex(vert));
}
}
return egg_curve;
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::make_nurbs_curve
// Access: Private
// Description: Converts the indicated Maya NURBS curve (a standalone
// curve, not a trim curve) to a corresponding egg
// structure and attaches it to the indicated egg group.
////////////////////////////////////////////////////////////////////
void MayaToEggConverter::
make_nurbs_curve(const MDagPath &, const MFnNurbsCurve &curve,
EggGroup *egg_group) {
MStatus status;
string name = curve.name().asChar();
if (mayaegg_cat.is_spam()) {
mayaegg_cat.spam()
<< " numCVs: "
<< curve.numCVs()
<< "\n";
mayaegg_cat.spam()
<< " numKnots: "
<< curve.numKnots()
<< "\n";
mayaegg_cat.spam()
<< " numSpans: "
<< curve.numSpans()
<< "\n";
}
MPointArray cv_array;
status = curve.getCVs(cv_array, MSpace::kWorld);
if (!status) {
status.perror("MFnNurbsCurve::getCVs");
return;
}
MDoubleArray knot_array;
status = curve.getKnots(knot_array);
if (!status) {
status.perror("MFnNurbsCurve::getKnots");
return;
}
/*
MFnNurbsCurve::Form form = curve.form();
*/
int degree = curve.degree();
int cvs = curve.numCVs();
int knots = curve.numKnots();
assert(knots == cvs + degree - 1);
string vpool_name = name + ".cvs";
EggVertexPool *vpool = new EggVertexPool(vpool_name);
egg_group->add_child(vpool);
EggNurbsCurve *egg_curve = new EggNurbsCurve(name);
egg_group->add_child(egg_curve);
egg_curve->setup(degree + 1, knots + 2);
int i;
egg_curve->set_knot(0, knot_array[0]);
for (i = 0; i < knots; i++) {
egg_curve->set_knot(i + 1, knot_array[i]);
}
egg_curve->set_knot(knots + 1, knot_array[knots - 1]);
LMatrix4d vertex_frame_inv = egg_group->get_vertex_frame_inv();
for (i = 0; i < egg_curve->get_num_cvs(); i++) {
double v[4];
MStatus status = cv_array[i].get(v);
if (!status) {
status.perror("MPoint::get");
} else {
EggVertex vert;
LPoint4d p4d(v[0], v[1], v[2], v[3]);
p4d = p4d * vertex_frame_inv;
vert.set_pos(p4d);
egg_curve->add_vertex(vpool->create_unique_vertex(vert));
}
}
MayaShader *shader = _shaders.find_shader_for_node(curve.object());
if (shader != (MayaShader *)NULL) {
set_shader_attributes(*egg_curve, *shader);
}
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::make_polyset
// Access: Private
// Description: Converts the indicated Maya polyset to a bunch of
// EggPolygons and parents them to the indicated egg
// group.
////////////////////////////////////////////////////////////////////
void MayaToEggConverter::
make_polyset(MayaNodeDesc *node_desc, const MDagPath &dag_path,
const MFnMesh &mesh, EggGroup *egg_group,
MayaShader *default_shader) {
MStatus status;
string name = mesh.name().asChar();
MObject mesh_object = mesh.object();
bool maya_double_sided = false;
get_bool_attribute(mesh_object, "doubleSided", maya_double_sided);
if (mayaegg_cat.is_spam()) {
mayaegg_cat.spam()
<< " numPolygons: "
<< mesh.numPolygons()
<< "\n";
mayaegg_cat.spam()
<< " numVertices: "
<< mesh.numVertices()
<< "\n";
}
if (mesh.numPolygons() == 0) {
if (mayaegg_cat.is_debug()) {
mayaegg_cat.debug()
<< "Ignoring empty mesh " << name << "\n";
}
return;
}
string vpool_name = name + ".verts";
EggVertexPool *vpool = new EggVertexPool(vpool_name);
egg_group->add_child(vpool);
// One way to convert the mesh would be to first get out all the
// vertices in the mesh and add them into the vpool, then when we
// traverse the polygons we would only have to index them into the
// vpool according to their Maya vertex index.
