panda3d/dtool/src/interrogate/interfaceMakerPythonNative.cxx
2014-07-23 17:41:22 +00:00

4553 lines
171 KiB
C++
Executable File

// Filename: interfaceMakerPythonNative.cxx
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) Carnegie Mellon University. All rights reserved.
//
// All use of this software is subject to the terms of the revised BSD
// license. You should have received a copy of this license along
// with this source code in a file named "LICENSE."
//
////////////////////////////////////////////////////////////////////
#include "interfaceMakerPythonNative.h"
#include "interrogateBuilder.h"
#include "interrogate.h"
#include "functionRemap.h"
#include "parameterRemapUnchanged.h"
#include "typeManager.h"
#include "interrogateDatabase.h"
#include "interrogateType.h"
#include "interrogateFunction.h"
#include "cppFunctionType.h"
#include "cppPointerType.h"
#include "cppTypeDeclaration.h"
#include "cppStructType.h"
#include "vector"
#include "cppParameterList.h"
#include "algorithm"
#include <set>
#include <map>
extern bool inside_python_native;
extern InterrogateType dummy_type;
extern std::string EXPORT_IMPORT_PREFIX;
#define CLASS_PREFIX "Dtool_"
#define INSTANCE_PREFIX "Dtool_"
#define BASE_INSTANCE_NAME "Dtool_PyInstDef"
/////////////////////////////////////////////////////////
// Name Remapper...
// Snagged from ffi py code....
/////////////////////////////////////////////////////////
struct RenameSet {
const char *_from;
const char *_to;
int function_type;
};
struct FlagSet {
const char *_to;
int function_type;
};
///////////////////////////////////////////////////////////////////////////////////////
RenameSet methodRenameDictionary[] = {
{ "operator ==" , "__eq__", 0 },
{ "operator !=" , "__ne__", 0 },
{ "operator << " , "__lshift__", 0 },
{ "operator >>" , "__rshift__", 0 },
{ "operator <" , "__lt__", 0 },
{ "operator >" , "__gt__", 0 },
{ "operator <=" , "__le__", 0 },
{ "operator >=" , "__ge__", 0 },
{ "operator =" , "assign", 0 },
{ "operator ()" , "__call__", 0 },
{ "operator []" , "__getitem__", 0 },
{ "operator ++unary", "increment", 0 },
{ "operator ++" , "increment", 0 },
{ "operator --unary", "decrement", 0 },
{ "operator --" , "decrement", 0 },
{ "operator ^" , "__xor__", 0 },
{ "operator %" , "__mod__", 0 },
{ "operator !" , "logicalNot", 0 },
{ "operator ~unary", "__invert__", 0 },
{ "operator &" , "__and__", 0 },
{ "operator &&" , "logicalAnd", 0 },
{ "operator |" , "__or__", 0 },
{ "operator ||" , "logicalOr", 0 },
{ "operator +" , "__add__", 0 },
{ "operator -" , "__sub__", 0 },
{ "operator -unary", "__neg__", 0 },
{ "operator *" , "__mul__", 0 },
{ "operator /" , "__div__", 0 },
{ "operator +=" , "__iadd__", 1 },
{ "operator -=" , "__isub__", 1 },
{ "operator *=" , "__imul__", 1 },
{ "operator /=" , "__idiv__", 1 },
{ "operator ," , "concatenate", 0 },
{ "operator |=" , "__ior__", 1 },
{ "operator &=" , "__iand__", 1 },
{ "operator ^=" , "__ixor__", 1 },
{ "operator ~=" , "bitwiseNotEqual", 0 },
{ "operator ->" , "dereference", 0 },
{ "operator <<=" , "__ilshift__", 1 },
{ "operator >>=" , "__irshift__", 1 },
{ "operator typecast bool", "__nonzero__", 0 },
{ "__nonzero__" , "__nonzero__", 0 },
{ "__reduce__" , "__reduce__", 0 },
{ "__reduce_persist__", "__reduce_persist__", 0 },
{ "__copy__" , "__copy__", 0 },
{ "__deepcopy__" , "__deepcopy__", 0 },
{ "print" , "Cprint", 0 },
{ "CInterval.set_t", "_priv__cSetT", 0 },
{ "__bool__" , "__bool__", 0 },
{ "__bytes__" , "__bytes__", 0 },
{ "__iter__" , "__iter__", 0 },
{ "__getbuffer__" , "__getbuffer__", 0 },
{ "__releasebuffer__", "__releasebuffer__", 0 },
{ NULL, NULL, -1 }
};
const char *InPlaceSet[] = {
"__iadd__",
"__isub__",
"__imul__",
"__idiv__",
"__ior__",
"__iand__",
"__ixor__",
"__ilshift__",
"__irshift__",
"__itruediv__",
"__ifloordiv__",
"__imod__",
"__ipow__",
NULL,
};
///////////////////////////////////////////////////////////////////////////////////////
RenameSet classRenameDictionary[] = {
// No longer used, now empty.
{ NULL, NULL, -1 }
};
///////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////
const char *pythonKeywords[] = {
"and",
"as",
"assert",
"break",
"class",
"continue",
"def",
"del",
"elif",
"else",
"except",
"exec",
"finally",
"for",
"from",
"global",
"if",
"import",
"in",
"is",
"lambda",
"nonlocal",
"not",
"or",
"pass",
"print",
"raise",
"return",
"try",
"while",
"with",
"yield",
NULL
};
///////////////////////////////////////////////////////////////////////////////////////
std::string
checkKeyword(std::string &cppName) {
for (int x = 0; pythonKeywords[x] != NULL; x++) {
if (cppName == pythonKeywords[x]) {
return std::string("_") + cppName;
}
}
return cppName;
}
///////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////
std::string
classNameFromCppName(const std::string &cppName, bool mangle) {
//# initialize to empty string
std::string className = "";
//# These are the characters we want to strip out of the name
const std::string badChars("!@#$%^&*()<>,.-=+~{}? ");
bool nextCap = false;
bool firstChar = true && mangle;
for (std::string::const_iterator chr = cppName.begin();
chr != cppName.end();
chr++) {
if ((*chr == '_' || *chr == ' ') && mangle) {
nextCap = true;
} else if (badChars.find(*chr) != std::string::npos) {
if (!mangle) {
className += '_';
}
} else if (nextCap || firstChar) {
className += toupper(*chr);
nextCap = false;
firstChar = false;
} else {
className += * chr;
}
}
for (int x = 0; classRenameDictionary[x]._from != NULL; x++) {
if (cppName == classRenameDictionary[x]._from) {
className = classRenameDictionary[x]._to;
}
}
if (className.empty()) {
std::string text = "** ERROR ** Renaming class: " + cppName + " to empty string";
printf("%s", text.c_str());
}
className = checkKeyword(className);
//# FFIConstants.notify.debug('Renaming class: ' + cppName + ' to: ' + className)
return className;
}
///////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////
std::string
methodNameFromCppName(const std::string &cppName, const std::string &className, bool mangle) {
std::string origName = cppName;
if (origName.substr(0, 6) == "__py__") {
// By convention, a leading prefix of "__py__" is stripped. This
// indicates a Python-specific variant of a particular method.
origName = origName.substr(6);
}
std::string methodName;
const std::string badChars("!@#$%^&*()<>,.-=+~{}? ");
bool nextCap = false;
for (std::string::const_iterator chr = origName.begin();
chr != origName.end();
chr++) {
if ((*chr == '_' || *chr == ' ') && mangle) {
nextCap = true;
} else if (badChars.find(*chr) != std::string::npos) {
if (!mangle) {
methodName += '_';
}
} else if (nextCap) {
methodName += toupper(*chr);
nextCap = false;
} else {
methodName += *chr;
}
}
for (int x = 0; methodRenameDictionary[x]._from != NULL; x++) {
if (origName == methodRenameDictionary[x]._from) {
methodName = methodRenameDictionary[x]._to;
}
}
if (className.size() > 0) {
string lookup_name = className + '.' + cppName;
for (int x = 0; classRenameDictionary[x]._from != NULL; x++) {
if (lookup_name == methodRenameDictionary[x]._from) {
methodName = methodRenameDictionary[x]._to;
}
}
}
// # Mangle names that happen to be python keywords so they are not anymore
methodName = checkKeyword(methodName);
return methodName;
}
std::string methodNameFromCppName(InterfaceMaker::Function *func, const std::string &className, bool mangle) {
std::string cppName = func->_ifunc.get_name();
if (func->_ifunc.is_unary_op()) {
cppName += "unary";
}
return methodNameFromCppName(cppName, className, mangle);
}
///////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////
bool isInplaceFunction(InterfaceMaker::Function *func) {
std::string wname = methodNameFromCppName(func, "", false);
for (int x = 0; InPlaceSet[x] != NULL; x++) {
if (InPlaceSet[x] == wname) {
return true;
}
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::get_slotted_function_def
// Access: Private, Static
// Description: Determines whether this method should be mapped to
// one of Python's special slotted functions, those
// hard-coded functions that are assigned to particular
// function pointers within the object structure, for
// special functions like __getitem__ and __len__.
//
// Returns true if it has such a mapping, false if it is
// just a normal method. If it returns true, the
// SlottedFunctionDef structure is filled in with the
// important details.
////////////////////////////////////////////////////////////////////
bool InterfaceMakerPythonNative::
get_slotted_function_def(Object *obj, Function *func, SlottedFunctionDef &def) {
def._answer_location = string();
def._wrapper_type = WT_none;
def._min_version = 0;
string method_name = func->_ifunc.get_name();
bool is_unary_op = func->_ifunc.is_unary_op();
if (method_name == "operator +") {
def._answer_location = "tp_as_number->nb_add";
def._wrapper_type = WT_numeric_operator;
return true;
}
if (method_name == "operator -" && is_unary_op) {
def._answer_location = "tp_as_number->nb_negative";
def._wrapper_type = WT_no_params;
return true;
}
if (method_name == "operator -") {
def._answer_location = "tp_as_number->nb_subtract";
def._wrapper_type = WT_numeric_operator;
return true;
}
if (method_name == "operator *") {
def._answer_location = "tp_as_number->nb_multiply";
def._wrapper_type = WT_numeric_operator;
return true;
}
if (method_name == "operator /") {
def._answer_location = "tp_as_number->nb_divide";
def._wrapper_type = WT_numeric_operator;
return true;
}
if (method_name == "operator %") {
def._answer_location = "tp_as_number->nb_remainder";
def._wrapper_type = WT_numeric_operator;
return true;
}
if (method_name == "operator << ") {
def._answer_location = "tp_as_number->nb_lshift";
def._wrapper_type = WT_numeric_operator;
return true;
}
if (method_name == "operator >>") {
def._answer_location = "tp_as_number->nb_rshift";
def._wrapper_type = WT_numeric_operator;
return true;
}
if (method_name == "operator ^") {
def._answer_location = "tp_as_number->nb_xor";
def._wrapper_type = WT_numeric_operator;
return true;
}
if (method_name == "operator ~" && is_unary_op) {
def._answer_location = "tp_as_number->nb_invert";
def._wrapper_type = WT_no_params;
return true;
}
if (method_name == "operator &") {
def._answer_location = "tp_as_number->nb_and";
def._wrapper_type = WT_numeric_operator;
return true;
}
if (method_name == "operator |") {
def._answer_location = "tp_as_number->nb_or";
def._wrapper_type = WT_numeric_operator;
return true;
}
if (method_name == "__pow__") {
def._answer_location = "tp_as_number->nb_power";
def._wrapper_type = WT_ternary_operator;
return true;
}
if (method_name == "operator +=") {
def._answer_location = "tp_as_number->nb_inplace_add";
def._wrapper_type = WT_one_param;
def._min_version = 0x02000000;
return true;
}
if (method_name == "operator -=") {
def._answer_location = "tp_as_number->nb_inplace_subtract";
def._wrapper_type = WT_one_param;
def._min_version = 0x02000000;
return true;
}
if (method_name == "operator *=") {
def._answer_location = "tp_as_number->nb_inplace_multiply";
def._wrapper_type = WT_one_param;
def._min_version = 0x02000000;
return true;
}
if (method_name == "operator /=") {
def._answer_location = "tp_as_number->nb_inplace_divide";
def._wrapper_type = WT_one_param;
def._min_version = 0x02000000;
return true;
}
if (method_name == "operator %=") {
def._answer_location = ".tp_as_number->nb_inplace_remainder";
def._wrapper_type = WT_one_param;
def._min_version = 0x02000000;
return true;
}
if (method_name == "operator <<=") {
def._answer_location = "tp_as_number->nb_inplace_lshift";
def._wrapper_type = WT_one_param;
def._min_version = 0x02000000;
return true;
}
if (method_name == "operator >>=") {
def._answer_location = "tp_as_number->nb_inplace_rshift";
def._wrapper_type = WT_one_param;
def._min_version = 0x02000000;
return true;
}
if (method_name == "operator &=") {
def._answer_location = "tp_as_number->nb_inplace_and";
def._wrapper_type = WT_one_param;
def._min_version = 0x02000000;
return true;
}
if (method_name == "operator ^=") {
def._answer_location = "tp_as_number->nb_inplace_xor";
def._wrapper_type = WT_one_param;
def._min_version = 0x02000000;
return true;
}
if (method_name == "__ipow__") {
def._answer_location = "tp_as_number->nb_inplace_power";
def._wrapper_type = WT_one_or_two_params;
def._min_version = 0x02000000;
return true;
}
if (obj->_protocol_types & Object::PT_sequence) {
if (func->_flags & FunctionRemap::F_getitem_int) {
def._answer_location = "tp_as_sequence->sq_item";
def._wrapper_type = WT_sequence_getitem;
return true;
}
if (func->_flags & FunctionRemap::F_setitem_int) {
def._answer_location = "tp_as_sequence->sq_ass_item";
def._wrapper_type = WT_sequence_setitem;
return true;
}
if (func->_flags & FunctionRemap::F_size) {
def._answer_location = "tp_as_sequence->sq_length";
def._wrapper_type = WT_sequence_size;
return true;
}
}
if (obj->_protocol_types & Object::PT_mapping) {
if (func->_flags & FunctionRemap::F_getitem) {
def._answer_location = "tp_as_mapping->mp_subscript";
def._wrapper_type = WT_one_param;
return true;
}
if (func->_flags & FunctionRemap::F_setitem) {
def._answer_location = "tp_as_mapping->mp_ass_subscript";
def._wrapper_type = WT_mapping_setitem;
return true;
}
}
if (obj->_protocol_types & Object::PT_iter) {
if (method_name == "__iter__") {
def._answer_location = "tp_iter";
def._wrapper_type = WT_no_params;
return true;
}
if (method_name == "next" || method_name == "__next__") {
def._answer_location = "tp_iternext";
def._wrapper_type = WT_iter_next;
return true;
}
}
if (method_name == "operator ()") {
def._answer_location = "tp_call";
def._wrapper_type = WT_none;
return true;
}
if (method_name == "__getattr__") {
def._answer_location = "tp_getattro";
def._wrapper_type = WT_getattr;
return true;
}
if (method_name == "__setattr__") {
def._answer_location = "tp_setattro";
def._wrapper_type = WT_setattr;
return true;
}
if (method_name == "__nonzero__") {
// Python 2 style.
def._answer_location = "tp_as_number->nb_nonzero";
def._wrapper_type = WT_inquiry;
return true;
}
if (method_name == "__bool__") {
// Python 3 style.
def._answer_location = "tp_as_number->nb_nonzero";
def._wrapper_type = WT_inquiry;
return true;
}
if (method_name == "__getbuffer__") {
def._answer_location = "tp_as_buffer->bf_getbuffer";
def._wrapper_type = WT_getbuffer;
def._min_version = 0x02060000;
return true;
}
if (method_name == "__releasebuffer__") {
def._answer_location = "tp_as_buffer->bf_releasebuffer";
def._wrapper_type = WT_releasebuffer;
def._min_version = 0x02060000;
return true;
}
if (func->_ifunc.is_operator_typecast()) {
// A typecast operator. Check for a supported low-level typecast type.
if (!func->_remaps.empty()) {
if (TypeManager::is_bool(func->_remaps[0]->_return_type->get_orig_type())) {
// If it's a bool type, then we wrap it with the __nonzero__
// slot method.
def._answer_location = "tp_as_number->nb_nonzero";
def._wrapper_type = WT_inquiry;
return true;
} else if (TypeManager::is_integer(func->_remaps[0]->_return_type->get_orig_type())) {
// An integer type.
def._answer_location = "tp_as_number->nb_int";
def._wrapper_type = WT_no_params;
return true;
} else if (TypeManager::is_float(func->_remaps[0]->_return_type->get_orig_type())) {
// A floating-point (or double) type.
def._answer_location = "tp_as_number->nb_float";
def._wrapper_type = WT_no_params;
return true;
}
}
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
get_valid_child_classes(std::map<std::string, CastDetails> &answer, CPPStructType *inclass, const std::string &upcast_seed, bool can_downcast) {
if (inclass == NULL) {
return;
}
CPPStructType::Derivation::const_iterator bi;
for (bi = inclass->_derivation.begin();
bi != inclass->_derivation.end();
++bi) {
const CPPStructType::Base &base = (*bi);
// if (base._vis <= V_public)
// can_downcast = false;
CPPStructType *base_type = TypeManager::resolve_type(base._base)->as_struct_type();
if (base_type != NULL) {
std::string scoped_name = base_type->get_local_name(&parser);
if (answer.find(scoped_name) == answer.end()) {
answer[scoped_name]._can_downcast = can_downcast;
answer[scoped_name]._to_class_name = scoped_name;
answer[scoped_name]._structType = base_type;
if (base._is_virtual) {
answer[scoped_name]._can_downcast = false;
}
std::string local_upcast("(");
local_upcast += scoped_name + " *)"+ upcast_seed +"";
answer[scoped_name]._up_cast_string = local_upcast;
answer[scoped_name]._is_legal_py_class = is_cpp_type_legal(base_type);
} else {
answer[scoped_name]._can_downcast = false;
}
get_valid_child_classes(answer, base_type, answer[scoped_name]._up_cast_string, answer[scoped_name]._can_downcast);
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Function : write_python_instance
//
///////////////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_python_instance(ostream &out, int indent_level, const std::string &return_expr, const std::string &assign_to, std::string &owns_memory_flag, const std::string &class_name, CPPType *ctype, bool inplace, const std::string &const_flag) {
string assign_stmt("return ");
if (!assign_to.empty()) {
assign_stmt = assign_to + " = ";
}
if (inplace) {
indent(out, indent_level) << "Py_INCREF(self);\n";
indent(out, indent_level) << assign_stmt << "self;\n";
} else {
indent(out, indent_level) << "if (" << return_expr << " == NULL) {\n";
indent(out, indent_level) << " Py_INCREF(Py_None);\n";
indent(out, indent_level+2) << assign_stmt << "Py_None;\n";
indent(out, indent_level) << "} else {\n";
if (IsPandaTypedObject(ctype->as_struct_type())) {
std::string typestr = "(" + return_expr + ")->as_typed_object()->get_type_index()";
indent(out, indent_level+2) << assign_stmt
<< "DTool_CreatePyInstanceTyped((void *)" << return_expr << ", " << CLASS_PREFIX << make_safe_name(class_name) << ", " << owns_memory_flag << ", " << const_flag << ", " << typestr << ");\n";
} else {
// indent(out, indent_level) << "if (" << return_expr << "!= NULL)\n";
indent(out, indent_level+2) << assign_stmt
<< "DTool_CreatePyInstance((void *)" << return_expr << ", " << CLASS_PREFIX << make_safe_name(class_name) << ", " << owns_memory_flag << ", " << const_flag << ");\n";
}
indent(out, indent_level) << "}\n";
}
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::Constructor
// Access: Public
// Description:
////////////////////////////////////////////////////////////////////
InterfaceMakerPythonNative::
InterfaceMakerPythonNative(InterrogateModuleDef *def) :
InterfaceMakerPython(def)
{
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::Destructor
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
InterfaceMakerPythonNative::
~InterfaceMakerPythonNative() {
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::write_prototypes
// Access: Public, Virtual
// Description: Generates the list of function prototypes
// corresponding to the functions that will be output in
// write_functions().
