mirror of
https://github.com/panda3d/panda3d.git
synced 2025-10-04 10:54:24 -04:00
202 lines
7.1 KiB
C++
202 lines
7.1 KiB
C++
// Filename: angularEulerIntegrator.cxx
|
|
// Created by: charles (09Aug00)
|
|
//
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// PANDA 3D SOFTWARE
|
|
// Copyright (c) 2001 - 2004, Disney Enterprises, Inc. All rights reserved
|
|
//
|
|
// All use of this software is subject to the terms of the Panda 3d
|
|
// Software license. You should have received a copy of this license
|
|
// along with this source code; you will also find a current copy of
|
|
// the license at http://etc.cmu.edu/panda3d/docs/license/ .
|
|
//
|
|
// To contact the maintainers of this program write to
|
|
// panda3d-general@lists.sourceforge.net .
|
|
//
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
#include "angularEulerIntegrator.h"
|
|
#include "forceNode.h"
|
|
#include "physicalNode.h"
|
|
#include "config_physics.h"
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
// Function : AngularEulerIntegrator
|
|
// Access : Public
|
|
// Description : constructor
|
|
////////////////////////////////////////////////////////////////////
|
|
AngularEulerIntegrator::
|
|
AngularEulerIntegrator() {
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
// Function : AngularEulerIntegrator
|
|
// Access : Public
|
|
// Description : destructor
|
|
////////////////////////////////////////////////////////////////////
|
|
AngularEulerIntegrator::
|
|
~AngularEulerIntegrator() {
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
// Function : Integrate
|
|
// Access : Public
|
|
// Description : Integrate a step of motion (based on dt) by
|
|
// applying every force in force_vec to every object
|
|
// in obj_vec.
|
|
////////////////////////////////////////////////////////////////////
|
|
void AngularEulerIntegrator::
|
|
child_integrate(Physical *physical,
|
|
AngularForceVector& forces,
|
|
float dt) {
|
|
// perform the precomputation. Note that the vector returned by
|
|
// get_precomputed_matrices() has the matrices loaded in order of force
|
|
// type: first global, then local. If you're using this as a guide to write
|
|
// another integrator, be sure to process your forces global, then local.
|
|
// otherwise your transforms will be VERY bad. No good.
|
|
precompute_angular_matrices(physical, forces);
|
|
const pvector< LMatrix4f > &matrices = get_precomputed_angular_matrices();
|
|
assert(matrices.size() == (forces.size() + physical->get_angular_forces().size()));
|
|
|
|
// Loop through each object in the set. This processing occurs in O(pf) time,
|
|
// where p is the number of physical objects and f is the number of
|
|
// forces. Unfortunately, no precomputation of forces can occur, as
|
|
// each force is possibly contingent on such things as the position and
|
|
// velocity of each physicsobject in the set. Accordingly, we have
|
|
// to grunt our way through each one. wrt caching of the xform matrix
|
|
// should help.
|
|
PhysicsObject::Vector::const_iterator current_object_iter;
|
|
current_object_iter = physical->get_object_vector().begin();
|
|
for (; current_object_iter != physical->get_object_vector().end();
|
|
++current_object_iter) {
|
|
PhysicsObject *current_object = *current_object_iter;
|
|
|
|
// bail out if this object doesn't exist or doesn't want to be
|
|
// processed.
|
|
if (current_object == (PhysicsObject *) NULL) {
|
|
continue;
|
|
}
|
|
|
|
if (current_object->get_active() == false) {
|
|
continue;
|
|
}
|
|
|
|
LRotationf accum_quat(0, 0, 0, 0);
|
|
|
|
// set up the traversal stuff.
|
|
//////////////////////ForceNode *force_node;
|
|
AngularForceVector::const_iterator f_cur;
|
|
|
|
LRotationf f;
|
|
|
|
// global forces
|
|
f_cur = forces.begin();
|
|
unsigned int index = 0;
|
|
for (; f_cur != forces.end(); ++f_cur) {
|
|
AngularForce *cur_force = *f_cur;
|
|
|
|
// make sure the force is turned on.