// Unfortunately, since Maya may store multiple normals and/or
// colors for each vertex according to which polygon it is in, that
// approach won't necessarily work. In egg, those split-property
// vertices have to become separate vertices. So instead of adding
// all the vertices up front, we'll start with an empty vpool, and
// add vertices to it on the fly.
MObject component_obj;
MItMeshPolygon pi(dag_path, component_obj, &status);
if (!status) {
status.perror("MItMeshPolygon constructor");
return;
}
MObjectArray shaders;
MIntArray poly_shader_indices;
status = mesh.getConnectedShaders(dag_path.instanceNumber(),
shaders, poly_shader_indices);
if (!status) {
status.perror("MFnMesh::getConnectedShaders");
}
// We will need to transform all vertices from world coordinate
// space into the vertex space appropriate to this node. Usually,
// this is the same thing as world coordinate space, and this matrix
// will be identity; but if the node is under an instance
// (particularly, for instance, a billboard) then the vertex space
// will be different from world space.
LMatrix4d vertex_frame_inv = egg_group->get_vertex_frame_inv();
// Save these modeling flags for the check below.
bool egg_vertex_color = false;
bool egg_double_sided = false;
if (egg_group->has_user_data(MayaEggGroupUserData::get_class_type())) {
MayaEggGroupUserData *user_data =
DCAST(MayaEggGroupUserData, egg_group->get_user_data());
egg_vertex_color = user_data->_vertex_color;
egg_double_sided = user_data->_double_sided;
}
bool double_sided = maya_double_sided;
if (!_respect_maya_double_sided) {
// If this flag is false, we respect the maya double-sided
// settings only if the egg "double-sided" flag is also set.
if (!egg_double_sided) {
double_sided = false;
}
}
while (!pi.isDone()) {
EggPolygon *egg_poly = new EggPolygon;
egg_group->add_child(egg_poly);
egg_poly->set_bface_flag(double_sided);
// Determine the shader for this particular polygon.
MayaShader *shader = NULL;
int index = pi.index();
nassertv(index >= 0 && index < (int)poly_shader_indices.length());
int shader_index = poly_shader_indices[index];
if (shader_index != -1) {
nassertv(shader_index >= 0 && shader_index < (int)shaders.length());
MObject engine = shaders[shader_index];
shader =
_shaders.find_shader_for_shading_engine(engine);
} else if (default_shader != (MayaShader *)NULL) {
shader = default_shader;
}
// And apply the shader properties to the polygon.
if (shader != (MayaShader *)NULL) {
set_shader_attributes(*egg_poly, *shader);
}
const MayaShaderColorDef &color_def = shader->_color;
// Should we extract the color from the vertices? Normally, in
// Maya a texture completely replaces the vertex color, so we
// should ignore the vertex color if we have a texture.
// However, this is an inconvenient property of Maya; sometimes we
// really do want both vertex color and texture applied to the
// same object. To allow this, we define the special egg flag
// "vertex-color", which when set indicates that we should
// respect the vertex color anyway.
// Furthermore, if _always_show_vertex_color is true, we pretend
// that the "vertex-color" flag is always set.
bool ignore_vertex_color = false;
if (shader != (MayaShader *)NULL) {
ignore_vertex_color = color_def._has_texture && !(egg_vertex_color || _always_show_vertex_color);
}
Colorf poly_color(1.0f, 1.0f, 1.0f, 1.0f);
if (!ignore_vertex_color) {
// If we're respecting the vertex color, then remove the color
// specification from the polygon (so we can apply it to the
// vertices).
poly_color = egg_poly->get_color();
egg_poly->clear_color();
}
// Get the vertices for the polygon.
long num_verts = pi.polygonVertexCount();
long i;
LPoint3d centroid(0.0, 0.0, 0.0);
if (shader != (MayaShader *)NULL && color_def.has_projection()) {
// If the shader has a projection, we may need to compute the
// polygon's centroid to avoid seams at the edges.