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_prototypes(ostream &out_code, ostream *out_h) {
inside_python_native = true;
Functions::iterator fi;
if (out_h != NULL) {
*out_h << "#include \"py_panda.h\"\n\n";
}
out_code << "//********************************************************************\n";
out_code << "//*** prototypes for .. Global\n";
out_code << "//********************************************************************\n";
/*
for (fi = _functions.begin(); fi != _functions.end(); ++fi)
{
Function *func = (*fi);
if (!func->_itype.is_global() && is_function_legal(func))
write_prototype_for (out_code, func);
}
*/
Objects::iterator oi;
for (oi = _objects.begin(); oi != _objects.end(); ++oi) {
Object *object = (*oi).second;
if (object->_itype.is_class() || object->_itype.is_struct()) {
if (is_cpp_type_legal(object->_itype._cpptype)) {
if (isExportThisRun(object->_itype._cpptype)) {
write_prototypes_class(out_code, out_h, object);
} else {
//write_prototypes_class_external(out_code, object);
_external_imports.insert(make_safe_name(object->_itype.get_scoped_name()));
}
}
}
}
out_code << "//********************************************************************\n";
out_code << "//*** prototypes for .. External Objects\n";
out_code << "//********************************************************************\n";
for (std::set<std::string>::iterator ii = _external_imports.begin(); ii != _external_imports.end(); ii++) {
out_code << "IMPORT_THIS struct Dtool_PyTypedObject Dtool_" << *ii << ";\n";
}
inside_python_native = false;
}
/////////////////////////////////////////////////////////////////////////////////////////////
// Function : write_prototypes_class_external
//
// Description : Output enough enformation to a declartion of a externally
// generated dtool type object
/////////////////////////////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_prototypes_class_external(ostream &out, Object *obj) {
std::string class_name = make_safe_name(obj->_itype.get_scoped_name());
std::string c_class_name = obj->_itype.get_true_name();
std::string preferred_name = obj->_itype.get_name();
out << "//********************************************************************\n";
out << "//*** prototypes for external.. " << class_name << "\n";
out << "//********************************************************************\n";
out << "typedef " << c_class_name << " " << class_name << "_localtype;\n";
out << "Define_Module_Class_Forward(" << _def->module_name << ", " << class_name << ", " << class_name << "_localtype, " << classNameFromCppName(preferred_name, false) << ");\n";
}
///////////////////////////////////////// ////////////////////////////////////////////////////
// Function : write_prototypes_class
//
/////////////////////////////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_prototypes_class(ostream &out_code, ostream *out_h, Object *obj) {
std::string ClassName = make_safe_name(obj->_itype.get_scoped_name());
Functions::iterator fi;
out_code << "//********************************************************************\n";
out_code << "//*** prototypes for .. " << ClassName << "\n";
out_code << "//********************************************************************\n";
/*
for (fi = obj->_methods.begin(); fi != obj->_methods.end(); ++fi) {
Function *func = (*fi);
write_prototype_for(out_code, func);
}
*/
/*
for (fi = obj->_constructors.begin(); fi != obj->_constructors.end(); ++fi) {
Function *func = (*fi);
std::string fname = "int Dtool_Init_" + ClassName + "(PyObject *self, PyObject *args, PyObject *kwds)";
write_prototype_for_name(out_code, obj, func, fname);
}
*/
write_class_declarations(out_code, out_h, obj);
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::write_functions
// Access: Public, Virtual
// Description: Generates the list of functions that are appropriate
// for this interface. This function is called *before*
// write_prototypes(), above.
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_functions(ostream &out) {
inside_python_native = true;
out << "//********************************************************************\n";
out << "//*** Functions for .. Global\n" ;
out << "//********************************************************************\n";
Functions::iterator fi;
for (fi = _functions.begin(); fi != _functions.end(); ++fi) {
Function *func = (*fi);
if (!func->_itype.is_global() && is_function_legal(func)) {
write_function_for_top(out, NULL, func);
}
}
Objects::iterator oi;
for (oi = _objects.begin(); oi != _objects.end(); ++oi) {
Object *object = (*oi).second;
if (object->_itype.is_class() || object->_itype.is_struct()) {
if (is_cpp_type_legal(object->_itype._cpptype)) {
if (isExportThisRun(object->_itype._cpptype)) {
write_class_details(out, object);
}
}
}
}
//Objects::iterator oi;
for (oi = _objects.begin(); oi != _objects.end(); ++oi) {
Object *object = (*oi).second;
if (!object->_itype.get_outer_class()) {
if (object->_itype.is_class() || object->_itype.is_struct()) {
if (is_cpp_type_legal(object->_itype._cpptype)) {
if (isExportThisRun(object->_itype._cpptype)) {
write_module_class(out, object);
}
}
}
}
}
inside_python_native = true;
}
////////////////////////////////////////////////////////////
// Function : write_class_details
////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_class_details(ostream &out, Object *obj) {
Functions::iterator fi;
//std::string cClassName = obj->_itype.get_scoped_name();
std::string ClassName = make_safe_name(obj->_itype.get_scoped_name());
std::string cClassName = obj->_itype.get_true_name();
out << "//********************************************************************\n";
out << "//*** Functions for .. " << cClassName << "\n" ;
out << "//********************************************************************\n";
for (fi = obj->_methods.begin(); fi != obj->_methods.end(); ++fi) {
Function *func = (*fi);
if (func) {
write_function_for_top(out, obj, func);
}
}
if (obj->_constructors.size() == 0) {
out << "int Dtool_Init_" + ClassName + "(PyObject *self, PyObject *args, PyObject *kwds) {\n"
<< " PyErr_SetString(PyExc_TypeError, \"cannot init constant class (" << cClassName << ")\");\n"
<< " return -1;\n"
<< "}\n\n";
out << "int Dtool_InitNoCoerce_" << ClassName << "(PyObject *self, PyObject *args) {\n"
<< " PyErr_SetString(PyExc_TypeError, \"cannot init constant class (" << cClassName << ")\");\n"
<< " return -1;\n"
<< "}\n\n";
} else {
bool coercion_attempted = false;
for (fi = obj->_constructors.begin(); fi != obj->_constructors.end(); ++fi) {
Function *func = (*fi);
std::string fname = "int Dtool_Init_" + ClassName + "(PyObject *self, PyObject *args, PyObject *kwds)";
write_function_for_name(out, obj, func, fname, true, coercion_attempted, AT_keyword_args, true);
}
if (coercion_attempted) {
// If a coercion attempt was written into the above constructor,
// then write a secondary constructor, that won't attempt any
// coercion. We'll need this for nested coercion calls.
for (fi = obj->_constructors.begin(); fi != obj->_constructors.end(); ++fi) {
Function *func = (*fi);
std::string fname = "int Dtool_InitNoCoerce_" + ClassName + "(PyObject *self, PyObject *args)";
write_function_for_name(out, obj, func, fname, false, coercion_attempted, AT_varargs, true);
}
} else {
// Otherwise, since the above constructor didn't involve any
// coercion anyway, we can use the same function for both
// purposes. Construct a trivial wrapper.
out << "int Dtool_InitNoCoerce_" << ClassName << "(PyObject *self, PyObject *args) {\n"
<< " return Dtool_Init_" << ClassName << "(self, args, NULL);\n"
<< "}\n\n";
}
}
MakeSeqs::iterator msi;
for (msi = obj->_make_seqs.begin(); msi != obj->_make_seqs.end(); ++msi) {
write_make_seq(out, obj, ClassName, *msi);
}
CPPType *cpptype = TypeManager::resolve_type(obj->_itype._cpptype);
std::map<string, CastDetails> details;
std::map<string, CastDetails>::iterator di;
builder.get_type(TypeManager::unwrap(cpptype), false);
get_valid_child_classes(details, cpptype->as_struct_type());
for (di = details.begin(); di != details.end(); di++) {
//InterrogateType ptype =idb->get_type(di->first);
if (di->second._is_legal_py_class && !isExportThisRun(di->second._structType))
_external_imports.insert(make_safe_name(di->second._to_class_name));
//out << "IMPORT_THIS struct Dtool_PyTypedObject Dtool_" << make_safe_name(di->second._to_class_name) << ";\n";
}
{ // the Cast Converter
out << "inline void *Dtool_UpcastInterface_" << ClassName << "(PyObject *self, Dtool_PyTypedObject *requested_type) {\n";
out << " Dtool_PyTypedObject *SelfType = ((Dtool_PyInstDef *)self)->_My_Type;\n";
out << " if (SelfType != &Dtool_" << ClassName << ") {\n";
out << " printf(\"" << ClassName << " ** Bad Source Type-- Requesting Conversion from %s to %s\\n\", ((Dtool_PyInstDef *)self)->_My_Type->_name, requested_type->_name); fflush(NULL);\n";;
out << " return NULL;\n";
out << " }\n";
out << "\n";
out << " " << cClassName << " *local_this = (" << cClassName << " *)((Dtool_PyInstDef *)self)->_ptr_to_object;\n";
out << " if (requested_type == &Dtool_" << ClassName << ") {\n";
out << " return local_this;\n";
out << " }\n";
for (di = details.begin(); di != details.end(); di++) {
if (di->second._is_legal_py_class) {
out << " if (requested_type == &Dtool_" << make_safe_name(di->second._to_class_name) << ") {\n";
out << " return " << di->second._up_cast_string << " local_this;\n";
out << " }\n";
}
}
out << " return NULL;\n";
out << "}\n\n";
out << "inline void *Dtool_DowncastInterface_" << ClassName << "(void *from_this, Dtool_PyTypedObject *from_type) {\n";
out << " if (from_this == NULL || from_type == NULL) {\n";
out << " return NULL;\n";
out << " }\n";
out << " if (from_type == &Dtool_" << ClassName << ") {\n";
out << " return from_this;\n";
out << " }\n";
for (di = details.begin(); di != details.end(); di++) {
if (di->second._can_downcast && di->second._is_legal_py_class) {
out << " if (from_type == &Dtool_" << make_safe_name(di->second._to_class_name) << ") {\n";
out << " " << di->second._to_class_name << "* other_this = (" << di->second._to_class_name << "*)from_this;\n" ;
out << " return (" << cClassName << "*)other_this;\n";
out << " }\n";
}
}
out << " return (void *) NULL;\n";
out << "}\n\n";
}
}
////////////////////////////////////////////////////////////
/// Function : write_class_declarations
//
//
////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_class_declarations(ostream &out, ostream *out_h, Object *obj) {
const InterrogateType &itype = obj->_itype;
std::string class_name = make_safe_name(obj->_itype.get_scoped_name());
std::string c_class_name = obj->_itype.get_true_name();
std::string preferred_name = itype.get_name();
std::string class_struct_name = std::string(CLASS_PREFIX) + class_name;
out << "typedef " << c_class_name << " " << class_name << "_localtype;\n";
if (obj->_itype.has_destructor() ||
obj->_itype.destructor_is_inherited()) {
if (TypeManager::is_reference_count(obj->_itype._cpptype)) {
out << "Define_Module_ClassRef(" << _def->module_name << ", " << class_name << ", " << class_name << "_localtype, " << classNameFromCppName(preferred_name, false) << ");\n";
} else {
out << "Define_Module_Class(" << _def->module_name << ", " << class_name << ", " << class_name << "_localtype, " << classNameFromCppName(preferred_name, false) << ");\n";
}
} else {
if (TypeManager::is_reference_count(obj->_itype._cpptype)) {
out << "Define_Module_ClassRef_Private(" << _def->module_name << ", " << class_name << ", " << class_name << "_localtype, " << classNameFromCppName(preferred_name, false) << ");\n";
} else {
out << "Define_Module_Class_Private(" << _def->module_name << ", " << class_name << ", " << class_name << "_localtype, " << classNameFromCppName(preferred_name, false) << ");\n";
}
}
out << "\n";
if (out_h != NULL) {
*out_h << "extern \"C\" " << EXPORT_IMPORT_PREFIX << " struct Dtool_PyTypedObject Dtool_" << class_name << ";\n";
}
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::write_sub_module
// Access: Public, Virtual
// Description: Generates whatever additional code is required to
// support a module file.
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_sub_module(ostream &out, Object *obj) {
//Object * obj = _objects[_embeded_index] ;
std::string class_name = make_safe_name(obj->_itype.get_scoped_name());
out << " // Module init upcall for " << obj->_itype.get_scoped_name() << "\n";
out << " Dtool_PyModuleClassInit_" << class_name << "(module);\n";
}
/////////////////////////////////////////////////////////////////////////////
// Function : write_module_support
/////////////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_module_support(ostream &out, ostream *out_h, InterrogateModuleDef *def) {
out << "//********************************************************************\n";
out << "//*** Module Object Linker ..\n";
out << "//********************************************************************\n";
out << "static void BuildInstants(PyObject * module) {\n";
Objects::iterator oi;
for (oi = _objects.begin(); oi != _objects.end(); ++oi) {
Object *object = (*oi).second;
if (!object->_itype.get_outer_class()) {
if (object->_itype.is_enum()) {
int enum_count = object->_itype.number_of_enum_values();
if (enum_count > 0) {
out << "//********************************************************************\n";
out << "//*** Module Enums .." << object->_itype.get_scoped_name() << "\n";
out << "//********************************************************************\n";
}
for (int xx = 0; xx< enum_count; xx++) {
string name1 = classNameFromCppName(object->_itype.get_enum_value_name(xx), false);
string name2 = classNameFromCppName(object->_itype.get_enum_value_name(xx), true);
int enum_value = object->_itype.get_enum_value(xx);
out << " PyModule_AddIntConstant(module, \"" << name1 << "\", " << enum_value << ");\n";
if (name1 != name2) {
// Also write the mangled name, for historical purposes.
out << " PyModule_AddIntConstant(module, \"" << name2 << "\", " << enum_value << ");\n";
}
}
}
}
}
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
int num_manifests = idb->get_num_global_manifests();
for (int mi = 0; mi < num_manifests; mi++) {
ManifestIndex manifest_index = idb->get_global_manifest(mi);
const InterrogateManifest &iman = idb->get_manifest(manifest_index);
if (iman.has_getter()) {
FunctionIndex func_index = iman.get_getter();
record_function(dummy_type, func_index);
}
string name1 = classNameFromCppName(iman.get_name(), false);
string name2 = classNameFromCppName(iman.get_name(), true);
if (iman.has_int_value()) {
int value = iman.get_int_value();
out << " PyModule_AddIntConstant(module, \"" << name1 << "\", " << value << ");\n";
if (name1 != name2) {
// Also write the mangled name, for historical purposes.
out << " PyModule_AddIntConstant(module, \"" << name2 << "\", " << value << ");\n";
}
} else {
string value = iman.get_definition();
out << " PyModule_AddStringConstant(module, \"" << name1 << "\", \"" << value << "\");\n";
if (name1 != name2) {
out << " PyModule_AddStringConstant(module, \"" << name2 << "\", \"" << value << "\");\n";
}
}
}
for (oi = _objects.begin(); oi != _objects.end(); ++oi) {
Object *object = (*oi).second;
if (!object->_itype.get_outer_class()) {
if (object->_itype.is_class() ||object->_itype.is_struct()) {
if (is_cpp_type_legal(object->_itype._cpptype)) {
if (isExportThisRun(object->_itype._cpptype)) {
write_sub_module(out, object);
}
}
}
}
}
out << "//********************************************************************\n";
out << "//*** Module Init Upcall .. Externally Defined Class\n";
out << "//********************************************************************\n";
// for (std::set< std::string >::iterator ii = _external_imports.begin(); ii != _external_imports.end(); ii++)
// out << "Dtool_" <<*ii << "._Dtool_ClassInit(NULL);\n";
out << "}\n\n";
bool force_base_functions = true;
out << "static PyMethodDef python_simple_funcs[] = {\n";
Functions::iterator fi;
for (fi = _functions.begin(); fi != _functions.end(); ++fi) {
Function *func = (*fi);
if (!func->_itype.is_global() && is_function_legal(func)) {
string name1 = methodNameFromCppName(func, "", false);
string name2 = methodNameFromCppName(func, "", true);
string flags;
switch (func->_args_type) {
case AT_keyword_args:
flags = "METH_VARARGS | METH_KEYWORDS";
break;
case AT_varargs:
flags = "METH_VARARGS";
break;
case AT_single_arg:
flags = "METH_O";
break;
default:
flags = "METH_NOARGS";
break;
}
// Note: we shouldn't add METH_STATIC here, since both METH_STATIC
// and METH_CLASS are illegal for module-level functions.