|
|
if (cur_force->get_active() == false) {
|
|
continue;
|
|
}
|
|
|
|
/////////////////force_node = cur_force->get_force_node();
|
|
|
|
// now we go from force space to our object's space.
|
|
assert(index >= 0 && index < matrices.size());
|
|
//f = matrices[index++] * cur_force->get_quat(current_object);
|
|
f = cur_force->get_quat(current_object);
|
|
|
|
// tally it into the accumulation quaternion
|
|
accum_quat += f;
|
|
}
|
|
|
|
// local forces
|
|
f_cur = physical->get_angular_forces().begin();
|
|
for (; f_cur != physical->get_angular_forces().end(); ++f_cur) {
|
|
AngularForce *cur_force = *f_cur;
|
|
|
|
// make sure the force is turned on.
|
|
if (cur_force->get_active() == false) {
|
|
continue;
|
|
}
|
|
|
|
///////////////force_node = cur_force->get_force_node();
|
|
|
|
// go from force space to object space
|
|
//assert(index >= 0 && index < matrices.size());
|
|
//f = matrices[index++] * cur_force->get_quat(current_object);
|
|
f = cur_force->get_quat(current_object);
|
|
|
|
// tally it into the accumulation quaternion
|
|
accum_quat += f;
|
|
}
|
|
//assert(index == matrices.size());
|
|
|
|
// apply the accumulated torque vector to the object's inertial tensor.
|
|
// this matrix represents how much force the object 'wants' applied to it
|
|
// in any direction, among other things.
|
|
accum_quat = current_object->get_inertial_tensor() * accum_quat;
|
|
|
|
// derive this into the angular velocity vector.
|
|
LRotationf rot_quat = current_object->get_rotation();
|
|
#if 0
|
|
rot_quat += accum_quat * dt;
|
|
|
|
if (rot_quat.normalize()) {
|
|
LOrientationf old_orientation = current_object->get_orientation();
|
|
LOrientationf new_orientation = old_orientation * rot_quat;
|
|
new_orientation.normalize();
|
|
|
|
// and write the results back.
|
|
current_object->set_orientation(new_orientation);
|
|
current_object->set_rotation(rot_quat);
|
|
}
|
|
#else
|
|
//accum_quat*=viscosityDamper;
|
|
LOrientationf orientation = current_object->get_orientation();
|
|
|
|
//accum_quat.normalize();
|
|
// x = x + v * t + 0.5 * a * t * t
|
|
orientation = orientation * ((rot_quat * dt) * (accum_quat * (0.5 * dt * dt)));
|
|
// v = v + a * t
|
|
rot_quat = rot_quat + (accum_quat * dt);
|
|
|
|
//if (rot_quat.normalize()) {
|
|
//if (orientation.normalize() && rot_quat.normalize()) {
|
|
// and write the results back.
|
|
current_object->set_orientation(orientation);
|
|
current_object->set_rotation(rot_quat);
|
|
//}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
// Function : output
|
|
// Access : Public
|
|
// Description : Write a string representation of this instance to
|
|
// <out>.
|
|
////////////////////////////////////////////////////////////////////
|
|
void AngularEulerIntegrator::
|
|
output(ostream &out) const {
|
|
#ifndef NDEBUG //[
|
|
out<<"AngularEulerIntegrator (id "<<this<<")";
|
|
#endif //] NDEBUG
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
// Function : write
|
|
// Access : Public
|
|
// Description : Write a string representation of this instance to
|
|
// <out>.
|
|
////////////////////////////////////////////////////////////////////
|
|
void AngularEulerIntegrator::
|
|
write(ostream &out, unsigned int indent) const {
|
|
#ifndef NDEBUG //[
|
|
out.width(indent); out<<""; out<<"AngularEulerIntegrator:\n";
|
|
AngularIntegrator::write(out, indent+2);
|
|
#endif //] NDEBUG
|
|
}
|