for (i = 0; i < num_verts; i++) {
MPoint p = pi.point(i, MSpace::kWorld);
LPoint3d p3d(p[0], p[1], p[2]);
p3d = p3d * vertex_frame_inv;
centroid += p3d;
}
centroid /= (double)num_verts;
}
for (i = 0; i < num_verts; i++) {
EggVertex vert;
MPoint p = pi.point(i, MSpace::kWorld);
LPoint3d p3d(p[0] / p[3], p[1] / p[3], p[2] / p[3]);
p3d = p3d * vertex_frame_inv;
vert.set_pos(p3d);
MVector n;
status = pi.getNormal(i, n, MSpace::kWorld);
if (!status) {
status.perror("MItMeshPolygon::getNormal");
} else {
Normald n3d(n[0], n[1], n[2]);
n3d = n3d * vertex_frame_inv;
vert.set_normal(n3d);
}
if (shader != (MayaShader *)NULL && color_def.has_projection()) {
// If the shader has a projection, use it instead of the
// polygon's built-in UV's.
vert.set_uv(color_def.project_uv(p3d, centroid));
} else if (pi.hasUVs()) {
// Get the UV's from the polygon.
float2 uvs;
status = pi.getUV(i, uvs);
if (!status) {
status.perror("MItMeshPolygon::getUV");
} else {
vert.set_uv(TexCoordd(uvs[0], uvs[1]));
}
}
if (!ignore_vertex_color) {
if (pi.hasColor()) {
MColor c;
status = pi.getColor(c, i);
if (!status) {
status.perror("MItMeshPolygon::getColor");
} else {
// The vertex color is a color scale that modifies the
// polygon color, not an override that replaces it.
vert.set_color(Colorf(c.r * poly_color[0], c.g * poly_color[1],
c.b * poly_color[2], poly_color[3]));
}
} else {
vert.set_color(poly_color);
}
}
vert.set_external_index(pi.vertexIndex(i, &status));
egg_poly->add_vertex(vpool->create_unique_vertex(vert));
}
// Also get the face normal for the polygon.
Normald face_normal;
bool got_face_normal = false;
MVector n;
status = pi.getNormal(n, MSpace::kWorld);
if (!status) {
status.perror("MItMeshPolygon::getNormal face");
} else {
face_normal.set(n[0], n[1], n[2]);
face_normal = face_normal * vertex_frame_inv;
got_face_normal = true;
egg_poly->set_normal(face_normal);
}
// Now, check that the vertex ordering is consistent with the
// direction of the normals. If not, reverse the vertex ordering
// (since we have seen cases where Maya sets this in contradiction
// to its normals).
Normald order_normal;
if (got_face_normal && egg_poly->calculate_normal(order_normal)) {
if (order_normal.dot(face_normal) < 0.0) {
egg_poly->reverse_vertex_ordering();
mayaegg_cat.debug()
<< "reversing polygon\n";
}
}
pi.next();
}
// Now that we've added all the polygons (and created all the
// vertices), go back through the vertex pool and set up the
// appropriate joint membership for each of the vertices.
bool got_weights = false;
pvector<EggGroup *> joints;
MFloatArray weights;
if (_animation_convert == AC_model) {
got_weights =
get_vertex_weights(dag_path, mesh, joints, weights);
}
if (got_weights && !joints.empty()) {
int num_joints = joints.size();
int num_weights = (int)weights.length();
int num_verts = num_weights / num_joints;
// The number of weights should be an even multiple of verts *
// joints.