out << " { \"" << name1 << "\", (PyCFunction) &"
<< func->_name << ", " << flags << ", (const char *)" << func->_name << "_comment},\n";
if (name1 != name2) {
out << " { \"" << name2 << "\", (PyCFunction) &"
<< func->_name << ", " << flags << ", (const char *)" << func->_name << "_comment},\n";
}
}
}
if (force_base_functions) {
out << " // Support Function For Dtool_types ... for now in each module ??\n";
out << " {\"Dtool_BorrowThisReference\", &Dtool_BorrowThisReference, METH_VARARGS, \"Used to borrow 'this' pointer (to, from)\\nAssumes no ownership.\"},\n";
out << " {\"Dtool_AddToDictionary\", &Dtool_AddToDictionary, METH_VARARGS, \"Used to add items into a tp_dict\"},\n";
}
out << " {NULL, NULL, 0, NULL}\n" << "};\n\n";
out << "EXPORT_THIS struct LibraryDef " << def->library_name << "_moddef = {python_simple_funcs, BuildInstants};\n";
if (out_h != NULL) {
*out_h << "extern struct LibraryDef " << def->library_name << "_moddef;\n";
}
}
/////////////////////////////////////////////////////////////////////////////
///// Function : write_module
/////////////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_module(ostream &out, ostream *out_h, InterrogateModuleDef *def) {
InterfaceMakerPython::write_module(out, out_h, def);
Objects::iterator oi;
out << "//********************************************************************\n";
out << "//*** Py Init Code For .. GlobalScope\n" ;
out << "//********************************************************************\n";
out << "#if PY_MAJOR_VERSION >= 3\n"
<< "static struct PyModuleDef python_native_module = {\n"
<< " PyModuleDef_HEAD_INIT,\n"
<< " \"" << def->module_name << "\",\n"
<< " NULL,\n"
<< " -1,\n"
<< " NULL,\n"
<< " NULL, NULL, NULL, NULL\n"
<< "};\n"
<< "\n"
<< "#ifdef _WIN32\n"
<< "extern \"C\" __declspec(dllexport) PyObject *PyInit_" << def->module_name << "();\n"
<< "#else\n"
<< "extern \"C\" PyObject *PyInit_" << def->module_name << "();\n"
<< "#endif\n"
<< "\n"
<< "PyObject *PyInit_" << def->module_name << "() {\n"
<< " LibraryDef *refs[] = {&" << def->library_name << "_moddef, NULL};\n"
<< " return Dtool_PyModuleInitHelper(refs, &python_native_module);\n"
<< "}\n"
<< "\n"
<< "#else // Python 2 case\n"
<< "\n"
<< "#ifdef _WIN32\n"
<< "extern \"C\" __declspec(dllexport) void init" << def->module_name << "();\n"
<< "#else\n"
<< "extern \"C\" void init" << def->module_name << "();\n"
<< "#endif\n"
<< "\n"
<< "void init" << def->module_name << "() {\n"
<< " LibraryDef *refs[] = {&" << def->library_name << "_moddef, NULL};\n"
<< " Dtool_PyModuleInitHelper(refs, \"" << def->module_name << "\");\n"
<< "}\n"
<< "\n"
<< "#endif\n"
<< "\n";
}
/////////////////////////////////////////////////////////////////////////////////////////////
// Function :write_module_class
/////////////////////////////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_module_class(ostream &out, Object *obj) {
bool has_local_hash = false;
bool has_local_repr = false;
bool has_local_str = false;
bool has_local_richcompare = false;
bool has_local_getbuffer = false;
{
int num_nested = obj->_itype.number_of_nested_types();
for (int ni = 0; ni < num_nested; ni++) {
TypeIndex nested_index = obj->_itype.get_nested_type(ni);
Object * nested_obj = _objects[nested_index];
if (nested_obj->_itype.is_class() || nested_obj->_itype.is_struct()) {
write_module_class(out, nested_obj);
}
}
}
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
std::string ClassName = make_safe_name(obj->_itype.get_scoped_name());
std::string cClassName = obj->_itype.get_true_name();
std::string export_class_name = classNameFromCppName(obj->_itype.get_name(), false);
std::string export_class_name2 = classNameFromCppName(obj->_itype.get_name(), true);
Functions::iterator fi;
out << "//********************************************************************\n";
out << "//*** Py Init Code For .. " << ClassName << " | " << export_class_name << "\n" ;
out << "//********************************************************************\n";
out << "PyMethodDef Dtool_Methods_" << ClassName << "[] = {\n";
std::map<Function *, SlottedFunctionDef> slotted_functions;
// function Table
bool got_copy = false;
bool got_deepcopy = false;
for (fi = obj->_methods.begin(); fi != obj->_methods.end(); ++fi) {
Function *func = (*fi);
if (func->_name == "__copy__") {
got_copy = true;
} else if (func->_name == "__deepcopy__") {
got_deepcopy = true;
}
string name1 = methodNameFromCppName(func, export_class_name, false);
string name2 = methodNameFromCppName(func, export_class_name, true);
string flags;
switch (func->_args_type) {
case AT_keyword_args:
flags = "METH_VARARGS | METH_KEYWORDS";
break;
case AT_varargs:
flags = "METH_VARARGS";
break;
case AT_single_arg:
flags = "METH_O";
break;
default:
flags = "METH_NOARGS";
break;
}
if (!func->_has_this) {
flags += " | METH_STATIC";
}
out << " { \"" << name1 << "\", (PyCFunction) &"
<< func->_name << ", " << flags << ", (char *) " << func->_name << "_comment},\n";
if (name1 != name2) {
out << " { \"" << name2 << "\", (PyCFunction) &"
<< func->_name << ", " << flags << ", (char *) " << func->_name << "_comment},\n";
}
SlottedFunctionDef slotted_def;
if (get_slotted_function_def(obj, func, slotted_def)) {
slotted_functions[func] = slotted_def;
}
}
if (obj->_protocol_types & Object::PT_make_copy) {
if (!got_copy) {
out << " { \"__copy__\", (PyCFunction) &copy_from_make_copy, METH_NOARGS, NULL},\n";
got_copy = true;
}
} else if (obj->_protocol_types & Object::PT_copy_constructor) {
if (!got_copy) {
out << " { \"__copy__\", (PyCFunction) &copy_from_copy_constructor, METH_NOARGS, NULL},\n";
got_copy = true;
}
}
if (got_copy && !got_deepcopy) {
out << " { \"__deepcopy__\", (PyCFunction) &map_deepcopy_to_copy, METH_VARARGS, NULL},\n";
}
MakeSeqs::iterator msi;
for (msi = obj->_make_seqs.begin(); msi != obj->_make_seqs.end(); ++msi) {
string flags = "METH_NOARGS";
if (obj->is_static_method((*msi)->_element_name)) {
flags += " | METH_CLASS";
}
string name1 = methodNameFromCppName((*msi)->_seq_name, export_class_name, false);
string name2 = methodNameFromCppName((*msi)->_seq_name, export_class_name, true);
out << " { \"" << name1
<< "\", (PyCFunction) &" << (*msi)->_name << ", " << flags << ", NULL},\n";
if (name1 != name2) {
out << " { \"" << name2
<< "\", (PyCFunction) &" << (*msi)->_name << ", " << flags << ", NULL},\n";
}
}
out << " { NULL, NULL }\n"
<< "};\n\n";
int num_derivations = obj->_itype.number_of_derivations();
int di;
for (di = 0; di < num_derivations; di++) {
TypeIndex d_type_Index = obj->_itype.get_derivation(di);
if (!interrogate_type_is_unpublished(d_type_Index)) {
const InterrogateType &d_itype = idb->get_type(d_type_Index);
if (is_cpp_type_legal(d_itype._cpptype)) {
if (!isExportThisRun(d_itype._cpptype)) {
_external_imports.insert(make_safe_name(d_itype.get_scoped_name().c_str()));
//out << "IMPORT_THIS struct Dtool_PyTypedObject Dtool_" << make_safe_name(d_itype.get_scoped_name().c_str()) << ";\n";
}
}
}
}
std::vector<std::string> bases;
for (di = 0; di < num_derivations; di++) {
TypeIndex d_type_Index = obj->_itype.get_derivation(di);
if (!interrogate_type_is_unpublished(d_type_Index)) {
const InterrogateType &d_itype = idb->get_type(d_type_Index);
if (is_cpp_type_legal(d_itype._cpptype)) {
bases.push_back(make_safe_name(d_itype.get_scoped_name().c_str()));
}
}
}
if (bases.empty()) {
bases.push_back("DTOOL_SUPER_BASE");
}
{
std::map<Function *, SlottedFunctionDef>::iterator rfi; // slotted_functions;
for (rfi = slotted_functions.begin(); rfi != slotted_functions.end(); rfi++) {
Function *func = rfi->first;
bool func_varargs = true;
string call_func;
switch (func->_args_type) {
case AT_keyword_args:
call_func = func->_name + "(self, args, NULL)";
break;
case AT_varargs:
call_func = func->_name + "(self, args)";
break;
case AT_single_arg:
func_varargs = false;
call_func = func->_name + "(self, arg)";
break;
default:
func_varargs = false;
call_func = func->_name + "(self)";
}
switch (rfi->second._wrapper_type) {
case WT_no_params:
// PyObject *func(PyObject *self)
{
out << "//////////////////\n";
out << "// A wrapper function to satisfy Python's internal calling conventions.\n";
out << "// " << ClassName << " ..." << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
out << "//////////////////\n";
out << "static PyObject *" << func->_name << methodNameFromCppName(func, export_class_name, false) << "(PyObject *self) {\n";
if (func_varargs) {
out << " PyObject *args = PyTuple_New(0);\n";
out << " PyObject *result = " << call_func << ";\n";
out << " Py_DECREF(args);\n";
out << " return result;\n";
} else {
out << " return " << call_func << ";\n";
}
out << "}\n\n";
}
break;
case WT_one_param:
case WT_numeric_operator:
// PyObject *func(PyObject *self, PyObject *one)
{
out << "//////////////////\n";
out << "// A wrapper function to satisfy Python's internal calling conventions.\n";
out << "// " << ClassName << " ..." << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
out << "//////////////////\n";
out << "static PyObject *" << func->_name << methodNameFromCppName(func, export_class_name, false) << "(PyObject *self, PyObject *arg) {\n";
if (func_varargs) {
out << " PyObject *args = PyTuple_Pack(1, arg);\n";
out << " PyObject *result = " << call_func << ";\n";
out << " Py_DECREF(args);\n";
out << " return result;\n";
} else {
out << " return " << call_func << ";\n";
}
out << "}\n\n";
}
break;
case WT_setattr:
// int func(PyObject *self, PyObject *one, PyObject *two = NULL)
{
out << "//////////////////\n";
out << "// A wrapper function to satisfy Python's internal calling conventions.\n";
out << "// " << ClassName << " ..." << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
out << "//////////////////\n";
out << "static int " << func->_name << methodNameFromCppName(func, export_class_name, false) << "(PyObject *self, PyObject *arg, PyObject *arg2) {\n";
if (func_varargs) {
out << " PyObject *args;\n";
out << " if (arg2 == NULL) {\n";
out << " args = PyTuple_Pack(1, arg);\n";
out << " } else {\n";
out << " args = PyTuple_Pack(2, arg, arg2);\n";
out << " }\n";
out << " PyObject *py_result = " << call_func << ";\n";
out << " Py_DECREF(args);\n";
} else {
out << " PyObject *py_result = " << call_func << ";\n";
}
out << " if (py_result == NULL) return -1;\n";
out << "#if PY_MAJOR_VERSION >= 3\n";
out << " int result = PyLong_AsLong(py_result);\n";
out << "#else\n";
out << " int result = PyInt_AsLong(py_result);\n";
out << "#endif\n";
out << " Py_DECREF(py_result);\n";
out << " return result;\n";
out << "}\n\n";
}
break;
case WT_getattr:
// PyObject *func(PyObject *self, PyObject *one)
// Specifically to implement __getattr__.
// With special handling to pass up to
// PyObject_GenericGetAttr() if it returns NULL.
{
out << "//////////////////\n";
out << "// A wrapper function to satisfy Python's internal calling conventions.\n";
out << "// " << ClassName << " ..." << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
out << "//////////////////\n";
out << "static PyObject *" << func->_name << methodNameFromCppName(func, export_class_name, false) << "(PyObject *self, PyObject *arg) {\n";
if (func_varargs) {
out << " PyObject *args = PyTuple_Pack(1, arg);\n";
out << " PyObject *result = " << call_func << ";\n";
out << " Py_DECREF(args);\n";
} else {
out << " PyObject *result = " << call_func << ";\n";
}
out << " if (result == NULL) {\n";
out << " PyErr_Clear();\n";
out << " return PyObject_GenericGetAttr(self, arg);\n";
out << " }\n";
out << " return result;\n";
out << "}\n\n";
}
break;
case WT_sequence_getitem:
// PyObject *func(PyObject *self, Py_ssize_t index)
{
out << "//////////////////\n";
out << "// A wrapper function to satisfy Python's internal calling conventions.\n";
out << "// " << ClassName << " ..." << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
out << "//////////////////\n";
out << "static PyObject *" << func->_name << methodNameFromCppName(func, export_class_name, false) << "(PyObject *self, Py_ssize_t index) {\n";
out << " " << cClassName << " *local_this = NULL;\n";
out << " DTOOL_Call_ExtractThisPointerForType(self, &Dtool_" << ClassName << ", (void **)&local_this);\n";
out << " if (local_this == NULL) {\n";
out << " PyErr_SetString(PyExc_AttributeError, \"C++ object is not yet constructed, or already destructed.\");\n";
out << " return NULL;\n";
out << " }\n\n";
// This is a getitem or setitem of a sequence type. This means we
// *need* to raise IndexError if we're out of bounds. We have to
// assume the bounds are 0 .. this->size() (this is the same
// assumption that Python makes).
out << " if (index < 0 || index >= local_this->size()) {\n";
out << " PyErr_SetString(PyExc_IndexError, \"" << ClassName << " index out of range\");\n";
out << " return NULL;\n";
out << " }\n";
// Gather the remaps with the F_getitem_int flag.
std::set<FunctionRemap*> remaps;
Function::Remaps::const_iterator ri;
for (ri = func->_remaps.begin(); ri != func->_remaps.end(); ++ri) {
FunctionRemap *remap = (*ri);
if (is_remap_legal(remap) && (remap->_flags & FunctionRemap::F_getitem_int)) {
remaps.insert(remap);
}
}
string expected_params;
bool coercion_attempted = false;
write_function_forset(out, obj, func, remaps, expected_params, 2, false, false,
coercion_attempted, AT_no_args, false, "index");
out << " return NULL;\n";
out << "}\n\n";
}
break;
case WT_sequence_setitem:
// int_t func(PyObject *self, Py_ssize_t index, PyObject *value)
{
out << "//////////////////\n";
out << "// A wrapper function to satisfy Python's internal calling conventions.\n";
out << "// " << ClassName << " ..." << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
out << "//////////////////\n";
out << "static int " << func->_name << methodNameFromCppName(func, export_class_name, false) << "(PyObject *self, Py_ssize_t index, PyObject *arg) {\n";
out << " " << cClassName << " *local_this = NULL;\n";
out << " DTOOL_Call_ExtractThisPointerForType(self, &Dtool_" << ClassName << ", (void **)&local_this);\n";
out << " if (local_this == NULL) {\n";
out << " PyErr_SetString(PyExc_AttributeError, \"C++ object is not yet constructed, or already destructed.\");\n";
out << " return -1;\n";
out << " }\n\n";
out << " if (index < 0 || index >= local_this->size()) {\n";
out << " PyErr_SetString(PyExc_IndexError, \"" << ClassName << " index out of range\");\n";
out << " return -1;\n";
out << " }\n";
// Gather the remaps with the F_getitem_int flag.
std::set<FunctionRemap*> remaps;
Function::Remaps::const_iterator ri;
for (ri = func->_remaps.begin(); ri != func->_remaps.end(); ++ri) {
FunctionRemap *remap = (*ri);
if (is_remap_legal(remap) && (remap->_flags & FunctionRemap::F_setitem_int)) {
remaps.insert(remap);
}
}
// Note: we disallow parameter coercion for setitem. It's not clear if anybody
// uses it in this case, and since some people may need to call this function
// very often, it's probably best to disable it for performance.
string expected_params;
bool coercion_attempted = false;
write_function_forset(out, obj, func, remaps, expected_params, 2, false, false,
coercion_attempted, AT_single_arg, true, "index");
out << " if (!PyErr_Occurred()) {\n";
out << " PyErr_SetString(PyExc_TypeError,\n";
out << " \"Arguments must match:\\n\"\n";
output_quoted(out, 6, expected_params);
out << ");\n";
out << " }\n";
out << " return -1;\n";
out << "}\n\n";
}
break;
case WT_sequence_size:
// Py_ssize_t func(PyObject *self)
{
out << "//////////////////\n";
out << "// A wrapper function to satisfy Python's internal calling conventions.\n";
out << "// " << ClassName << " ..." << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
out << "//////////////////\n";
out << "static Py_ssize_t " << func->_name << methodNameFromCppName(func, export_class_name, false) << "(PyObject *self) {\n";
out << " " << cClassName << " *local_this = NULL;\n";
out << " DTOOL_Call_ExtractThisPointerForType(self, &Dtool_" << ClassName << ", (void **)&local_this);\n";
out << " if (local_this == NULL) {\n";
out << " PyErr_SetString(PyExc_AttributeError, \"C++ object is not yet constructed, or already destructed.\");\n";
out << " return -1;\n";
out << " }\n\n";
// This is a cheap cheat around all of the overhead of calling the wrapper function.
out << " return (Py_ssize_t) local_this->" << func->_ifunc.get_name() << "();\n";
out << "}\n\n";
}
break;
case WT_mapping_setitem:
// int func(PyObject *self, PyObject *one, PyObject *two)
{
out << "//////////////////\n";
out << "// A wrapper function to satisfy Python's internal calling conventions.\n";
out << "// " << ClassName << " ..." << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
out << "//////////////////\n";
out << "static int " << func->_name << methodNameFromCppName(func, export_class_name, false) << "(PyObject *self, PyObject *arg, PyObject *arg2) {\n";
if (func_varargs) {
out << " PyObject *args = PyTuple_Pack(2, arg, arg2);\n";
out << " PyObject *result = " << call_func << ";\n";
out << " Py_DECREF(args);\n";
} else {
out << " PyObject *result = " << call_func << ";\n";
}
out << " if (result == NULL) {\n";
out << " return -1;\n";
out << " }\n";
out << " Py_DECREF(result);\n";
out << " return 0;\n";
out << "}\n\n";
}
break;
case WT_inquiry:
// int func(PyObject *self)
{
out << "//////////////////\n";
out << "// A wrapper function to satisfy Python's internal calling conventions.\n";
out << "// " << ClassName << " ..." << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
out << "//////////////////\n";
out << "static int " << func->_name << methodNameFromCppName(func, export_class_name, false) << "(PyObject *self) {\n";
if (func_varargs) {
out << " PyObject *args = PyTuple_New(0);\n";
out << " PyObject *result = " << call_func << ";\n";
out << " Py_DECREF(args);\n";
} else {
out << " PyObject *result = " << call_func << ";\n";
}
out << " if (result == NULL) {\n";
out << " return -1;\n";
out << " }\n";
out << "#if PY_MAJOR_VERSION >= 3\n";
out << " int iresult = PyLong_AsLong(result);\n";
out << "#else\n";
out << " int iresult = PyInt_AsLong(result);\n";
out << "#endif\n";
out << " Py_DECREF(result);\n";
out << " return iresult;\n";
out << "}\n\n";
}
break;
case WT_getbuffer:
// int __getbuffer__(PyObject *self, Py_buffer *buffer, int flags)
// We map this directly, and assume that the arguments match. The whole point
// of this is to be fast, and we don't want to negate that by first wrapping
// and then unwrapping the arguments again. We also want to guarantee const
// correctness, since that will determine whether a read-only buffer is given.
{
has_local_getbuffer = true;
out << "//////////////////\n";
out << "// A wrapper function to satisfy Python's internal calling conventions.\n";
out << "// " << ClassName << " ..." << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
out << "//////////////////\n";
out << "static int " << func->_name << methodNameFromCppName(func, export_class_name, false) << "(PyObject *self, Py_buffer *buffer, int flags) {\n";
out << " " << cClassName << " *local_this = NULL;\n";
out << " DTOOL_Call_ExtractThisPointerForType(self, &Dtool_" << ClassName << ", (void **) &local_this);\n";
out << " if (local_this == NULL) {\n";
out << " PyErr_SetString(PyExc_AttributeError, \"C++ object is not yet constructed, or already destructed.\");\n";
out << " return -1;\n";
out << " }\n\n";
vector_string params_const(1);
vector_string params_nonconst(1);
FunctionRemap *remap_const = NULL;
FunctionRemap *remap_nonconst = NULL;
// Iterate through the remaps to find the one that matches our parameters.
Function::Remaps::const_iterator ri;
for (ri = func->_remaps.begin(); ri != func->_remaps.end(); ++ri) {
FunctionRemap *remap = (*ri);
if (remap->_flags & FunctionRemap::F_getbuffer) {
if (remap->_const_method) {
if ((remap->_flags & FunctionRemap::F_explicit_self) == 0) {
params_const.push_back("self");
}
remap_const = remap;
} else {
if ((remap->_flags & FunctionRemap::F_explicit_self) == 0) {
params_nonconst.push_back("self");
}
remap_nonconst = remap;
}
}
}
params_const.push_back("buffer");
params_const.push_back("flags");
params_nonconst.push_back("buffer");
params_nonconst.push_back("flags");
// We have to distinguish properly between const and nonconst, because the function
// may depend on it to decide whether to provide a writable buffer or a readonly buffer.
const string const_this = "(const " + cClassName + " *)local_this";
if (remap_const != NULL && remap_nonconst != NULL) {
out << " if (!((Dtool_PyInstDef *)self)->_is_const) {\n";
out << " return " << remap_nonconst->call_function(out, 4, false, "local_this", params_nonconst) << ";\n";
out << " } else {\n";
out << " return " << remap_const->call_function(out, 4, false, const_this, params_const) << ";\n";
out << " }\n";
} else if (remap_nonconst != NULL) {
out << " if (!((Dtool_PyInstDef *)self)->_is_const) {\n";
out << " return " << remap_nonconst->call_function(out, 4, false, "local_this", params_nonconst) << ";\n";
out << " } else {\n";
out << " PyErr_SetString(PyExc_TypeError,\n";
out << " \"Cannot call " << ClassName << ".__getbuffer__() on a const object.\");\n";
out << " return -1;\n";
out << " }\n";
} else if (remap_const != NULL) {
out << " return " << remap_const->call_function(out, 4, false, const_this, params_const) << ";\n";
} else {
nout << ClassName << "::__getbuffer__ does not match the required signature.\n";
out << " return -1;\n";
}
out << "}\n\n";
}
break;
case WT_releasebuffer:
// void __releasebuffer__(PyObject *self, Py_buffer *buffer)
// Same story as __getbuffer__ above.
{
out << "//////////////////\n";
out << "// A wrapper function to satisfy Python's internal calling conventions.\n";
out << "// " << ClassName << " ..." << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
out << "//////////////////\n";
out << "static void " << func->_name << methodNameFromCppName(func, export_class_name, false) << "(PyObject *self, Py_buffer *buffer) {\n";
out << " " << cClassName << " *local_this = NULL;\n";
out << " DTOOL_Call_ExtractThisPointerForType(self, &Dtool_" << ClassName << ", (void **) &local_this);\n";
out << " if (local_this == NULL) {\n";
out << " PyErr_SetString(PyExc_AttributeError, \"C++ object is not yet constructed, or already destructed.\");\n";
out << " return;\n";
out << " }\n\n";
vector_string params_const(1);
vector_string params_nonconst(1);
FunctionRemap *remap_const = NULL;
FunctionRemap *remap_nonconst = NULL;
// Iterate through the remaps to find the one that matches our parameters.
Function::Remaps::const_iterator ri;
for (ri = func->_remaps.begin(); ri != func->_remaps.end(); ++ri) {
FunctionRemap *remap = (*ri);
if (remap->_flags & FunctionRemap::F_releasebuffer) {
if (remap->_const_method) {
if ((remap->_flags & FunctionRemap::F_explicit_self) == 0) {
params_const.push_back("self");
}
remap_const = remap;
} else {
if ((remap->_flags & FunctionRemap::F_explicit_self) == 0) {
params_nonconst.push_back("self");
}
remap_nonconst = remap;
}
}
}
params_const.push_back("buffer");
params_nonconst.push_back("buffer");
string return_expr;
const string const_this = "(const " + cClassName + " *)local_this";
if (remap_const != NULL && remap_nonconst != NULL) {
out << " if (!((Dtool_PyInstDef *)self)->_is_const) {\n";
return_expr = remap_nonconst->call_function(out, 4, false, "local_this", params_nonconst);
if (!return_expr.empty()) {
out << " " << return_expr << ";\n";
}
out << " } else {\n";
return_expr = remap_const->call_function(out, 4, false, const_this, params_const);
if (!return_expr.empty()) {
out << " " << return_expr << ";\n";
}
out << " }\n";
} else if (remap_nonconst != NULL) {
// Doesn't matter if there's no const version. We *have* to call it or else we could leak memory.
return_expr = remap_nonconst->call_function(out, 2, false, "local_this", params_nonconst);
if (!return_expr.empty()) {
out << " " << return_expr << ";\n";
}
} else if (remap_const != NULL) {
return_expr = remap_const->call_function(out, 2, false, const_this, params_const);
if (!return_expr.empty()) {
out << " " << return_expr << ";\n";
}
} else {
nout << ClassName << "::__releasebuffer__ does not match the required signature.\n";
out << " return;\n";
}
out << "}\n\n";
}
break;
case WT_iter_next:
// PyObject *func(PyObject *self)
// However, returns NULL instead of None
{
out << "//////////////////\n";
out << "// A wrapper function to satisfy Python's internal calling conventions.\n";
out << "// " << ClassName << " ..." << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
out << "//////////////////\n";
out << "static PyObject *" << func->_name << methodNameFromCppName(func, export_class_name, false) << "(PyObject *self) {\n";
if (func_varargs) {
out << " PyObject *args = PyTuple_New(0);\n";
out << " PyObject *result = " << call_func << ";\n";
out << " Py_DECREF(args);\n";
} else {
out << " PyObject *result = " << call_func << ";\n";
}
out << " if (result == Py_None) {\n";
out << " Py_DECREF(Py_None);\n";
out << " return NULL;\n";
out << " } else {\n";
out << " return result;\n";
out << " }\n";
out << "}\n\n";
}
break;
case WT_one_or_two_params:
case WT_ternary_operator:
// PyObject *func(PyObject *self, PyObject *one, PyObject *two)
{
out << "//////////////////\n";
out << "// A wrapper function to satisfy Python's internal calling conventions.\n";
out << "// " << ClassName << " ..." << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
out << "//////////////////\n";
out << "static PyObject *" << func->_name << methodNameFromCppName(func, export_class_name, false) << "(PyObject *self, PyObject *arg, PyObject *arg2) {\n";
if (func_varargs) {
out << " PyObject *args;\n";
out << " if (arg2 != Py_None) {\n";
out << " args = PyTuple_Pack(2, arg, arg2);\n";
out << " } else {\n";
out << " args = PyTuple_Pack(1, arg);\n";
out << " }\n\n";
out << " PyObject *result = " << call_func << ";\n";
out << " Py_DECREF(args);\n";
out << " return result;\n";
} else {
out << " return " << call_func << ";\n";
}
out << "}\n\n";
}
break;
case WT_none:
break;
}
}
string get_key = HasAGetKeyFunction(obj->_itype);
if (!get_key.empty()) {
out << "//////////////////\n";
out << "// A LocalHash(getKey) Function for this type\n";
out << "// " << ClassName << "\n";
out << "//////////////////\n";
out << "static Py_hash_t Dtool_HashKey_" << ClassName << "(PyObject *self) {\n";
out << " " << cClassName << " *local_this = NULL;\n";
out << " DTOOL_Call_ExtractThisPointerForType(self, &Dtool_" << ClassName << ", (void **) &local_this);\n";
out << " if (local_this == NULL) {\n";
out << " PyErr_SetString(PyExc_AttributeError, \"C++ object is not yet constructed, or already destructed.\");\n";
out << " return -1;\n";
out << " }\n";
out << " return local_this->" << get_key << "();\n";
out << "}\n\n";
has_local_hash = true;
} else {
if (bases.size() == 0) {
out << "//////////////////\n";
out << "// A LocalHash(This Pointer) Function for this type\n";
out << "// " << ClassName << "\n";
out << "//////////////////\n";
out << "static Py_hash_t Dtool_HashKey_" << ClassName << "(PyObject *self) {\n";
out << " " << cClassName << " *local_this = NULL;\n";
out << " DTOOL_Call_ExtractThisPointerForType(self, &Dtool_" << ClassName << ", (void **) &local_this);\n";
out << " if (local_this == NULL) {\n";
out << " PyErr_SetString(PyExc_AttributeError, \"C++ object is not yet constructed, or already destructed.\");\n";
out << " return -1;\n";
out << " }\n";
out << " return (Py_hash_t) local_this;\n";
out << "}\n\n";
has_local_hash = true;
}
}
int need_repr = NeedsAReprFunction(obj->_itype);
if (need_repr > 0) {
out << "//////////////////\n";
out << "// A __repr__ function\n";
out << "// " << ClassName << "\n";
out << "//////////////////\n";
out << "static PyObject *Dtool_Repr_" << ClassName << "(PyObject *self) {\n";
out << " " << cClassName << " *local_this = NULL;\n";
out << " DTOOL_Call_ExtractThisPointerForType(self, &Dtool_" << ClassName << ", (void **) &local_this);\n";
out << " if (local_this == NULL) {\n";
out << " PyErr_SetString(PyExc_AttributeError, \"C++ object is not yet constructed, or already destructed.\");\n";
out << " return NULL;\n";
out << " }\n";
out << " ostringstream os;\n";
if (need_repr == 3) {
out << " invoke_extension(local_this).python_repr(os, \""
<< classNameFromCppName(ClassName, false) << "\");\n";
} else if (need_repr == 2) {
out << " local_this->output(os);\n";
} else {
out << " local_this->python_repr(os, \""
<< classNameFromCppName(ClassName, false) << "\");\n";
}
out << " std::string ss = os.str();\n";
out << "#if PY_MAJOR_VERSION >= 3\n";
out << " return PyUnicode_FromStringAndSize(ss.data(), ss.length());\n";
out << "#else\n";
out << " return PyString_FromStringAndSize(ss.data(), ss.length());\n";
out << "#endif\n";
out << "}\n\n";
has_local_repr = true;
}
int need_str = NeedsAStrFunction(obj->_itype);
if (need_str > 0) {
out << "//////////////////\n";
out << "// A __str__ function\n";
out << "// " << ClassName << "\n";
out << "//////////////////\n";
out << "static PyObject *Dtool_Str_" << ClassName << "(PyObject *self) {\n";
out << " " << cClassName << " *local_this = NULL;\n";
out << " DTOOL_Call_ExtractThisPointerForType(self, &Dtool_" << ClassName << ", (void **)&local_this);\n";
out << " if (local_this == NULL) {\n";
out << " PyErr_SetString(PyExc_AttributeError, \"C++ object is not yet constructed, or already destructed.\");\n";
out << " return NULL;\n";
out << " }\n";
out << " ostringstream os;\n";
if (need_str == 2) {
out << " local_this->write(os, 0);\n";
} else {
out << " local_this->write(os);\n";
}
out << " std::string ss = os.str();\n";
out << "#if PY_MAJOR_VERSION >= 3\n";
out << " return PyUnicode_FromStringAndSize(ss.data(), ss.length());\n";
out << "#else\n";
out << " return PyString_FromStringAndSize(ss.data(), ss.length());\n";
out << "#endif\n";
out << "}\n\n";
has_local_str = true;
}
}
if (NeedsARichCompareFunction(obj->_itype)) {
out << "//////////////////\n";
out << "// A rich comparison function\n";
out << "// " << ClassName << "\n";
out << "//////////////////\n";
out << "static PyObject *Dtool_RichCompare_" << ClassName << "(PyObject *self, PyObject *arg, int op) {\n";
out << " " << cClassName << " *local_this = NULL;\n";
out << " DTOOL_Call_ExtractThisPointerForType(self, &Dtool_" << ClassName << ", (void **)&local_this);\n";
out << " if (local_this == NULL) {\n";
out << " PyErr_SetString(PyExc_AttributeError, \"C++ object is not yet constructed, or already destructed.\");\n";
out << " return NULL;\n";
out << " }\n\n";
out << " switch (op) {\n";
Function *compare_to_func = NULL;
for (fi = obj->_methods.begin(); fi != obj->_methods.end(); ++fi) {
std::set<FunctionRemap*> remaps;
Function *func = (*fi);
if (!func) {
continue;
}
// We only accept comparison operators that take one parameter (besides 'this').
Function::Remaps::const_iterator ri;
for (ri = func->_remaps.begin(); ri != func->_remaps.end(); ++ri) {
FunctionRemap *remap = (*ri);
if (is_remap_legal(remap) && remap->_has_this && (remap->_args_type == AT_single_arg)) {
remaps.insert(remap);
}
}
const string &fname = func->_ifunc.get_name();
if (fname == "operator <") {
out << " case Py_LT: {\n";
} else if (fname == "operator <=") {
out << " case Py_LE: {\n";
} else if (fname == "operator ==") {
out << " case Py_EQ: {\n";
} else if (fname == "operator !=") {
out << " case Py_NE: {\n";
} else if (fname == "operator >") {
out << " case Py_GT: {\n";
} else if (fname == "operator >=") {
out << " case Py_GE: {\n";
} else if (fname == "compare_to") {
compare_to_func = func;
continue;
} else {
continue;
}
string expected_params;
bool coercion_attempted = false;
write_function_forset(out, obj, func, remaps, expected_params, 4, false, true,
coercion_attempted, AT_single_arg, false);
out << " if (PyErr_Occurred() && PyErr_ExceptionMatches(PyExc_TypeError)) {\n";
out << " PyErr_Clear();\n";
out << " }\n";
out << " break;\n";
out << " }\n";
has_local_richcompare = true;
}
out << " }\n\n";
out << " if (PyErr_Occurred()) {\n";
out << " return (PyObject *)NULL;\n";
out << " }\n\n";
if (compare_to_func != NULL) {
out << "#if PY_MAJOR_VERSION >= 3\n";
out << " // All is not lost; we still have the compare_to function to fall back onto.\n";
out << " PyObject *result = " << compare_to_func->_name << "(self, arg);\n";
out << " if (result != NULL) {\n";
out << " if (PyLong_Check(result)) {;\n";
out << " long cmpval = PyLong_AsLong(result);\n";
out << " switch (op) {\n";
out << " case Py_LT:\n";
out << " return PyBool_FromLong(cmpval < 0);\n";
out << " case Py_LE:\n";
out << " return PyBool_FromLong(cmpval <= 0);\n";
out << " case Py_EQ:\n";
out << " return PyBool_FromLong(cmpval == 0);\n";
out << " case Py_NE:\n";
out << " return PyBool_FromLong(cmpval != 0);\n";
out << " case Py_GT:\n";
out << " return PyBool_FromLong(cmpval > 0);\n";
out << " case Py_GE:\n";
out << " return PyBool_FromLong(cmpval >= 0);\n";
out << " }\n";
out << " }\n";
out << " Py_DECREF(result);\n";
out << " }\n\n";
out << " if (PyErr_Occurred()) {\n";
out << " if (PyErr_ExceptionMatches(PyExc_TypeError)) {\n";
out << " PyErr_Clear();\n";
out << " } else {\n";
out << " return (PyObject *)NULL;\n";
out << " }\n";
out << " }\n";
out << "#endif\n\n";
}
out << " Py_INCREF(Py_NotImplemented);\n";
out << " return Py_NotImplemented;\n";
out << "}\n\n";
}
out << "void Dtool_PyModuleClassInit_" << ClassName << "(PyObject *module) {\n";
out << " static bool initdone = false;\n";
out << " if (!initdone) {\n";
out << " initdone = true;\n";
// out << " memset(Dtool_" << ClassName << ".As_PyTypeObject().tp_as_number,0,sizeof(PyNumberMethods));\n";
// out << " memset(Dtool_" << ClassName << ".As_PyTypeObject().tp_as_mapping,0,sizeof(PyMappingMethods));\n";
// out << " static Dtool_PyTypedObject *InheritsFrom[] = {";
// add doc string
if (obj->_itype.has_comment()) {
out << "#ifndef NDEBUG\n";
out << " // Class documentation string\n";
out << " Dtool_" << ClassName
<< ".As_PyTypeObject().tp_doc =\n";
output_quoted(out, 6, obj->_itype.get_comment());
out << ";\n"
<< "#endif\n";
}
// Add flags.
if (obj->_protocol_types & Object::PT_iter) {
out << "#if PY_VERSION_HEX < 0x03000000\n";
out << " Dtool_" << ClassName << ".As_PyTypeObject().tp_flags |= Py_TPFLAGS_HAVE_ITER;\n";
out << "#endif";
}
if (has_local_getbuffer) {
out << "#if PY_VERSION_HEX >= 0x02060000 && PY_VERSION_HEX < 0x03000000\n";
out << " Dtool_" << ClassName << ".As_PyTypeObject().tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER;\n";
out << "#endif";
}
// add bases///
if (bases.size() > 0) {
out << " // Dependent objects\n";
string baseargs;
for (vector<string>::iterator bi = bases.begin(); bi != bases.end(); ++bi) {
baseargs += ", &Dtool_" + *bi + ".As_PyTypeObject()";
out << " Dtool_" << make_safe_name(*bi) << "._Dtool_ClassInit(NULL);\n";
}
out << " Dtool_" << ClassName << ".As_PyTypeObject().tp_bases = PyTuple_Pack(" << bases.size() << baseargs << ");\n";
}
// get dictionary
out << " Dtool_" << ClassName << ".As_PyTypeObject().tp_dict = PyDict_New();\n";
out << " PyDict_SetItemString(Dtool_" << ClassName << ".As_PyTypeObject().tp_dict, \"DtoolClassDict\", Dtool_" << ClassName << ".As_PyTypeObject().tp_dict);\n";
// Now assign the slotted function definitions.
map<Function *, SlottedFunctionDef>::const_iterator rfi;
int prev_min_version = 0;
for (rfi = slotted_functions.begin(); rfi != slotted_functions.end(); rfi++) {
Function *func = rfi->first;
const SlottedFunctionDef &def = rfi->second;
// Add an #ifdef if there is a specific version requirement on this function.
if (def._min_version != prev_min_version) {
if (prev_min_version > 0) {
out << "#endif\n";
}
prev_min_version = def._min_version;
if (def._min_version > 0) {
out << "#if PY_VERSION_HEX >= 0x" << hex << def._min_version << dec << "\n";
}
}
out << " // " << rfi->second._answer_location << " = " << methodNameFromCppName(func, export_class_name, false) << "\n";
if (def._wrapper_type == WT_none) {
// Bound directly, without wrapper.
out << " Dtool_" << ClassName << ".As_PyTypeObject()." << def._answer_location << " = &" << func->_name << ";\n";
} else {
// Assign to the wrapper method that was generated earlier.
out << " Dtool_" << ClassName << ".As_PyTypeObject()." << def._answer_location << " = &" << func->_name << methodNameFromCppName(func, export_class_name, false) << ";\n";
}
}
if (prev_min_version > 0) {
out << "#endif\n";
}
// compare and hash work together in PY inherit behavior hmm grrr
// __hash__
if (has_local_hash) {
out << " // __hash__\n";
out << " Dtool_" << ClassName << ".As_PyTypeObject().tp_hash = &Dtool_HashKey_" << ClassName << ";\n";
out << "#if PY_MAJOR_VERSION >= 3\n";
if (!has_local_richcompare) {
out << " Dtool_" << ClassName << ".As_PyTypeObject().tp_richcompare = &DTOOL_PyObject_RichCompare;\n";
}
out << "#else\n";
out << " Dtool_" << ClassName << ".As_PyTypeObject().tp_compare = &DTOOL_PyObject_Compare;\n";
out << "#endif\n";
}
if (has_local_richcompare) {
out << " Dtool_" << ClassName << ".As_PyTypeObject().tp_richcompare = &Dtool_RichCompare_" << ClassName << ";\n";
}
if (has_local_repr) {
out << " // __repr__\n";
out << " Dtool_" << ClassName << ".As_PyTypeObject().tp_repr = &Dtool_Repr_" << ClassName << ";\n";
}
if (has_local_str) {
out << " // __str__\n";
out << " Dtool_" << ClassName << ".As_PyTypeObject().tp_str = &Dtool_Str_" << ClassName << ";\n";
} else if (has_local_repr) {
out << " // __str__ Repr Proxy\n";
out << " Dtool_" << ClassName << ".As_PyTypeObject().tp_str = &Dtool_Repr_" << ClassName << ";\n";
}
int num_nested = obj->_itype.number_of_nested_types();
for (int ni = 0; ni < num_nested; ni++) {
TypeIndex nested_index = obj->_itype.get_nested_type(ni);
Object * nested_obj = _objects[nested_index];
if (nested_obj->_itype.is_class() || nested_obj->_itype.is_struct()) {
std::string ClassName1 = make_safe_name(nested_obj->_itype.get_scoped_name());
std::string ClassName2 = make_safe_name(nested_obj->_itype.get_name());
out << " // Nested Object " << ClassName1 << ";\n";
out << " Dtool_" << ClassName1 << "._Dtool_ClassInit(NULL);\n";
string name1 = classNameFromCppName(ClassName2, false);
string name2 = classNameFromCppName(ClassName2, true);
out << " PyDict_SetItemString(Dtool_" << ClassName << ".As_PyTypeObject().tp_dict, \"" << name1 << "\", (PyObject *)&Dtool_" << ClassName1 << ".As_PyTypeObject());\n";
if (name1 != name2) {
out << " PyDict_SetItemString(Dtool_" << ClassName << ".As_PyTypeObject().tp_dict, \"" << name2 << "\", (PyObject *)&Dtool_" << ClassName1 << ".As_PyTypeObject());\n";
}
} else {
if (nested_obj->_itype.is_enum()) {
out << " // Enum " << nested_obj->_itype.get_scoped_name() << ";\n";
int enum_count = nested_obj->_itype.number_of_enum_values();
for (int xx = 0; xx < enum_count; xx++) {
string name1 = classNameFromCppName(nested_obj->_itype.get_enum_value_name(xx), false);
string name2;
if (nested_obj->_itype.has_true_name()) {
name2 = classNameFromCppName(nested_obj->_itype.get_enum_value_name(xx), true);
} else {
// Don't generate the alternative syntax for anonymous enums, since we added support
// for those after we started deprecating the alternative syntax.