nassertv(num_weights == num_verts * num_joints);
EggVertexPool::iterator vi;
for (vi = vpool->begin(); vi != vpool->end(); ++vi) {
EggVertex *vert = (*vi);
int maya_vi = vert->get_external_index();
nassertv(maya_vi >= 0 && maya_vi < num_verts);
for (int ji = 0; ji < num_joints; ++ji) {
float weight = weights[maya_vi * num_joints + ji];
if (weight != 0.0f) {
EggGroup *joint = joints[ji];
if (joint != (EggGroup *)NULL) {
joint->ref_vertex(vert, weight);
}
}
}
}
}
// We also need to compute the vertex morphs for the polyset, based
// on whatever blend shapes may be present. This is similar to the
// code in make_nurbs_surface(), except that since we don't have a
// one-to-one relationship of egg vertices to Maya vertices, we have
// to get the morphs down here, after we have added all of the egg
// vertices.
if (_animation_convert == AC_model) {
int num_orig_mesh_verts = mesh.numVertices();
int num_sliders = node_desc->get_num_blend_descs();
for (int i = 0; i < num_sliders; i++) {
MayaBlendDesc *blend_desc = node_desc->get_blend_desc(i);
// Temporarily push the slider up to 1.0 so we can see what the
// surface looks like at that value.
blend_desc->set_slider(1.0);
// We have to get the mesh object from the dag again after
// fiddling with the slider.
MFnMesh blend_mesh(dag_path, &status);
if (!status) {
mayaegg_cat.warning()
<< name << " no longer has a mesh after applying "
<< blend_desc->get_name() << "\n";
} else {
if (blend_mesh.numVertices() != num_orig_mesh_verts) {
mayaegg_cat.warning()
<< "Ignoring " << blend_desc->get_name() << " for "
<< name << "; blend shape has " << blend_mesh.numVertices()
<< " vertices while original shape has "
<< num_orig_mesh_verts << ".\n";
} else {
MPointArray verts;
status = blend_mesh.getPoints(verts, MSpace::kWorld);
if (!status) {
status.perror("MFnMesh::getPoints");
} else {
int num_verts = (int)verts.length();
EggVertexPool::iterator vi;
for (vi = vpool->begin(); vi != vpool->end(); ++vi) {
EggVertex *vert = (*vi);
int maya_vi = vert->get_external_index();
nassertv(maya_vi >= 0 && maya_vi < num_verts);
const MPoint &m = verts[maya_vi];
LPoint3d m3d(m[0] / m[3], m[1] / m[3], m[2] / m[3]);
m3d = m3d * vertex_frame_inv;
LVector3d delta = m3d - vert->get_pos3();
if (!delta.almost_equal(LVector3d::zero())) {
EggMorphVertex dxyz(blend_desc->get_name(), delta);
vert->_dxyzs.insert(dxyz);
}
}
}
}
}
blend_desc->set_slider(0.0);
}
}
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::make_locator
// Access: Private
// Description: Locators are used in Maya to indicate a particular
// position in space to the user or the modeler. We
// represent that in egg with an ordinary Group node,
// which we transform by the locator's position, so that
// the indicated point becomes the origin at this node
// and below.
////////////////////////////////////////////////////////////////////
void MayaToEggConverter::
make_locator(const MDagPath &dag_path, const MFnDagNode &dag_node,
EggGroup *egg_group) {
MStatus status;
unsigned int num_children = dag_node.childCount();
MObject locator;
bool found_locator = false;
for (unsigned int ci = 0; ci < num_children && !found_locator; ci++) {
locator = dag_node.child(ci);
found_locator = (locator.apiType() == MFn::kLocator);
}
if (!found_locator) {
mayaegg_cat.error()
<< "Couldn't find locator within locator node "
<< dag_path.fullPathName().asChar() << "\n";
return;
}
LPoint3d p3d;
if (!get_vec3d_attribute(locator, "localPosition", p3d)) {
mayaegg_cat.error()
<< "Couldn't get position of locator "
<< dag_path.fullPathName().asChar() << "\n";
return;
}
// We need to convert the position to world coordinates. For some
// reason, Maya can only tell it to us in local coordinates.