name2 = name1;
}
int enum_value = nested_obj->_itype.get_enum_value(xx);
out << "#if PY_MAJOR_VERSION >= 3\n";
out << " PyDict_SetItemString(Dtool_" << ClassName << ".As_PyTypeObject().tp_dict, \"" << name1 << "\", PyLong_FromLong(" << enum_value << "));\n";
if (name1 != name2) {
out << " PyDict_SetItemString(Dtool_" << ClassName << ".As_PyTypeObject().tp_dict, \"" << name2 << "\", PyLong_FromLong(" << enum_value << "));\n";
}
out << "#else\n";
out << " PyDict_SetItemString(Dtool_" << ClassName << ".As_PyTypeObject().tp_dict, \"" << name1 << "\", PyInt_FromLong(" << enum_value << "));\n";
if (name1 != name2) {
out << " PyDict_SetItemString(Dtool_" << ClassName << ".As_PyTypeObject().tp_dict, \"" << name2 << "\", PyInt_FromLong(" << enum_value << "));\n";
}
out << "#endif\n";
}
}
}
}
out << " if (PyType_Ready(&Dtool_" << ClassName << ".As_PyTypeObject()) < 0) {\n";
out << " PyErr_SetString(PyExc_TypeError, \"PyType_Ready(" << ClassName << ")\");\n";
out << " printf(\"Error in PyType_Ready(" << ClassName << ")\");\n";
out << " return;\n";
out << " }\n";
out << " Py_INCREF(&Dtool_" << ClassName << ".As_PyTypeObject());\n";
// Why make the class a member of itself?
//out << " PyDict_SetItemString(Dtool_" <<ClassName << ".As_PyTypeObject().tp_dict,\"" <<export_class_name<< "\",&Dtool_" <<ClassName << ".As_PyObject());\n";
bool is_runtime_typed = IsPandaTypedObject(obj->_itype._cpptype->as_struct_type());
if (HasAGetClassTypeFunction(obj->_itype)) {
is_runtime_typed = true;
}
if (is_runtime_typed) {
out << " RegisterRuntimeClass(&Dtool_" << ClassName << ", " << cClassName << "::get_class_type().get_index());\n";
} else {
out << " RegisterRuntimeClass(&Dtool_" << ClassName << ", -1);\n";
}
out << " }\n";
out << " if (module != NULL) {\n";
out << " Py_INCREF(&Dtool_" << ClassName << ".As_PyTypeObject());\n";
out << " PyModule_AddObject(module, \"" << export_class_name << "\", (PyObject *)&Dtool_" << ClassName << ".As_PyTypeObject());\n";
if (export_class_name != export_class_name2) {
out << " PyModule_AddObject(module, \"" << export_class_name2 << "\", (PyObject *)&Dtool_" << ClassName << ".As_PyTypeObject());\n";
}
// Also write out the explicit alternate names.
int num_alt_names = obj->_itype.get_num_alt_names();
for (int i = 0; i < num_alt_names; ++i) {
string alt_name = make_safe_name(obj->_itype.get_alt_name(i));
if (export_class_name != alt_name) {
out << " PyModule_AddObject(module, \"" << alt_name << "\", (PyObject *)&Dtool_" << ClassName << ".As_PyTypeObject());\n";
}
}
out << " }\n";
out << "}\n\n";
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::synthesize_this_parameter
// Access: Public, Virtual
// Description: This method should be overridden and redefined to
// return true for interfaces that require the implicit
// "this" parameter, if present, to be passed as the
// first parameter to any wrapper functions.
////////////////////////////////////////////////////////////////////
bool InterfaceMakerPythonNative::
synthesize_this_parameter() {
return true;
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::get_wrapper_prefix
// Access: Protected, Virtual
// Description: Returns the prefix string used to generate wrapper
// function names.
////////////////////////////////////////////////////////////////////
string InterfaceMakerPythonNative::
get_wrapper_prefix() {
return "Dtool_";
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::get_unique_prefix
// Access: Protected, Virtual
// Description: Returns the prefix string used to generate unique
// symbolic names, which are not necessarily C-callable
// function names.
////////////////////////////////////////////////////////////////////
string InterfaceMakerPythonNative::
get_unique_prefix() {
return "Dtool_";
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::record_function_wrapper
// Access: Protected, Virtual
// Description: Associates the function wrapper with its function in
// the appropriate structures in the database.
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
record_function_wrapper(InterrogateFunction &ifunc, FunctionWrapperIndex wrapper_index) {
ifunc._python_wrappers.push_back(wrapper_index);
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::write_prototype_for
// Access: Private
// Description: Writes the prototype for the indicated function.
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_prototype_for(ostream &out, InterfaceMaker::Function *func) {
std::string fname = "PyObject *" + func->_name + "(PyObject *self, PyObject *args)";
write_prototype_for_name(out, func, fname);
}
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_prototype_for_name(ostream &out, InterfaceMaker::Function *func, const std::string &function_namename) {
Function::Remaps::const_iterator ri;
// for (ri = func->_remaps.begin(); ri != func->_remaps.end(); ++ri) {
// FunctionRemap *remap = (*ri);
if (!output_function_names) {
// If we're not saving the function names, don't export it from
// the library.
out << "static ";
} else {
out << "extern \"C\" ";
}
out << function_namename << ";\n";
// }
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::write_function_for
// Access: Private
// Description: Writes the definition for a function that will call
// the indicated C++ function or method.
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_function_for_top(ostream &out, InterfaceMaker::Object *obj, InterfaceMaker::Function *func) {
std::string fname;
if (func->_ifunc.is_unary_op()) {
assert(func->_args_type == AT_no_args);
}
fname = "static PyObject *" + func->_name + "(PyObject *";
// This will be NULL for static funcs, so prevent code from using it.
if (func->_has_this) {
fname += "self";
}
switch (func->_args_type) {
case AT_keyword_args:
fname += ", PyObject *args, PyObject *kwds";
break;
case AT_varargs:
fname += ", PyObject *args";
break;
case AT_single_arg:
fname += ", PyObject *arg";
break;
}
fname += ")";
bool coercion_attempted = false;
write_function_for_name(out, obj, func, fname, true, coercion_attempted, func->_args_type, false);
}
////////////////////////////////////////////////////////////////////
/// Function : write_function_for_name
//
// Wrap a complete name override function for Py.....
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_function_for_name(ostream &out1, InterfaceMaker::Object *obj, InterfaceMaker::Function *func,
const std::string &function_name,
bool coercion_allowed, bool &coercion_attempted,
ArgsType args_type, bool return_int) {
ostringstream out;
std::map<int, std::set<FunctionRemap *> > MapSets;
std::map<int, std::set<FunctionRemap *> >::iterator mii;
std::set<FunctionRemap *>::iterator sii;
Function::Remaps::const_iterator ri;
out1 << "/******************************************************************\n" << " * Python type method wrapper for\n";
for (ri = func->_remaps.begin(); ri != func->_remaps.end(); ++ri) {
FunctionRemap *remap = (*ri);
if (is_remap_legal(remap)) {
int parameter_size = remap->_parameters.size();
if (remap->_has_this && remap->_type != FunctionRemap::T_constructor) {
parameter_size --;
}
MapSets[parameter_size].insert(remap);
out1 << " * ";
remap->write_orig_prototype(out1, 0);
out1 << "\n";
} else {
out1 << " * Rejected Remap [";
remap->write_orig_prototype(out1, 0);
out1 << "]\n";
}
}
out1 << " *******************************************************************/\n";
out << function_name << " {\n";
if (func->_has_this) {
// Extract pointer from 'self' parameter.
std::string ClassName = make_safe_name(obj->_itype.get_scoped_name());
std::string cClassName = obj->_itype.get_true_name();
SlottedFunctionDef def;
get_slotted_function_def(obj, func, def);
out << " " << cClassName << " *local_this = NULL;\n";
out << " DTOOL_Call_ExtractThisPointerForType(self, &Dtool_" << ClassName << ", (void **)&local_this);\n";
out << " if (local_this == NULL) {\n";
if (def._wrapper_type == WT_numeric_operator || def._wrapper_type == WT_ternary_operator) {
// WT_numeric_operator means we must return NotImplemented, instead
// of raising an exception, if the this pointer doesn't
// match. This is for things like __sub__, which Python
// likes to call on the wrong-type objects.
out << " Py_INCREF(Py_NotImplemented);\n";
out << " return Py_NotImplemented;\n";
} else {
// Other functions should raise an exception if the this
// pointer isn't set or is the wrong type.
out << " PyErr_SetString(PyExc_AttributeError, \"C++ object is not yet constructed, or already destructed.\");\n";
out << " return NULL;\n";
}
out << " }\n";
}
bool is_inplace = isInplaceFunction(func);
if (MapSets.empty()) {
return;
}
std::string FunctionComment = func->_ifunc._comment;
std::string FunctionComment1;
if (FunctionComment.size() > 2) {
FunctionComment += "\n";
}
if (MapSets.size() > 1) {
string expected_params;
switch (args_type) {
case AT_keyword_args:
indent(out, 2) << "int parameter_count = PyTuple_Size(args);\n";
if (args_type == AT_keyword_args) {
indent(out, 2) << "if (kwds != NULL && PyDict_Check(kwds)) {\n";
indent(out, 2) << " parameter_count += PyDict_Size(kwds);\n";
indent(out, 2) << "}\n";
}
break;
case AT_varargs:
indent(out, 2) << "int parameter_count = PyTuple_Size(args);\n";
break;
case AT_single_arg:
// It shouldń't get here, but we'll handle these cases nonetheless.
indent(out, 2) << "const int parameter_count = 1;\n";
break;
default:
indent(out, 2) << "const int parameter_count = 0;\n";
break;
}
indent(out, 2) << "switch (parameter_count) {\n";
for (mii = MapSets.begin(); mii != MapSets.end(); mii ++) {
indent(out, 2) << "case " << mii->first << ": {\n";
write_function_forset(out, obj, func, mii->second, expected_params, 4, is_inplace,
coercion_allowed, coercion_attempted, args_type, return_int);
indent(out, 4) << "break;\n";
indent(out, 2) << "}\n";
}
indent(out, 2) << "default:\n";
indent(out, 4)
<< "PyErr_Format(PyExc_TypeError, \""
<< methodNameFromCppName(func, "", false)
<< "() takes ";
// We add one to the parameter count for "self", following the
// Python convention.
int add_self = func->_has_this ? 1 : 0;
size_t mic;
for (mic = 0, mii = MapSets.begin();
mii != MapSets.end();
++mii, ++mic) {
if (mic == MapSets.size() - 1) {
if (mic == 1) {
out << " or ";
} else {
out << ", or ";
}
} else if (mic != 0) {
out << ", ";
}
out << mii->first + add_self;
}
out << " arguments (%d given)\", parameter_count + " << add_self << ");\n";
if (return_int) {
indent(out, 4) << "return -1;\n";
} else {
indent(out, 4) << "return (PyObject *) NULL;\n";
}
indent(out, 2) << "}\n";
out << " if (!PyErr_Occurred()) { // Let error pass on\n";
out << " PyErr_SetString(PyExc_TypeError,\n";
out << " \"Arguments must match one of:\\n\"\n";
output_quoted(out, 6, expected_params);
out << ");\n";
out << " }\n";
if (return_int) {
indent(out, 2) << "return -1;\n";
} else {
indent(out, 2) << "return (PyObject *) NULL;\n";
}
if (!expected_params.empty() && FunctionComment1.empty()) {
FunctionComment1 += "C++ Interface:\n";
}
FunctionComment1 += expected_params;
} else {
string expected_params = "";
for (mii = MapSets.begin(); mii != MapSets.end(); mii++) {
write_function_forset(out, obj, func, mii->second, expected_params, 2, is_inplace,
coercion_allowed, coercion_attempted, args_type, return_int);
}
out << " if (!PyErr_Occurred()) {\n";
out << " PyErr_SetString(PyExc_TypeError,\n";
out << " \"Arguments must match:\\n\"\n";
output_quoted(out, 6, expected_params);
out << ");\n";
out << " }\n";
if (return_int) {
indent(out, 2) << "return -1;\n";
} else {
indent(out, 2) << "return (PyObject *) NULL;\n";
}
if (!expected_params.empty() && FunctionComment1.empty()) {
FunctionComment1 += "C++ Interface:\n";
}
FunctionComment1 += expected_params;
}
out << "}\n\n";
if (!FunctionComment1.empty()) {
FunctionComment = FunctionComment1 + "\n" + FunctionComment;
}
if (!return_int) {
// Write out the function doc string. We only do this if it is
// not a constructor, since we don't have a place to put the
// constructor doc string.
out << "#ifndef NDEBUG\n";
out << "static const char *" << func->_name << "_comment =\n";
output_quoted(out, 2, FunctionComment);
out << ";\n";
out << "#else\n";
out << "static const char *" << func->_name << "_comment = NULL;\n";
out << "#endif\n";
}
out << "\n";
out1 << out.str();
}
////////////////////////////////////////////////////////
// Function : GetParnetDepth
//
// Support Function used to Sort the name based overrides.. For know must be complex to simple
////////////////////////////////////////////////////////
int GetParnetDepth(CPPType *type) {
int answer = 0;
// printf(" %s\n",type->get_local_name().c_str());
if (TypeManager::is_basic_string_char(type)) {
} else if (TypeManager::is_basic_string_wchar(type)) {
} else if (TypeManager::is_bool(type)) {
} else if (TypeManager::is_unsigned_longlong(type)) {
} else if (TypeManager::is_longlong(type)) {
} else if (TypeManager::is_integer(type)) {
} else if (TypeManager::is_float(type)) {
} else if (TypeManager::is_char_pointer(type)) {
} else if (TypeManager::is_wchar_pointer(type)) {
} else if (TypeManager::is_pointer_to_PyObject(type)) {
} else if (TypeManager::is_pointer_to_Py_buffer(type)) {
} else if (TypeManager::is_pointer(type) || TypeManager::is_reference(type) || TypeManager::is_struct(type)) {
++answer;
int deepest = 0;
TypeIndex type_index = builder.get_type(TypeManager::unwrap(TypeManager::resolve_type(type)), false);
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
const InterrogateType &itype = idb->get_type(type_index);
if (itype.is_class() || itype.is_struct()) {
int num_derivations = itype.number_of_derivations();
for (int di = 0; di < num_derivations; di++) {
TypeIndex d_type_Index = itype.get_derivation(di);
const InterrogateType &d_itype = idb->get_type(d_type_Index);
int this_one = GetParnetDepth(d_itype._cpptype);
if (this_one > deepest) {
deepest = this_one;
}
}
}
answer += deepest;
// printf(" Class Name %s %d\n",itype.get_name().c_str(),answer);
}
// printf(" Class Name %s %d\n",itype.get_name().c_str(),answer);
return answer;
}
////////////////////////////////////////////////////////
// The Core sort function for remap calling orders..
//////////////////////////////////////////////////////////
bool RemapCompareLess(FunctionRemap *in1, FunctionRemap *in2) {
assert(in1 != NULL);
assert(in2 != NULL);
if (in1->_parameters.size() != in2->_parameters.size()) {
return (in1->_parameters.size() > in2->_parameters.size());
}
int pcount = in1->_parameters.size();
for (int x = 0; x < pcount; x++) {
CPPType *orig_type1 = in1->_parameters[x]._remap->get_orig_type();
CPPType *orig_type2 = in2->_parameters[x]._remap->get_orig_type();
// Hack to make int sort before float and double. We do
// this by letting everything compare less than float types.
// But if there's a double variant, prefer it over the float variant.
if (TypeManager::is_float(orig_type1) &&
!TypeManager::is_double(orig_type1)) {
return false;
}
if (TypeManager::is_float(orig_type2) &&
!TypeManager::is_double(orig_type2)) {
return true;
}
if (TypeManager::is_float(orig_type1)) {
return false;
}
if (TypeManager::is_float(orig_type2)) {
return true;
}
int pd1 = GetParnetDepth(orig_type1);
int pd2 = GetParnetDepth(orig_type2);
if (pd1 != pd2) {
return (pd1 > pd2);
}
}
// ok maybe something to do with return strength..
return false;
}
///////////////////////////////////////////////////////////
// Function : write_function_forset
//
// A set is defined as all remaps that have the same number of paramaters..
///////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_function_forset(ostream &out, InterfaceMaker::Object *obj,
InterfaceMaker::Function *func,
std::set<FunctionRemap *> &remapsin,
string &expected_params, int indent_level,
bool is_inplace, bool coercion_allowed,
bool &coercion_attempted,
ArgsType args_type,
bool return_int, const string &first_pexpr) {
// Do we accept any parameters that are class objects? If so, we
// might need to check for parameter coercion.
bool coercion_possible = false;
if (coercion_allowed) {
std::set<FunctionRemap *>::const_iterator sii;
for (sii = remapsin.begin(); sii != remapsin.end() && !coercion_possible; ++sii) {
FunctionRemap *remap = (*sii);
int pn = 0;
if (remap->_has_this) {
// Skip the "this" parameter. It's never coercible.
++pn;
}
while (pn < (int)remap->_parameters.size()) {
CPPType *type = remap->_parameters[pn]._remap->get_new_type();
if (TypeManager::is_char_pointer(type)) {
} else if (TypeManager::is_wchar_pointer(type)) {
} else if (TypeManager::is_pointer_to_PyObject(type)) {
} else if (TypeManager::is_pointer_to_Py_buffer(type)) {
} else if (TypeManager::is_pointer(type)) {
// This is a pointer to an object, so we
// might be able to coerce a parameter to it.
coercion_possible = true;
break;
}
++pn;
}
}
}
if (coercion_possible) {
// These objects keep track of whether we have attempted automatic
// parameter coercion.
indent(out, indent_level)
<< "{\n";
indent_level += 2;
indent(out, indent_level)
<< "PyObject *coerced = NULL;\n";
indent(out, indent_level)
<< "PyObject **coerced_ptr = NULL;\n";
indent(out, indent_level)
<< "bool report_errors = false;\n";
indent(out, indent_level)
<< "while (true) {\n";
indent_level += 2;
} else {
out << "\n";
}
if (remapsin.size() > 1) {
// There are multiple different overloads for this number of
// parameters. Sort them all into order from most-specific to
// least-specific, then try them one at a time.
std::vector<FunctionRemap *> remaps (remapsin.begin(), remapsin.end());
std::sort(remaps.begin(), remaps.end(), RemapCompareLess);
std::vector<FunctionRemap *>::iterator sii;
for (sii = remaps.begin(); sii != remaps.end(); sii ++) {
FunctionRemap *remap = (*sii);
if (remap->_has_this && !remap->_const_method) {
// If it's a non-const method, we only allow a
// non-const this.
indent(out, indent_level)
<< "if (!((Dtool_PyInstDef *)self)->_is_const) {\n";
} else {
indent(out, indent_level)
<< "{\n";
}
indent(out, indent_level) << "// -2 ";
remap->write_orig_prototype(out, 0); out << "\n";
write_function_instance(out, obj, func, remap, expected_params, indent_level + 2, is_inplace,
coercion_possible, coercion_attempted, args_type, return_int, first_pexpr);
indent(out, indent_level + 2) << "PyErr_Clear();\n";
indent(out, indent_level) << "}\n\n";
}
} else {
// There is only one possible overload with this number of
// parameters. Just call it.
std::set<FunctionRemap *>::iterator sii;
for (sii = remapsin.begin(); sii != remapsin.end(); sii ++) {
FunctionRemap *remap = (*sii);
if (remap->_has_this && !remap->_const_method) {
// If it's a non-const method, we only allow a
// non-const this.
indent(out, indent_level)
<< "if (!((Dtool_PyInstDef *)self)->_is_const) {\n";
indent_level += 2;
}
indent(out, indent_level)
<< "// 1-" ;
remap->write_orig_prototype(out, 0);
out << "\n" ;
write_function_instance(out, obj, func, remap, expected_params, indent_level, is_inplace,
coercion_possible, coercion_attempted, args_type, return_int, first_pexpr);
if (remap->_has_this && !remap->_const_method) {
indent(out, indent_level - 2)
<< "} else {\n";
indent(out, indent_level)
<< "PyErr_SetString(PyExc_TypeError,\n";
string class_name = remap->_cpptype->get_simple_name();
indent(out, indent_level)
<< " \"Cannot call "
<< classNameFromCppName(class_name, false)
<< "." << methodNameFromCppName(func, class_name, false)
<< "() on a const object.\");\n";
if (return_int) {
indent(out, indent_level)
<< "return -1;\n";
} else {
indent(out, indent_level)
<< "return (PyObject *) NULL;\n";
}
indent_level -= 2;
indent(out, indent_level)
<< "}\n\n";
} else {
out << "\n";
}
}
}
// Now we've tried all of the possible overloads, and had no luck.
if (coercion_possible) {
// Try again, this time with coercion enabled.
indent(out, indent_level)
<< "if (coerced_ptr == NULL && !report_errors) {\n";
indent(out, indent_level + 2)
<< "coerced_ptr = &coerced;\n";
indent(out, indent_level + 2)
<< "continue;\n";
indent(out, indent_level)
<< "}\n";
// No dice. Go back one more time, and this time get the error
// message.
indent(out, indent_level)
<< "if (!report_errors) {\n";
indent(out, indent_level + 2)
<< "report_errors = true;\n";
indent(out, indent_level + 2)
<< "continue;\n";
indent(out, indent_level)
<< "}\n";
// We've been through three times. We're done.
indent(out, indent_level)
<< "break;\n";
indent_level -= 2;
indent(out, indent_level)
<< "}\n";
indent(out, indent_level)
<< "Py_XDECREF(coerced);\n";
indent_level -= 2;
indent(out, indent_level)
<< "}\n";
}
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::write_function_instance
// Access: Private
// Description: Writes out the particular function that handles a
// single instance of an overloaded function.
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_function_instance(ostream &out, InterfaceMaker::Object *obj,
InterfaceMaker::Function *func,
FunctionRemap *remap, string &expected_params,
int indent_level, bool is_inplace,
bool coercion_possible, bool &coercion_attempted,
ArgsType args_type, bool return_int,
const string &first_pexpr) {
string format_specifiers;
std::string keyword_list;
string parameter_list;
string container;
vector_string pexprs;
string extra_convert;
string extra_param_check;
string extra_cleanup;
string direct_assign;
bool is_constructor = (remap->_type == FunctionRemap::T_constructor);
if (is_constructor && (remap->_flags & FunctionRemap::F_explicit_self) != 0) {
// If we'll be passing "self" to the constructor, we need to
// pre-initialize it here. Unfortunately, we can't pre-load the
// "this" pointer, but the constructor itself can do this.
indent(out, indent_level)
<< "// Pre-initialize self for the constructor\n";
CPPType *orig_type = remap->_return_type->get_orig_type();
TypeIndex type_index = builder.get_type(TypeManager::unwrap(TypeManager::resolve_type(orig_type)), false);
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
const InterrogateType &itype = idb->get_type(type_index);
indent(out, indent_level)
<< "DTool_PyInit_Finalize(self, NULL, &"
<< CLASS_PREFIX << make_safe_name(itype.get_scoped_name())
<< ", false, false);\n";
}
// Make one pass through the parameter list. We will output a
// one-line temporary variable definition for each parameter, while
// simultaneously building the ParseTuple() function call and also
// the parameter expression list for call_function().
expected_params += methodNameFromCppName(func, "", false);
expected_params += "(";
int num_params = 0;
bool only_pyobjects = true;
bool check_exceptions = false;
int pn;
for (pn = 0; pn < (int)remap->_parameters.size(); ++pn) {
if (pn > 0) {
expected_params += ", ";
}
if (((remap->_has_this && pn == 1) ||
(!remap->_has_this && pn == 0)) && !first_pexpr.empty()) {
// The first param was already converted.
pexprs.push_back(first_pexpr);
continue;
}
CPPType *orig_type = remap->_parameters[pn]._remap->get_orig_type();
CPPType *type = remap->_parameters[pn]._remap->get_new_type();
string param_name = remap->get_parameter_name(pn);
// This is the string to convert our local variable to the
// appropriate C++ type. Normally this is just a cast.
string pexpr_string =
"(" + type->get_local_name(&parser) + ")" + param_name;
if (!remap->_has_this || pn != 0) {
keyword_list += "(char *)\"" + remap->_parameters[pn]._name + "\", ";
}
if (remap->_parameters[pn]._remap->new_type_is_atomic_string()) {
if (TypeManager::is_char_pointer(orig_type)) {
indent(out, indent_level) << "char *" << param_name << ";\n";
format_specifiers += "s";
parameter_list += ", &" + param_name;
expected_params += "str";
} else if (TypeManager::is_wchar_pointer(orig_type)) {
out << "#if PY_MAJOR_VERSION >= 3\n";
indent(out, indent_level) << "PyObject *" << param_name << ";\n";
out << "#else\n";
indent(out, indent_level) << "PyUnicodeObject *" << param_name << ";\n";
out << "#endif\n";
format_specifiers += "U";
parameter_list += ", &" + param_name;
extra_convert += " Py_ssize_t " + param_name + "_len = PyUnicode_GetSize((PyObject *)" + param_name + ");"
" wchar_t *" + param_name + "_str = new wchar_t[" + param_name + "_len + 1];"
" PyUnicode_AsWideChar(" + param_name + ", " + param_name + "_str, " + param_name + "_len);"
" " + param_name + "_str[" + param_name + "_len] = 0;";
pexpr_string = param_name + "_str";
extra_cleanup += " delete[] " + param_name + "_str;";
expected_params += "unicode";
} else if (TypeManager::is_wstring(orig_type)) {
out << "#if PY_MAJOR_VERSION >= 3\n";
indent(out, indent_level) << "PyObject *" << param_name << ";\n";
out << "#else\n";
indent(out, indent_level) << "PyUnicodeObject *" << param_name << ";\n";
out << "#endif\n";
format_specifiers += "U";
parameter_list += ", &" + param_name;
extra_convert += " Py_ssize_t " + param_name + "_len = PyUnicode_GetSize((PyObject *)" + param_name + ");"
" wchar_t *" + param_name + "_str = new wchar_t[" + param_name + "_len];"
" PyUnicode_AsWideChar(" + param_name + ", " + param_name + "_str, " + param_name + "_len);";
pexpr_string = "basic_string<wchar_t>((wchar_t *)" +
param_name + "_str, " +
param_name + "_len)";
extra_cleanup += " delete[] " + param_name + "_str;";
expected_params += "unicode";
} else if (TypeManager::is_const_ptr_to_basic_string_wchar(orig_type)) {
out << "#if PY_MAJOR_VERSION >= 3\n";
indent(out, indent_level) << "PyObject *" << param_name << ";\n";
out << "#else\n";
indent(out, indent_level) << "PyUnicodeObject *" << param_name << ";\n";
out << "#endif\n";
format_specifiers += "U";
parameter_list += ", &" + param_name;
extra_convert += " Py_ssize_t " + param_name + "_len = PyUnicode_GetSize((PyObject *)" + param_name + ");"
" wchar_t *" + param_name + "_str = new wchar_t[" + param_name + "_len];"
" PyUnicode_AsWideChar(" + param_name + ", " + param_name + "_str, " + param_name + "_len);";
pexpr_string = "&basic_string<wchar_t>((wchar_t *)" +
param_name + "_str, " +
param_name + "_len)";
extra_cleanup += " delete[] " + param_name + "_str;";
expected_params += "unicode";
} else {
indent(out, indent_level) << "char *" << param_name << "_str;\n";
indent(out, indent_level) << "Py_ssize_t " << param_name << "_len;\n";
if (args_type == AT_single_arg) {
out << "#if PY_MAJOR_VERSION >= 3\n";
indent(out, indent_level)
<< param_name << "_str = PyUnicode_AsUTF8AndSize(arg, &"
<< param_name << "_len);\n";
out << "#else\n";
indent(out, indent_level) << "if (PyString_AsStringAndSize(arg, &"
<< param_name << "_str, &" << param_name << "_len) == -1) {\n";
indent(out, indent_level + 2) << param_name << "_str = NULL;\n";
indent(out, indent_level) << "}\n";
out << "#endif\n";
extra_param_check = " && " + param_name + "_str != NULL";
} else {
format_specifiers += "s#";
parameter_list += ", &" + param_name
+ "_str, &" + param_name + "_len";
}
if (TypeManager::is_const_ptr_to_basic_string_char(orig_type)) {
pexpr_string = "&basic_string<char>(" +
param_name + "_str, " +
param_name + "_len)";
} else {
pexpr_string = "basic_string<char>(" +
param_name + "_str, " +
param_name + "_len)";
}
expected_params += "str";
}
++num_params;
only_pyobjects = false;
} else if (TypeManager::is_bool(type)) {
if (args_type == AT_single_arg) {
param_name = "arg";
} else {
indent(out, indent_level) << "PyObject *" << param_name << ";\n";
format_specifiers += "O";
parameter_list += ", &" + param_name;
}
pexpr_string = "(PyObject_IsTrue(" + param_name + ") != 0)";
expected_params += "bool";
++num_params;
} else if (TypeManager::is_unsigned_longlong(type)) {
if (args_type == AT_single_arg) {
param_name = "arg";
} else {
indent(out, indent_level) << "PyObject *" << param_name << ";\n";
format_specifiers += "O";
parameter_list += ", &" + param_name;
}
extra_convert += "PyObject *" + param_name + "_long = PyNumber_Long(" + param_name + ");";
extra_param_check += " && " + param_name + "_long != NULL";
pexpr_string = "PyLong_AsUnsignedLongLong(" + param_name + "_long)";
extra_cleanup += "Py_XDECREF(" + param_name + "_long);";
expected_params += "unsigned long long";
++num_params;
} else if (TypeManager::is_longlong(type)) {
if (args_type == AT_single_arg) {
param_name = "arg";
} else {
indent(out, indent_level) << "PyObject *" << param_name << ";\n";
format_specifiers += "O";
parameter_list += ", &" + param_name;
}
extra_convert += "PyObject *" + param_name + "_long = PyNumber_Long(" + param_name + ");";
extra_param_check += " && " + param_name + "_long != NULL";
pexpr_string = "PyLong_AsLongLong(" + param_name + "_long)";
extra_cleanup += "Py_XDECREF(" + param_name + "_long);";
expected_params += "long long";
++num_params;
} else if (TypeManager::is_unsigned_integer(type)) {
if (args_type == AT_single_arg) {
param_name = "arg";
} else {
indent(out, indent_level) << "PyObject *" << param_name << ";\n";
format_specifiers += "O";
parameter_list += ", &" + param_name;
}
extra_convert += "PyObject *" + param_name + "_long = PyNumber_Long(" + param_name + ");";
extra_param_check += " && " + param_name + "_long != NULL";
pexpr_string = "PyLong_AsUnsignedLong(" + param_name + "_long)";
extra_cleanup += "Py_XDECREF(" + param_name + "_long);";
expected_params += "unsigned int";
++num_params;
} else if (TypeManager::is_integer(type)) {
if (args_type == AT_single_arg) {
pexpr_string = "(" + type->get_local_name(&parser) + ")PyInt_AS_LONG(arg)";
extra_param_check += " && PyInt_Check(arg)";
} else {
indent(out, indent_level) << "int " << param_name << ";\n";
format_specifiers += "i";
parameter_list += ", &" + param_name;
}
expected_params += "int";
only_pyobjects = false;
++num_params;
} else if (TypeManager::is_double(type)) {
if (args_type == AT_single_arg) {
pexpr_string = "PyFloat_AsDouble(arg)";
extra_param_check += " && PyNumber_Check(arg)";
} else {
indent(out, indent_level) << "double " << param_name << ";\n";
format_specifiers += "d";
parameter_list += ", &" + param_name;
}
expected_params += "double";
only_pyobjects = false;
++num_params;
} else if (TypeManager::is_float(type)) {
if (args_type == AT_single_arg) {
pexpr_string = "(float) PyFloat_AsDouble(arg)";
extra_param_check += " && PyNumber_Check(arg)";
} else {
indent(out, indent_level) << "float " << param_name << ";\n";
format_specifiers += "f";
parameter_list += ", &" + param_name;
}
expected_params += "float";
only_pyobjects = false;
++num_params;
} else if (TypeManager::is_char_pointer(type)) {
indent(out, indent_level) << "char *" << param_name << ";\n";
format_specifiers += "s";
parameter_list += ", &" + param_name;
expected_params += "string";
only_pyobjects = false;
++num_params;
} else if (TypeManager::is_pointer_to_PyObject(type)) {
if (args_type == AT_single_arg) {
// This is a single-arg function, so there's no need
// to convert anything.
param_name = "arg";
} else {
indent(out, indent_level) << "PyObject *" << param_name << ";\n";
format_specifiers += "O";
parameter_list += ", &" + param_name;
}
pexpr_string = param_name;
expected_params += "any";
++num_params;
// It's reasonable to assume that a function taking a PyObject
// might also throw a TypeError if the type is incorrect.
check_exceptions = true;
} else if (TypeManager::is_pointer_to_Py_buffer(type)) {
if (args_type == AT_single_arg) {
param_name = "arg";
} else {
indent(out, indent_level) << "PyObject *" << param_name << ";\n";
format_specifiers += "O";
parameter_list += ", &" + param_name;
}
extra_convert += "PyObject *" + param_name + "_buffer = PyMemoryView_FromObject(" + param_name + ");";
extra_param_check += " && " + param_name + "_buffer != NULL";
pexpr_string = "PyMemoryView_GET_BUFFER(" + param_name + "_buffer)";
extra_cleanup += "Py_XDECREF(" + param_name + "_buffer);";
expected_params += "memoryview";
++num_params;
check_exceptions = true;
} else if (TypeManager::is_pointer(type)) {
CPPType *obj_type = TypeManager::unwrap(TypeManager::resolve_type(type));
bool const_ok = !TypeManager::is_non_const_pointer_or_ref(orig_type);
if (const_ok) {
expected_params += "const ";
//} else {
// expected_params += "non-const ";
}
expected_params += classNameFromCppName(obj_type->get_simple_name(), false);
if (!remap->_has_this || pn != 0) {
if (args_type == AT_single_arg) {
param_name = "arg";
} else {
indent(out, indent_level) << "PyObject *" << param_name << ";\n";
format_specifiers += "O";
parameter_list += ", &" + param_name;
}
++num_params;
TypeIndex p_type_index = builder.get_type(obj_type, false);
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
const InterrogateType &p_itype = idb->get_type(p_type_index);
bool is_copy_constructor = false;
if (is_constructor && remap->_parameters.size() == 1 && pn == 0) {
if (&p_itype == &obj->_itype) {
// If this is the only one parameter, and it's the same as
// the "this" type, this is a copy constructor.
is_copy_constructor = true;
}
}
//make_safe_name(itype.get_scoped_name())
extra_convert += p_itype.get_scoped_name() + " *" + param_name + "_this = (" + p_itype.get_scoped_name()+" *)";
// need to a forward scope for this class..
if (!isExportThisRun(p_itype._cpptype)) {
_external_imports.insert(make_safe_name(p_itype.get_scoped_name()));
}
string class_name;
string method_prefix;
if (remap->_cpptype) {
class_name = remap->_cpptype->get_simple_name();
method_prefix = classNameFromCppName(class_name, false) + string(".");
}
ostringstream str;
str << "DTOOL_Call_GetPointerThisClass(" << param_name
<< ", &Dtool_" << make_safe_name(p_itype.get_scoped_name())
<< ", " << pn << ", \""
<< method_prefix << methodNameFromCppName(func, class_name, false)
<< "\", " << const_ok;
if (coercion_possible && !is_copy_constructor) {
// We never attempt to coerce a copy constructor parameter.
// That would lead to infinite recursion.
str << ", coerced_ptr, report_errors";
coercion_attempted = true;
} else {
str << ", NULL, true";
}
str << ");\n";
extra_convert += str.str();
extra_param_check += " && " + param_name + "_this != NULL";
pexpr_string = param_name + "_this";
}
} else {
// Ignore a parameter.
if (args_type == AT_single_arg) {
param_name = "arg";
} else {
indent(out, indent_level) << "PyObject *" << param_name << ";\n";
format_specifiers += "O";
parameter_list += ", &" + param_name;
}
expected_params += "any";
++num_params;
}
if (remap->_parameters[pn]._has_name) {
expected_params += " " + remap->_parameters[pn]._name;
}
if (remap->_has_this && pn == 0) {
container = "local_this";
if (remap->_const_method) {
string class_name = remap->_cpptype->get_local_name(&parser);
container = "(const " + class_name + "*)local_this";
}
}
pexprs.push_back(pexpr_string);
}
expected_params += ")\n";
// If this is the only overload, don't bother checking for type errors.