MMatrix mat = dag_path.inclusiveMatrix(&status);
if (!status) {
status.perror("Can't get coordinate space for locator");
return;
}
LMatrix4d n2w(mat[0][0], mat[0][1], mat[0][2], mat[0][3],
mat[1][0], mat[1][1], mat[1][2], mat[1][3],
mat[2][0], mat[2][1], mat[2][2], mat[2][3],
mat[3][0], mat[3][1], mat[3][2], mat[3][3]);
p3d = p3d * n2w;
// Now convert the locator point into the group's space.
p3d = p3d * egg_group->get_node_frame_inv();
egg_group->add_translate(p3d);
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::get_vertex_weights
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
bool MayaToEggConverter::
get_vertex_weights(const MDagPath &dag_path, const MFnMesh &mesh,
pvector<EggGroup *> &joints, MFloatArray &weights) {
MStatus status;
// Since we are working with a mesh the input attribute that
// creates the mesh is named "inMesh"
//
MObject attr = mesh.attribute("inMesh");
// Create the plug to the "inMesh" attribute then use the
// DG iterator to walk through the DG, at the node level.
//
MPlug history(mesh.object(), attr);
MItDependencyGraph it(history, MFn::kDependencyNode,
MItDependencyGraph::kUpstream,
MItDependencyGraph::kDepthFirst,
MItDependencyGraph::kNodeLevel);
while (!it.isDone()) {
// We will walk along the node level of the DG until we
// spot a skinCluster node.
//
MObject c_node = it.thisNode();
if (c_node.hasFn(MFn::kSkinClusterFilter)) {
// We've found the cluster handle. Try to get the weight
// data.
//
MFnSkinCluster cluster(c_node, &status);
if (!status) {
status.perror("MFnSkinCluster constructor");
return false;
}
// Get the set of objects that influence the vertices of this
// mesh. Hopefully these will all be joints.
MDagPathArray influence_objects;
cluster.influenceObjects(influence_objects, &status);
if (!status) {
status.perror("MFnSkinCluster::influenceObjects");
} else {
// Fill up the vector with the corresponding table of egg
// groups for each joint.
joints.clear();
for (unsigned oi = 0; oi < influence_objects.length(); oi++) {
MDagPath joint_dag_path = influence_objects[oi];
MayaNodeDesc *joint_node_desc = _tree.build_node(joint_dag_path);
EggGroup *joint = _tree.get_egg_group(joint_node_desc);
joints.push_back(joint);
}
// Now use a component object to retrieve all of the weight
// data in one API call.
MFnSingleIndexedComponent sic;
MObject sic_object = sic.create(MFn::kMeshVertComponent);
sic.setCompleteData(mesh.numVertices());
unsigned influence_count;
status = cluster.getWeights(dag_path, sic_object,
weights, influence_count);
if (!status) {
status.perror("MFnSkinCluster::getWeights");
} else {
if (influence_count != influence_objects.length()) {
mayaegg_cat.error()
<< "MFnSkinCluster::influenceObjects() returns "
<< influence_objects.length()
<< " objects, but MFnSkinCluster::getWeights() reports "
<< influence_count << " objects.\n";
} else {
// We've got the weights and the set of objects. That's all
// we need.
return true;
}
}
}
}
it.next();
}
// The mesh was not soft-skinned.
return false;
}
////////////////////////////////////////////////////////////////////
// Function: MayaToEggConverter::get_vertex_weights
// Access: Private
// Description: As above, for a NURBS surface instead of a polygon
// mesh.
////////////////////////////////////////////////////////////////////
bool MayaToEggConverter::
get_vertex_weights(const MDagPath &dag_path, const MFnNurbsSurface &surface,
pvector<EggGroup *> &joints, MFloatArray &weights) {
MStatus status;
// Since we are working with a NURBS surface the input attribute that
// creates the surface is named "create"
//
MObject attr = surface.attribute("create");
// Create the plug to the "create" attribute then use the
// DG iterator to walk through the DG, at the node level.
//
MPlug history(surface.object(), attr);
MItDependencyGraph it(history, MFn::kDependencyNode,
MItDependencyGraph::kUpstream,
MItDependencyGraph::kDepthFirst,
MItDependencyGraph::kNodeLevel);
while (!it.isDone()) {
// We will walk along the node level of the DG until we
// spot a skinCluster node.