// Any type error that is raised will simply pass through to below.
if (func->_remaps.size() == 1) {
check_exceptions = false;
}
// Track how many curly braces we've opened.
short open_scopes = 0;
if (!format_specifiers.empty()) {
std::string format_specifiers1 = format_specifiers + ":" +
methodNameFromCppName(func, "", false);
switch (args_type) {
case AT_keyword_args:
// Wrapper takes a varargs tuple and a keyword args dict.
indent(out, indent_level)
<< "static char *keyword_list[] = {" << keyword_list << "NULL};\n";
indent(out, indent_level)
<< "if (PyArg_ParseTupleAndKeywords(args, kwds, \""
<< format_specifiers1 << "\", keyword_list" << parameter_list
<< ")) {\n";
++open_scopes;
indent_level += 2;
break;
case AT_varargs:
// Wrapper takes a varargs tuple.
if (only_pyobjects) {
// All parameters are PyObject*, so we can use the slightly
// more efficient PyArg_UnpackTuple function instead.
indent(out, indent_level)
<< "if (PyArg_UnpackTuple(args, \""
<< methodNameFromCppName(func, "", false)
<< "\", " << num_params
<< ", " << num_params
<< parameter_list << ")) {\n";
} else {
indent(out, indent_level)
<< "if (PyArg_ParseTuple(args, \""
<< format_specifiers1 << "\""
<< parameter_list << ")) {\n";
}
++open_scopes;
indent_level += 2;
break;
case AT_single_arg:
// Wrapper takes a single PyObject* argument.
if (!only_pyobjects && format_specifiers != "O") {
indent(out, indent_level)
<< "if (PyArg_Parse(arg, \"" << format_specifiers << "\""
<< parameter_list << ")) {\n";
++open_scopes;
indent_level += 2;
}
}
}
if (!extra_convert.empty()) {
indent(out, indent_level)
<< extra_convert << "\n";
}
if (!extra_param_check.empty()) {
indent(out, indent_level)
<< "if (" << extra_param_check.substr(4) << ") {\n";
++open_scopes;
indent_level += 2;
}
string return_expr;
if (!remap->_void_return &&
remap->_return_type->new_type_is_atomic_string()) {
// Treat strings as a special case. We don't want to format the
// return expression.
if (remap->_blocking) {
// With SIMPLE_THREADS, it's important that we never release the
// interpreter lock.
out << "#if defined(HAVE_THREADS) && !defined(SIMPLE_THREADS)\n";
indent(out, indent_level)
<< "PyThreadState *_save;\n";
indent(out, indent_level)
<< "Py_UNBLOCK_THREADS\n";
out << "#endif // HAVE_THREADS && !SIMPLE_THREADS\n";
}
if (track_interpreter) {
indent(out, indent_level) << "in_interpreter = 0;\n";
}
string tt;
return_expr = remap->call_function(out, indent_level, false, container, pexprs);
CPPType *type = remap->_return_type->get_orig_type();
indent(out, indent_level);
type->output_instance(out, "return_value", &parser);
// type->output_instance(tt, "return_value", &parser);
out << " = " << return_expr << ";\n";
if (track_interpreter) {
indent(out, indent_level) << "in_interpreter = 1;\n";
}
if (remap->_blocking) {
out << "#if defined(HAVE_THREADS) && !defined(SIMPLE_THREADS)\n";
indent(out, indent_level)
<< "Py_BLOCK_THREADS\n";
out << "#endif // HAVE_THREADS && !SIMPLE_THREADS\n";
}
if (!extra_cleanup.empty()) {
indent(out, indent_level) << extra_cleanup << "\n";
}
return_expr = manage_return_value(out, 4, remap, "return_value");
} else {
if (remap->_blocking) {
out << "#if defined(HAVE_THREADS) && !defined(SIMPLE_THREADS)\n";
indent(out, indent_level)
<< "PyThreadState *_save;\n";
indent(out, indent_level)
<< "Py_UNBLOCK_THREADS\n";
out << "#endif // HAVE_THREADS && !SIMPLE_THREADS\n";
}
if (track_interpreter) {
indent(out, indent_level) << "in_interpreter = 0;\n";
}
return_expr = remap->call_function(out, indent_level, true, container, pexprs);
if (return_expr.empty()) {
if (track_interpreter) {
indent(out, indent_level) << "in_interpreter = 1;\n";
}
if (remap->_blocking) {
out << "#if defined(HAVE_THREADS) && !defined(SIMPLE_THREADS)\n";
indent(out, indent_level)
<< "Py_BLOCK_THREADS\n";
out << "#endif // HAVE_THREADS && !SIMPLE_THREADS\n";
}
if (!extra_cleanup.empty()) {
indent(out, indent_level) << extra_cleanup << "\n";
}
if (coercion_possible) {
indent(out, indent_level)
<< "Py_XDECREF(coerced);\n";
}
} else {
CPPType *type = remap->_return_type->get_temporary_type();
if (!is_inplace) {
indent(out, indent_level);
type->output_instance(out, "return_value", &parser);
out << " = " << return_expr << ";\n";
}
if (track_interpreter) {
indent(out, indent_level) << "in_interpreter = 1;\n";
}
if (remap->_blocking) {
out << "#if defined(HAVE_THREADS) && !defined(SIMPLE_THREADS)\n";
indent(out, indent_level)
<< "Py_BLOCK_THREADS\n";
out << "#endif // HAVE_THREADS && !SIMPLE_THREADS\n";
}
if (!extra_cleanup.empty()) {
indent(out, indent_level) << extra_cleanup << "\n";
}
if (!is_inplace) {
return_expr = manage_return_value(out, indent_level, remap, "return_value");
}
if (coercion_possible) {
indent(out, indent_level)
<< "Py_XDECREF(coerced);\n";
}
return_expr = remap->_return_type->temporary_to_return(return_expr);
}
}
// If a method raises TypeError, continue.
if (check_exceptions) {
indent(out, indent_level)
<< "if (PyErr_Occurred()) {\n";
if (return_int && !return_expr.empty()) {
indent(out, indent_level + 2)
<< "delete return_value;\n";
}
indent(out, indent_level)
<< " if (PyErr_ExceptionMatches(PyExc_TypeError)) {\n";
indent(out, indent_level)
<< " // TypeError raised; continue to next overload type.\n";
indent(out, indent_level)
<< " } else {\n";
if (return_int) {
indent(out, indent_level + 2)
<< " return -1;\n";
} else {
indent(out, indent_level + 2)
<< " return (PyObject *)NULL;\n";
}
indent(out, indent_level)
<< " }\n";
indent(out, indent_level)
<< "} else {\n";
++open_scopes;
indent_level += 2;
}
// Outputs code to check to see if an assertion has failed while
// the C++ code was executing, and report this failure back to Python.
if (watch_asserts) {
out << "#ifndef NDEBUG\n";
indent(out, indent_level)
<< "Notify *notify = Notify::ptr();\n";
indent(out, indent_level)
<< "if (notify->has_assert_failed()) {\n";
indent(out, indent_level + 2)
<< "PyErr_SetString(PyExc_AssertionError, notify->get_assert_error_message().c_str());\n";
indent(out, indent_level + 2)
<< "notify->clear_assert_failed();\n";
if (return_int) {
if (!return_expr.empty()) {
indent(out, indent_level + 2) << "delete return_value;\n";
}
indent(out, indent_level + 2) << "return -1;\n";
} else {
indent(out, indent_level + 2) << "return (PyObject *)NULL;\n";
}
indent(out, indent_level)
<< "}\n";
out << "#endif\n";
}
if (return_expr.empty()) {
if (return_int) {
indent(out, indent_level) << "return 0;\n";
} else {
indent(out, indent_level) << "Py_INCREF(Py_None);\n";
indent(out, indent_level) << "return Py_None;\n";
}
} else {
pack_return_value(out, indent_level, remap, return_expr, is_inplace);
}
// Close the extra braces opened earlier.
while (open_scopes > 0) {
indent_level -= 2;
indent(out, indent_level) << "}\n";
--open_scopes;
}
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::pack_return_value
// Access: Private
// Description: Outputs a command to pack the indicated expression,
// of the return_type type, as a Python return value.
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
pack_return_value(ostream &out, int indent_level, FunctionRemap *remap,
const string &return_expr, bool is_inplace) {
if (remap->_type == FunctionRemap::T_constructor) {
// should only reach this in the INIT function a a Class .. IE the PY exists before the CPP object
// this is were we type to returned a class/struct.. ie CPP Type
CPPType *orig_type = remap->_return_type->get_orig_type();
TypeIndex type_index = builder.get_type(TypeManager::unwrap(TypeManager::resolve_type(orig_type)), false);
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
const InterrogateType &itype = idb->get_type(type_index);
indent(out, indent_level)
<< "return DTool_PyInit_Finalize(self, " << return_expr << ", &" << CLASS_PREFIX << make_safe_name(itype.get_scoped_name()) << ", true, false);\n";
} else {
ParameterRemap *return_type = remap->_return_type;
pack_python_value(out, indent_level, remap, return_type, return_expr, "", is_inplace);
}
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::pack_python_value
// Access: Private
// Description: Outputs a command to pack the indicated expression,
// of the return_type type, as a Python value.
// If assign_to is empty, the Python object is
// returned. Otherwise, it is assigned to a variable
// of that name (expected to already be declared).
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
pack_python_value(ostream &out, int indent_level, FunctionRemap *remap,
ParameterRemap *return_type, const string &return_expr,
const string &assign_to, bool is_inplace) {
CPPType *orig_type = return_type->get_orig_type();
CPPType *type = return_type->get_new_type();
string assign_stmt("return ");
if (!assign_to.empty()) {
assign_stmt = assign_to + " = ";
}
if (return_type->new_type_is_atomic_string()) {
if (TypeManager::is_char_pointer(orig_type)) {
indent(out, indent_level) << "if (" << return_expr << " == NULL) {\n";
indent(out, indent_level) << " Py_INCREF(Py_None);\n";
indent(out, indent_level+2) << assign_stmt << "Py_None;\n";
indent(out, indent_level) << "} else {\n";
out << "#if PY_MAJOR_VERSION >= 3\n";
indent(out, indent_level+2) << assign_stmt
<< "PyUnicode_FromString(" << return_expr << ");\n";
out << "#else\n";
indent(out, indent_level+2) << assign_stmt
<< "PyString_FromString(" << return_expr << ");\n";
out << "#endif\n";
indent(out, indent_level) << "}\n";
} else if (TypeManager::is_wchar_pointer(orig_type)) {
indent(out, indent_level) << "if (" << return_expr << " == NULL) {\n";
indent(out, indent_level) << " Py_INCREF(Py_None);\n";
indent(out, indent_level+2) << assign_stmt << "Py_None;\n";
indent(out, indent_level) << "} else {\n";
indent(out, indent_level+2)
<< assign_stmt << "PyUnicode_FromWideChar("
<< return_expr << ", wcslen(" << return_expr << "));\n";
indent(out, indent_level) << "}\n";
} else if (TypeManager::is_wstring(orig_type)) {
indent(out, indent_level) << assign_stmt
<< "PyUnicode_FromWideChar("
<< return_expr << ".data(), (int) " << return_expr << ".length());\n";
} else if (TypeManager::is_const_ptr_to_basic_string_wchar(orig_type)) {
indent(out, indent_level) << "if (" << return_expr << " == NULL) {\n";
indent(out, indent_level) << " Py_INCREF(Py_None);\n";
indent(out, indent_level+2) << assign_stmt << "Py_None;\n";
indent(out, indent_level) << "} else {\n";
indent(out, indent_level+2) << assign_stmt
<< "PyUnicode_FromWideChar("
<< return_expr << "->data(), (int) " << return_expr << "->length());\n";
indent(out, indent_level) << "}\n";
} else if (TypeManager::is_const_ptr_to_basic_string_char(orig_type)) {
indent(out, indent_level) << "if (" << return_expr<< " == NULL) {\n";
indent(out, indent_level) << " Py_INCREF(Py_None);\n";
indent(out, indent_level+2) << assign_stmt << "Py_None;\n";
indent(out, indent_level) << "} else {\n";
out << "#if PY_MAJOR_VERSION >= 3\n";
indent(out, indent_level+2) << assign_stmt
<< "PyUnicode_FromStringAndSize("
<< return_expr << "->data(), (Py_ssize_t)" << return_expr << "->length());\n";
out << "#else\n";
indent(out, indent_level+2) << assign_stmt
<< "PyString_FromStringAndSize("
<< return_expr << "->data(), (Py_ssize_t)" << return_expr << "->length());\n";
out << "#endif\n";
indent(out, indent_level) << "}\n";
} else {
out << "#if PY_MAJOR_VERSION >= 3\n";
indent(out, indent_level) << assign_stmt
<< "PyUnicode_FromStringAndSize("
<< return_expr << ".data(), (Py_ssize_t)" << return_expr << ".length());\n";
out << "#else\n";
indent(out, indent_level) << assign_stmt
<< "PyString_FromStringAndSize("
<< return_expr << ".data(), (Py_ssize_t)" << return_expr << ".length());\n";
out << "#endif\n";
}
} else if (TypeManager::is_bool(type)) {
indent(out, indent_level) << assign_stmt
<< "PyBool_FromLong(" << return_expr << ");\n";
} else if (TypeManager::is_unsigned_longlong(type)) {
indent(out, indent_level) << assign_stmt
<< "PyLong_FromUnsignedLongLong(" << return_expr << ");\n";
} else if (TypeManager::is_longlong(type)) {
indent(out, indent_level) << assign_stmt
<< "PyLong_FromLongLong(" << return_expr << ");\n";
} else if (TypeManager::is_unsigned_integer(type)){
out << "#if PY_MAJOR_VERSION >= 3\n";
indent(out, indent_level) << assign_stmt
<< "PyLong_FromUnsignedLong(" << return_expr << ");\n";
out << "#else\n";
indent(out, indent_level) << assign_stmt
<< "PyLongOrInt_FromUnsignedLong(" << return_expr << ");\n";
out << "#endif\n";
} else if (TypeManager::is_integer(type)) {
out << "#if PY_MAJOR_VERSION >= 3\n";
indent(out, indent_level) << assign_stmt
<< "PyLong_FromLong(" << return_expr << ");\n";
out << "#else\n";
indent(out, indent_level) << assign_stmt
<< "PyInt_FromLong(" << return_expr << ");\n";
out << "#endif\n";
} else if (TypeManager::is_float(type)) {
indent(out, indent_level) << assign_stmt
<< "PyFloat_FromDouble(" << return_expr << ");\n";
} else if (TypeManager::is_char_pointer(type)) {
indent(out, indent_level) << "if (" << return_expr << " == NULL) {\n";
indent(out, indent_level) << " Py_INCREF(Py_None);\n";
indent(out, indent_level+2) << assign_stmt << "Py_None;\n";
indent(out, indent_level) << "} else {\n";
out << "#if PY_MAJOR_VERSION >= 3\n";
indent(out, indent_level+2) << assign_stmt
<< "PyUnicode_FromString(" << return_expr << ");\n";
out << "#else\n";
indent(out, indent_level+2) << assign_stmt
<< "PyString_FromString(" << return_expr << ");\n";
out << "#endif\n";
indent(out, indent_level) << "}\n";
} else if (TypeManager::is_wchar_pointer(type)) {
indent(out, indent_level) << "if (" << return_expr << " == NULL) {\n";
indent(out, indent_level) << " Py_INCREF(Py_None);\n";
indent(out, indent_level+2) << assign_stmt << "Py_None;\n";
indent(out, indent_level) << "} else {\n";
indent(out, indent_level+2) << assign_stmt
<< "PyUnicode_FromWideChar("
<< return_expr << ", wcslen(" << return_expr << "));\n";
indent(out, indent_level) << "}\n";
} else if (TypeManager::is_pointer_to_PyObject(type)) {
indent(out, indent_level)
<< assign_stmt << return_expr << ";\n";
} else if (TypeManager::is_pointer_to_Py_buffer(type)) {
indent(out, indent_level) << "if (" << return_expr << " == NULL) {\n";
indent(out, indent_level) << " Py_INCREF(Py_None);\n";
indent(out, indent_level+2) << assign_stmt << "Py_None;\n";
indent(out, indent_level) << "} else {\n";
indent(out, indent_level+2) << assign_stmt
<< "PyMemoryView_FromBuffer(" << return_expr << ");\n";
indent(out, indent_level) << "}\n";
} else if (TypeManager::is_pointer(type)) {
string const_flag;
if (TypeManager::is_const_pointer_to_anything(type)) {
const_flag = "true";
} else {
const_flag = "false";
}
if (TypeManager::is_struct(orig_type) || TypeManager::is_ref_to_anything(orig_type)) {
if (TypeManager::is_ref_to_anything(orig_type)) {
TypeIndex type_index = builder.get_type(TypeManager::unwrap(TypeManager::resolve_type(type)),false);
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
const InterrogateType &itype = idb->get_type(type_index);
std::string owns_memory_flag("true");
if (remap->_return_value_needs_management) {
owns_memory_flag = "true";
} else {
owns_memory_flag = "false";
}
if (!isExportThisRun(itype._cpptype)) {
_external_imports.insert(make_safe_name(itype.get_scoped_name()));
}
write_python_instance(out, indent_level, return_expr, assign_to, owns_memory_flag, itype.get_scoped_name(), itype._cpptype, is_inplace, const_flag);
} else {
std::string owns_memory_flag("true");
if (remap->_return_value_needs_management) {
owns_memory_flag = "true";
} else {
owns_memory_flag = "false";
}
if (remap->_manage_reference_count) {
TypeIndex type_index = builder.get_type(TypeManager::unwrap(TypeManager::resolve_type(type)),false);
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
const InterrogateType &itype = idb->get_type(type_index);
if (!isExportThisRun(itype._cpptype)) {
_external_imports.insert(make_safe_name(itype.get_scoped_name()));
}
write_python_instance(out, indent_level, return_expr, assign_to, owns_memory_flag, itype.get_scoped_name(), itype._cpptype, is_inplace, const_flag);
} else {
TypeIndex type_index = builder.get_type(TypeManager::unwrap(TypeManager::resolve_type(orig_type)),false);
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
const InterrogateType &itype = idb->get_type(type_index);
if (!isExportThisRun(itype._cpptype)) {
_external_imports.insert(make_safe_name(itype.get_scoped_name()));
}
write_python_instance(out, indent_level, return_expr, assign_to, owns_memory_flag, itype.get_scoped_name(), itype._cpptype, is_inplace, const_flag);
}
}
} else if (TypeManager::is_struct(orig_type->as_pointer_type()->_pointing_at)) {
TypeIndex type_index = builder.get_type(TypeManager::unwrap(TypeManager::resolve_type(orig_type)),false);
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
const InterrogateType &itype = idb->get_type(type_index);
std::string owns_memory_flag("true");
if (remap->_return_value_needs_management) {
owns_memory_flag = "true";
} else {
owns_memory_flag = "false";
}
if (!isExportThisRun(itype._cpptype)) {
_external_imports.insert(make_safe_name(itype.get_scoped_name()));
}
write_python_instance(out, indent_level, return_expr, assign_to, owns_memory_flag, itype.get_scoped_name(), itype._cpptype, is_inplace, const_flag);
} else {
indent(out, indent_level) << " Should Never Reach This InterfaceMakerPythonNative::pack_python_value";
//<< "return PyInt_FromLong((int) " << return_expr << ");\n";
}
} else {
// Return None.
indent(out, indent_level)
<< assign_stmt << "Py_BuildValue(\"\");\n";
}
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonName::write_make_seq
// Access: Public
// Description: Generates the synthetic method described by the
// MAKE_SEQ() macro.
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
write_make_seq(ostream &out, Object *obj, const std::string &ClassName,
MakeSeq *make_seq) {
out << "/******************************************************************\n" << " * Python make_seq wrapper\n";
out << " *******************************************************************/\n";
out << "static PyObject *" << make_seq->_name + "(PyObject *self, PyObject *) {\n";
string num_name = methodNameFromCppName(make_seq->_num_name, ClassName, false);
string element_name = methodNameFromCppName(make_seq->_element_name, ClassName, false);
out << " return make_list_for_item(self, \"" << num_name
<< "\", \"" << element_name << "\");\n";
out << "}\n";
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::record_object
// Access: Protected
// Description: Records the indicated type, which may be a struct
// type, along with all of its associated methods, if
// any.
////////////////////////////////////////////////////////////////////
InterfaceMaker::Object *InterfaceMakerPythonNative::
record_object(TypeIndex type_index) {
if (type_index == 0) {
return (Object *)NULL;
}
Objects::iterator oi = _objects.find(type_index);
if (oi != _objects.end()) {
return (*oi).second;
}
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
const InterrogateType &itype = idb->get_type(type_index);
if (!is_cpp_type_legal(itype._cpptype)) {
return (Object *)NULL;
}
Object *object = new Object(itype);
bool inserted = _objects.insert(Objects::value_type(type_index, object)).second;
assert(inserted);
Function *function;
int num_constructors = itype.number_of_constructors();
for (int ci = 0; ci < num_constructors; ci++) {
function = record_function(itype, itype.get_constructor(ci));
if (is_function_legal(function)) {
object->_constructors.push_back(function);
}
}
int num_methods = itype.number_of_methods();
int mi;
for (mi = 0; mi < num_methods; mi++) {
function = record_function(itype, itype.get_method(mi));
if (is_function_legal(function)) {
object->_methods.push_back(function);
}
}
int num_casts = itype.number_of_casts();
for (mi = 0; mi < num_casts; mi++) {
function = record_function(itype, itype.get_cast(mi));
if (is_function_legal(function)) {
object->_methods.push_back(function);
}
}
int num_derivations = itype.number_of_derivations();
for (int di = 0; di < num_derivations; di++) {
TypeIndex d_type_Index = itype.get_derivation(di);
idb->get_type(d_type_Index);
if (!interrogate_type_is_unpublished(d_type_Index)) {
if (itype.derivation_has_upcast(di)) {
function = record_function(itype, itype.derivation_get_upcast(di));
if (is_function_legal(function)) {
object->_methods.push_back(function);
}
}
if (itype.derivation_has_downcast(di)) {
// Downcasts are methods of the base class, not the child class.
TypeIndex base_type_index = itype.get_derivation(di);
const InterrogateType &base_type = idb->get_type(base_type_index);
function = record_function(base_type, itype.derivation_get_downcast(di));
if (is_function_legal(function)) {
Object * pobject = record_object(base_type_index);
if (pobject != NULL) {
pobject->_methods.push_back(function);
}
}
}
}
}
int num_elements = itype.number_of_elements();
for (int ei = 0; ei < num_elements; ei++) {
ElementIndex element_index = itype.get_element(ei);
const InterrogateElement &ielement = idb->get_element(element_index);
if (ielement.has_getter()) {
FunctionIndex func_index = ielement.get_getter();
record_function(itype, func_index);
}
if (ielement.has_setter()) {
FunctionIndex func_index = ielement.get_setter();
record_function(itype, func_index);
}
}
object->check_protocols();
int num_nested = itype.number_of_nested_types();
for (int ni = 0; ni < num_nested; ni++) {
TypeIndex nested_index = itype.get_nested_type(ni);
record_object(nested_index);
}
return object;
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMaker::generate_wrappers
// Access: Public, Virtual
// Description: Walks through the set of functions in the database
// and generates wrappers for each function, storing
// these in the database. No actual code should be
// output yet; this just updates the database with the
// wrapper information.
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
generate_wrappers() {
inside_python_native = true;
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
// We use a while loop rather than a simple for loop, because we
// might increase the number of types recursively during the
// traversal.
int ti = 0;
while (ti < idb->get_num_all_types()) {
TypeIndex type_index = idb->get_all_type(ti);
record_object(type_index);
++ti;
}
int num_global_elements = idb->get_num_global_elements();
for (int gi = 0; gi < num_global_elements; ++gi) {
TypeIndex type_index = idb->get_global_element(gi);
record_object(type_index);
}
int num_functions = idb->get_num_global_functions();
for (int fi = 0; fi < num_functions; fi++) {
FunctionIndex func_index = idb->get_global_function(fi);
record_function(dummy_type, func_index);
}
int num_manifests = idb->get_num_global_manifests();
for (int mi = 0; mi < num_manifests; mi++) {
ManifestIndex manifest_index = idb->get_global_manifest(mi);
const InterrogateManifest &iman = idb->get_manifest(manifest_index);
if (iman.has_getter()) {
FunctionIndex func_index = iman.get_getter();
record_function(dummy_type, func_index);
}
}
int num_elements = idb->get_num_global_elements();
for (int ei = 0; ei < num_elements; ei++) {
ElementIndex element_index = idb->get_global_element(ei);
const InterrogateElement &ielement = idb->get_element(element_index);
if (ielement.has_getter()) {
FunctionIndex func_index = ielement.get_getter();
record_function(dummy_type, func_index);
}
if (ielement.has_setter()) {
FunctionIndex func_index = ielement.get_setter();
record_function(dummy_type, func_index);
}
}
inside_python_native = false;
}
//////////////////////////////////////////////
// Function :is_cpp_type_legal
//
// is the cpp object supported by by the dtool_py interface..
//////////////////////////////////////////////
bool InterfaceMakerPythonNative::
is_cpp_type_legal(CPPType *in_ctype) {
if (in_ctype == NULL) {
return false;
}
if (builder.in_ignoretype(in_ctype->get_local_name(&parser))) {
return false;
}
//bool answer = false;
CPPType *type = TypeManager::unwrap(TypeManager::resolve_type(in_ctype));
type = TypeManager::unwrap(type);
//CPPType *type = ctype;
if (TypeManager::is_basic_string_char(type)) {
return true;
} else if (TypeManager::is_basic_string_wchar(type)) {
return true;
} else if (TypeManager::is_simple(type)) {
return true;
} else if (builder.in_forcetype(type->get_local_name(&parser))) {
return true;
} else if (TypeManager::IsExported(type)) {
return true;
} else if (TypeManager::is_pointer_to_PyObject(in_ctype)) {
return true;
} else if (TypeManager::is_pointer_to_Py_buffer(in_ctype)) {
return true;
}
//if (answer == false)
// printf(" -------------------- Bad Type ?? %s\n",type->get_local_name().c_str());
return false;
}
//////////////////////////////////////////////
// Function :isExportThisRun
//
//////////////////////////////////////////////
bool InterfaceMakerPythonNative::
isExportThisRun(CPPType *ctype) {
CPPType *type = TypeManager::unwrap(ctype);
if (TypeManager::IsLocal(type)) {
return true;
}
if (builder.in_forcetype(type->get_local_name(&parser))) {
return true;
}
return false;
}
//////////////////////////////////////////////
// Function : isExportThisRun
/////////////////////////////////////////////
bool InterfaceMakerPythonNative::
isExportThisRun(Function *func) {
if (func == NULL || !is_function_legal(func)) {
return false;
}
Function::Remaps::const_iterator ri;
for (ri = func->_remaps.begin(); ri != func->_remaps.end(); ++ri) {
FunctionRemap *remap = (*ri);
return isExportThisRun(remap->_cpptype);
}
return false;
}
//////////////////////////////////////////////
// Function : is_remap_legal
//////////////////////////////////////////////
bool InterfaceMakerPythonNative::
is_remap_legal(FunctionRemap *remap) {
if (remap == NULL) {
return false;
}
// return must be legal and managable..
if (!is_cpp_type_legal(remap->_return_type->get_orig_type())) {
// printf(" is_remap_legal Return Is Bad %s\n",remap->_return_type->get_orig_type()->get_fully_scoped_name().c_str());
return false;
}
// ouch .. bad things will happen here .. do not even try..
if (remap->_ForcedVoidReturn) {
return false;
}
// all params must be legal
for (int pn = 0; pn < (int)remap->_parameters.size(); pn++) {
CPPType *orig_type = remap->_parameters[pn]._remap->get_orig_type();
if (!is_cpp_type_legal(orig_type)) {
return false;
}
}
// ok all looks ok.
return true;
}
////////////////////////////////////////////////////////////////////////
// Function : is_function_legal
////////////////////////////////////////////////////////////////////////
bool InterfaceMakerPythonNative::
is_function_legal(Function *func) {
Function::Remaps::const_iterator ri;
for (ri = func->_remaps.begin(); ri != func->_remaps.end(); ++ri) {
FunctionRemap *remap = (*ri);
if (is_remap_legal(remap)) {
// printf(" Function Is Marked Legal %s\n",func->_name.c_str());
return true;
}
}
// printf(" Function Is Marked Illegal %s\n",func->_name.c_str());
return false;
}
////////////////////////////////////////////////////////
// Function : IsRunTimeTyped
///////////////////////////////////////////////////////
bool InterfaceMakerPythonNative::
IsRunTimeTyped(const InterrogateType &itype) {
TypeIndex ptype_id = itype.get_outer_class();
if (ptype_id > 0) {
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
InterrogateType ptype = idb->get_type(ptype_id);
return IsRunTimeTyped(ptype);
}
if (itype.get_name() == "TypedObject") {
return true;
}
return false;
}
//////////////////////////////////////////////////////////
// Function : DoesInheritFromIsClass
//
// Helper function to check cpp class inharatience..
///////////////////////////////////////////////////////////
bool InterfaceMakerPythonNative::
DoesInheritFromIsClass(const CPPStructType *inclass, const std::string &name) {
if (inclass == NULL) {
return false;
}
std::string scoped_name = inclass->get_fully_scoped_name();
if (scoped_name == name) {
return true;
}
CPPStructType::Derivation::const_iterator bi;
for (bi = inclass->_derivation.begin();
bi != inclass->_derivation.end();
++bi) {
const CPPStructType::Base &base = (*bi);
CPPStructType *base_type = TypeManager::resolve_type(base._base)->as_struct_type();
if (base_type != NULL) {
if (DoesInheritFromIsClass(base_type, name)) {
return true;
}
}
}
return false;
}
////////////////////////////////////////////////////////////////////////////////////////////
// Function : HasAGetKeyFunction
//
// does the class have a supportable get_key() or get_hash() to return
// a usable Python hash? Returns the name of the method, or empty
// string if there is no suitable method.
//////////////////////////////////////////////////////////////////////////////////////////
string InterfaceMakerPythonNative::
HasAGetKeyFunction(const InterrogateType &itype_class) {
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
int num_methods = itype_class.number_of_methods();
int mi;
for (mi = 0; mi < num_methods; mi++) {
FunctionIndex func_index = itype_class.get_method(mi);
const InterrogateFunction &ifunc = idb->get_function(func_index);
if (ifunc.get_name() == "get_key" || ifunc.get_name() == "get_hash") {
if (ifunc._instances != (InterrogateFunction::Instances *)NULL) {
InterrogateFunction::Instances::const_iterator ii;
for (ii = ifunc._instances->begin();
ii != ifunc._instances->end();
++ii) {
CPPInstance *cppinst = (*ii).second;
CPPFunctionType *cppfunc = cppinst->_type->as_function_type();
if (cppfunc != NULL) {
if (cppfunc->_parameters != NULL &&
cppfunc->_return_type != NULL &&
TypeManager::is_integer(cppfunc->_return_type)) {
if (cppfunc->_parameters->_parameters.size() == 0) {
return ifunc.get_name();
}
}
}
}
}
}
}
return string();
}
////////////////////////////////////////////////////////////////////////////////////////////
// Function : HasAGetClassTypeFunction
//
// does the class have a supportable GetClassType which returns a TypeHandle.
//////////////////////////////////////////////////////////////////////////////////////////
bool InterfaceMakerPythonNative::
HasAGetClassTypeFunction(const InterrogateType &itype_class) {
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
int num_methods = itype_class.number_of_methods();
int mi;
for (mi = 0; mi < num_methods; mi++) {
FunctionIndex func_index = itype_class.get_method(mi);
const InterrogateFunction &ifunc = idb->get_function(func_index);
if (ifunc.get_name() == "get_class_type") {
if (ifunc._instances != (InterrogateFunction::Instances *)NULL) {
InterrogateFunction::Instances::const_iterator ii;
for (ii = ifunc._instances->begin();ii != ifunc._instances->end();++ii) {
CPPInstance *cppinst = (*ii).second;
CPPFunctionType *cppfunc = cppinst->_type->as_function_type();
if (cppfunc != NULL && cppfunc->_return_type != NULL &&
cppfunc->_parameters != NULL) {
CPPType *ret_type = TypeManager::unwrap(cppfunc->_return_type);
if (TypeManager::is_struct(ret_type) &&
ret_type->get_simple_name() == "TypeHandle") {
if (cppfunc->_parameters->_parameters.size() == 0) {
return true;
}
}
}
}
}
}
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::NeedsAStrFunction
// Access: Private
// Description: Returns -1 if the class does not define write() (and
// therefore cannot support a __str__ function).
//
// Returns 1 if the class defines write(ostream).
//
// Returns 2 if the class defines write(ostream, int).
////////////////////////////////////////////////////////////////////
int InterfaceMakerPythonNative::
NeedsAStrFunction(const InterrogateType &itype_class) {
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
int num_methods = itype_class.number_of_methods();
int mi;
for (mi = 0; mi < num_methods; ++mi) {
FunctionIndex func_index = itype_class.get_method(mi);
const InterrogateFunction &ifunc = idb->get_function(func_index);
if (ifunc.get_name() == "write") {
if (ifunc._instances != (InterrogateFunction::Instances *)NULL) {
InterrogateFunction::Instances::const_iterator ii;
for (ii = ifunc._instances->begin();
ii != ifunc._instances->end();
++ii) {
CPPInstance *cppinst = (*ii).second;
CPPFunctionType *cppfunc = cppinst->_type->as_function_type();
if (cppfunc != NULL) {
if (cppfunc->_parameters != NULL &&
cppfunc->_return_type != NULL &&
TypeManager::is_void(cppfunc->_return_type)) {
if (cppfunc->_parameters->_parameters.size() == 1) {
CPPInstance *inst1 = cppfunc->_parameters->_parameters[0];
if (TypeManager::is_pointer_to_ostream(inst1->_type)) {
// write(ostream)
return 1;
}
}
if (cppfunc->_parameters->_parameters.size() == 2) {
CPPInstance *inst1 = cppfunc->_parameters->_parameters[0];
if (TypeManager::is_pointer_to_ostream(inst1->_type)) {
inst1 = cppfunc->_parameters->_parameters[1];
if (inst1->_initializer != NULL) {
// write(ostream, int = 0)
return 1;
}
if (TypeManager::is_integer(inst1->_type)) {
// write(ostream, int)
return 2;
}
}
}
}
}
}
}
}
}
return -1;
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::NeedsAReprFunction
// Access: Private
// Description: Returns -1 if the class does not define output() or
// python_repr() (and therefore cannot support a
// __repr__ function).
//
// Returns 1 if the class defines python_repr(ostream, string).
//
// Returns 2 if the class defines output(ostream).
//
// Returns 3 if the class defines an extension
// function for python_repr(ostream, string).
////////////////////////////////////////////////////////////////////
int InterfaceMakerPythonNative::
NeedsAReprFunction(const InterrogateType &itype_class) {
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
int num_methods = itype_class.number_of_methods();
int mi;
for (mi = 0; mi < num_methods; ++mi) {
FunctionIndex func_index = itype_class.get_method(mi);
const InterrogateFunction &ifunc = idb->get_function(func_index);
if (ifunc.get_name() == "python_repr") {
if (ifunc._instances != (InterrogateFunction::Instances *)NULL) {
InterrogateFunction::Instances::const_iterator ii;
for (ii = ifunc._instances->begin();
ii != ifunc._instances->end();
++ii) {
CPPInstance *cppinst = (*ii).second;
CPPFunctionType *cppfunc = cppinst->_type->as_function_type();
if (cppfunc != NULL) {
if (cppfunc->_parameters != NULL &&
cppfunc->_return_type != NULL &&
TypeManager::is_void(cppfunc->_return_type)) {
if (cppfunc->_parameters->_parameters.size() == 2) {
CPPInstance *inst1 = cppfunc->_parameters->_parameters[0];
if (TypeManager::is_pointer_to_ostream(inst1->_type)) {
inst1 = cppfunc->_parameters->_parameters[1];
if (TypeManager::is_string(inst1->_type) ||
TypeManager::is_char_pointer(inst1->_type)) {
// python_repr(ostream, string)
if ((cppinst->_storage_class & CPPInstance::SC_extension) != 0) {
return 3;
} else {
return 1;
}
}
}
}
}
}
}
}
}
}
for (mi = 0; mi < num_methods; ++mi) {
FunctionIndex func_index = itype_class.get_method(mi);
const InterrogateFunction &ifunc = idb->get_function(func_index);
if (ifunc.get_name() == "output") {
if (ifunc._instances != (InterrogateFunction::Instances *)NULL) {
InterrogateFunction::Instances::const_iterator ii;
for (ii = ifunc._instances->begin();
ii != ifunc._instances->end();
++ii) {
CPPInstance *cppinst = (*ii).second;
CPPFunctionType *cppfunc = cppinst->_type->as_function_type();
if (cppfunc != NULL) {
if (cppfunc->_parameters != NULL &&
cppfunc->_return_type != NULL &&
TypeManager::is_void(cppfunc->_return_type)) {
if (cppfunc->_parameters->_parameters.size() == 1) {
CPPInstance *inst1 = cppfunc->_parameters->_parameters[0];
if (TypeManager::is_pointer_to_ostream(inst1->_type)) {
// output(ostream)
return 2;
}
}
if (cppfunc->_parameters->_parameters.size() >= 2) {
CPPInstance *inst1 = cppfunc->_parameters->_parameters[0];
if (TypeManager::is_pointer_to_ostream(inst1->_type)) {
inst1 = cppfunc->_parameters->_parameters[1];
if (inst1->_initializer != NULL) {
// output(ostream, foo = bar, ...)
return 2;
}
}
}
}
}
}
}
}
}
return -1;
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::NeedsARichCompareFunction
// Access: Private
// Description: Returns true if the class defines a rich comparison
// operator.
////////////////////////////////////////////////////////////////////
bool InterfaceMakerPythonNative::
NeedsARichCompareFunction(const InterrogateType &itype_class) {
InterrogateDatabase *idb = InterrogateDatabase::get_ptr();
int num_methods = itype_class.number_of_methods();
int mi;
for (mi = 0; mi < num_methods; ++mi) {
FunctionIndex func_index = itype_class.get_method(mi);
const InterrogateFunction &ifunc = idb->get_function(func_index);
if (ifunc.get_name() == "operator <") {
return true;
}
if (ifunc.get_name() == "operator <=") {
return true;
}
if (ifunc.get_name() == "operator ==") {
return true;
}
if (ifunc.get_name() == "operator !=") {
return true;
}
if (ifunc.get_name() == "operator >") {
return true;
}
if (ifunc.get_name() == "operator >=") {
return true;
}
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: InterfaceMakerPythonNative::output_quoted
// Access: Private
// Description: Outputs the indicated string as a single quoted,
// multi-line string to the generated C++ source code.
// The output point is left on the last line of the
// string, following the trailing quotation mark.
////////////////////////////////////////////////////////////////////
void InterfaceMakerPythonNative::
output_quoted(ostream &out, int indent_level, const std::string &str) {
indent(out, indent_level)
<< '"';
std::string::const_iterator si;
for (si = str.begin(); si != str.end(); ++si) {
switch (*si) {
case '"':
case '\\':
out << '\\' << *si;
break;
case '\n':
out << "\\n\"\n";
indent(out, indent_level)
<< '"';
break;
default:
if (!isprint(*si)) {
out << "\\" << oct << setw(3) << setfill('0') << (unsigned int)(*si)
<< dec;
} else {
out << *si;
}
}
}
out << '"';
}