//
MObject c_node = it.thisNode();
if (c_node.hasFn(MFn::kSkinClusterFilter)) {
// We've found the cluster handle. Try to get the weight
// data.
//
MFnSkinCluster cluster(c_node, &status);
if (!status) {
status.perror("MFnSkinCluster constructor");
return false;
}
// Get the set of objects that influence the vertices of this
// surface. Hopefully these will all be joints.
MDagPathArray influence_objects;
cluster.influenceObjects(influence_objects, &status);
if (!status) {
status.perror("MFnSkinCluster::influenceObjects");
} else {
// Fill up the vector with the corresponding table of egg
// groups for each joint.
joints.clear();
for (unsigned oi = 0; oi < influence_objects.length(); oi++) {
MDagPath joint_dag_path = influence_objects[oi];
MayaNodeDesc *joint_node_desc = _tree.build_node(joint_dag_path);
EggGroup *joint = _tree.get_egg_group(joint_node_desc);
joints.push_back(joint);
}
// Now use a component object to retrieve all of the weight
// data in one API call.
MFnDoubleIndexedComponent dic;
MObject dic_object = dic.create(MFn::kSurfaceCVComponent);
dic.setCompleteData(surface.numCVsInU(), surface.numCVsInV());
unsigned influence_count;
status = cluster.getWeights(dag_path, dic_object,
weights, influence_count);
if (!status) {
status.perror("MFnSkinCluster::getWeights");
} else {
if (influence_count != influence_objects.length()) {
mayaegg_cat.error()
<< "MFnSkinCluster::influenceObjects() returns "
<< influence_objects.length()
<< " objects, but MFnSkinCluster::getWeights() reports "
<< influence_count << " objects.\n";
} else {
// We've got the weights and the set of objects. That's all
// we need.
return true;
}
}
}
}
it.next();
}
// The surface was not soft-skinned.
return false;
}
////////////////////////////////////////////////////////////////////
// Function: MayaShader::set_shader_attributes
// Access: Private
// Description: Applies the known shader attributes to the indicated
// egg primitive.
////////////////////////////////////////////////////////////////////
void MayaToEggConverter::
set_shader_attributes(EggPrimitive &primitive, const MayaShader &shader) {
// In Maya, a polygon is either textured or colored. The texture,
// if present, replaces the color.
const MayaShaderColorDef &color_def = shader._color;
const MayaShaderColorDef &trans_def = shader._transparency;
if (color_def._has_texture || trans_def._has_texture) {
EggTexture tex(shader.get_name(), "");
if (color_def._has_texture) {
// If we have a texture on color, apply it as the filename.
Filename filename = Filename::from_os_specific(color_def._texture);
Filename fullpath =
_path_replace->match_path(filename, get_texture_path());
tex.set_filename(_path_replace->store_path(fullpath));
tex.set_fullpath(fullpath);
apply_texture_properties(tex, color_def);
// If we also have a texture on transparency, apply it as the
// alpha filename.
if (trans_def._has_texture) {
if (color_def._wrap_u != trans_def._wrap_u ||
color_def._wrap_u != trans_def._wrap_u) {
mayaegg_cat.warning()
<< "Shader " << shader.get_name()
<< " has contradictory wrap modes on color and texture.\n";
}
if (!compare_texture_properties(tex, trans_def)) {
// Only report each broken shader once.
static pset<string> bad_shaders;
if (bad_shaders.insert(shader.get_name()).second) {
mayaegg_cat.error()
<< "Color and transparency texture properties differ on shader "
<< shader.get_name() << "\n";
}
}
tex.set_format(EggTexture::F_rgba);
// We should try to be smarter about whether the transparency
// value is connected to the texture's alpha channel or to its
// grayscale channel. However, I'm not sure how to detect
// this at the moment; rather than spending days trying to
// figure out, for now I'll just assume that if the same
// texture image is used for both color and transparency, then
// the artist meant to use the alpha channel for transparency.
if (trans_def._texture == color_def._texture) {
// That means that we don't need to do anything special: use
// all the channels of the texture.
} else {
// Otherwise, pull the alpha channel from the other image
// file. Ideally, we should figure out which channel from
// the other image supplies alpha (and specify this via
// set_alpha_file_channel()), but for now we assume it comes
// from the grayscale data.
filename = Filename::from_os_specific(trans_def._texture);
fullpath = _path_replace->match_path(filename, get_texture_path());
tex.set_alpha_filename(_path_replace->store_path(fullpath));
tex.set_alpha_fullpath(fullpath);
}
} else {
// If there is no transparency texture specified, we don't
// have any transparency, so tell the egg format to ignore any
// alpha channel that might be on the color texture.
tex.set_format(EggTexture::F_rgb);
}
} else { // trans_def._has_texture
// We have a texture on transparency only. Apply it as the
// primary filename, and set the format accordingly.
Filename filename = Filename::from_os_specific(trans_def._texture);
Filename fullpath =
_path_replace->match_path(filename, get_texture_path());
tex.set_filename(_path_replace->store_path(fullpath));
tex.set_fullpath(fullpath);
tex.set_format(EggTexture::F_alpha);
apply_texture_properties(tex, trans_def);
}
EggTexture *new_tex =
_textures.create_unique_texture(tex, ~EggTexture::E_tref_name);
primitive.set_texture(new_tex);
}
// Also apply an overall color to the primitive.
Colorf rgba = shader.get_rgba();
// The existence of a texture on either color channel completely
// replaces the corresponding flat color.
if (color_def._has_texture) {
rgba[0] = 1.0f;
rgba[1] = 1.0f;
rgba[2] = 1.0f;
}
if (trans_def._has_texture) {
rgba[3] = 1.0f;
}
// But the color gain always gets applied.
rgba[0] *= color_def._color_gain[0];
rgba[1] *= color_def._color_gain[1];
rgba[2] *= color_def._color_gain[2];
rgba[3] *= color_def._color_gain[3];
primitive.set_color(rgba);
}
////////////////////////////////////////////////////////////////////
// Function: MayaShader::apply_texture_properties
// Access: Private
// Description: Applies all the appropriate texture properties to the
// EggTexture object, including wrap modes and texture
// matrix.
////////////////////////////////////////////////////////////////////
void MayaToEggConverter::
apply_texture_properties(EggTexture &tex, const MayaShaderColorDef &color_def) {
// Let's mipmap all textures by default.
tex.set_minfilter(EggTexture::FT_linear_mipmap_linear);
tex.set_magfilter(EggTexture::FT_linear);
EggTexture::WrapMode wrap_u = color_def._wrap_u ? EggTexture::WM_repeat : EggTexture::WM_clamp;
EggTexture::WrapMode wrap_v = color_def._wrap_v ? EggTexture::WM_repeat : EggTexture::WM_clamp;
tex.set_wrap_u(wrap_u);
tex.set_wrap_v(wrap_v);
LMatrix3d mat = color_def.compute_texture_matrix();
if (!mat.almost_equal(LMatrix3d::ident_mat())) {
tex.set_transform(mat);
}
}
////////////////////////////////////////////////////////////////////
// Function: MayaShader::compare_texture_properties
// Access: Private
// Description: Compares the texture properties already on the
// texture (presumably set by a previous call to
// apply_texture_properties()) and returns false if they
// differ from that specified by the indicated color_def
// object, or true if they match.
////////////////////////////////////////////////////////////////////
bool MayaToEggConverter::
compare_texture_properties(EggTexture &tex,
const MayaShaderColorDef &color_def) {
bool okflag = true;
EggTexture::WrapMode wrap_u = color_def._wrap_u ? EggTexture::WM_repeat : EggTexture::WM_clamp;
EggTexture::WrapMode wrap_v = color_def._wrap_v ? EggTexture::WM_repeat : EggTexture::WM_clamp;
if (wrap_u != tex.determine_wrap_u()) {
// Choose the more general of the two.
if (wrap_u == EggTexture::WM_repeat) {
tex.set_wrap_u(wrap_u);
}
okflag = false;
}
if (wrap_v != tex.determine_wrap_v()) {
if (wrap_v == EggTexture::WM_repeat) {
tex.set_wrap_v(wrap_v);
}
okflag = false;
}
LMatrix3d mat = color_def.compute_texture_matrix();
if (!mat.almost_equal(tex.get_transform())) {
okflag = false;
}
return okflag;
}
////////////////////////////////////////////////////////////////////
// Function: MayaShader::reparent_decals
// Access: Private
// Description: Recursively walks the egg hierarchy, reparenting
// "decal" type nodes below their corresponding
// "decalbase" type nodes, and setting the flags.
//
// Returns true on success, false if some nodes were
// incorrect.
////////////////////////////////////////////////////////////////////
bool MayaToEggConverter::
reparent_decals(EggGroupNode *egg_parent) {
bool okflag = true;
// First, walk through all children of this node, looking for the
// one decal base, if any.
EggGroup *decal_base = (EggGroup *)NULL;
pvector<EggGroup *> decal_children;
EggGroupNode::iterator ci;
for (ci = egg_parent->begin(); ci != egg_parent->end(); ++ci) {
EggNode *child = (*ci);
if (child->is_of_type(EggGroup::get_class_type())) {
EggGroup *child_group = DCAST(EggGroup, child);
if (child_group->has_object_type("decalbase")) {
if (decal_base != (EggNode *)NULL) {
mayaegg_cat.error()
<< "Two children of " << egg_parent->get_name()
<< " both have decalbase set: " << decal_base->get_name()
<< " and " << child_group->get_name() << "\n";
okflag = false;
}
child_group->remove_object_type("decalbase");
decal_base = child_group;
} else if (child_group->has_object_type("decal")) {
child_group->remove_object_type("decal");
decal_children.push_back(child_group);
}
}
}
if (decal_base == (EggGroup *)NULL) {
if (!decal_children.empty()) {
mayaegg_cat.warning()
<< decal_children.front()->get_name()
<< " has decal, but no sibling node has decalbase.\n";
}
} else {
if (decal_children.empty()) {
mayaegg_cat.warning()
<< decal_base->get_name()
<< " has decalbase, but no sibling nodes have decal.\n";
} else {
// All the decal children get moved to be a child of decal base.
// This usually will not affect the vertex positions, but it
// could if the decal base has a transform and the decal child
// is an instance node. So don't do that.
pvector<EggGroup *>::iterator di;
for (di = decal_children.begin(); di != decal_children.end(); ++di) {
EggGroup *child_group = (*di);
decal_base->add_child(child_group);
}
// Also set the decal state on the base.
decal_base->set_decal_flag(true);
}
}
// Now recurse on each of the child nodes.
for (ci = egg_parent->begin(); ci != egg_parent->end(); ++ci) {
EggNode *child = (*ci);
if (child->is_of_type(EggGroupNode::get_class_type())) {
EggGroupNode *child_group = DCAST(EggGroupNode, child);
if (!reparent_decals(child_group)) {
okflag = false;
}
}
}
return okflag;
}
////////////////////////////////////////////////////////////////////
// Function: MayaShader::string_transform_type
// Access: Public, Static
// Description: Returns the TransformType value corresponding to the
// indicated string, or TT_invalid.
////////////////////////////////////////////////////////////////////
MayaToEggConverter::TransformType MayaToEggConverter::
string_transform_type(const string &arg) {
if (cmp_nocase(arg, "all") == 0) {
return TT_all;
} else if (cmp_nocase(arg, "model") == 0) {
return TT_model;
} else if (cmp_nocase(arg, "dcs") == 0) {
return TT_dcs;
} else if (cmp_nocase(arg, "none") == 0) {
return TT_none;
} else {
return TT_invalid;
}
}