mirror of
https://github.com/panda3d/panda3d.git
synced 2025-10-04 02:42:49 -04:00
1076 lines
34 KiB
Python
1076 lines
34 KiB
Python
from pandac.PandaModules import *
|
|
from direct.showbase.DirectObject import DirectObject
|
|
import math
|
|
import copy
|
|
|
|
class TexMemWatcher(DirectObject):
|
|
"""
|
|
This class creates a separate graphics window that displays an
|
|
approximation of the current texture memory, showing the textures
|
|
that are resident and/or active, and an approximation of the
|
|
amount of texture memory consumed by each one. It's intended as a
|
|
useful tool to help determine where texture memory is being spent.
|
|
|
|
Although it represents the textures visually in a 2-d space, it
|
|
doesn't actually have any idea how textures are physically laid
|
|
out in memory--but it has to lay them out somehow, so it makes
|
|
something up. It occasionally rearranges the texture display when
|
|
it feels it needs to, without regard to what the graphics card is
|
|
actually doing. This tool can't be used to research texture
|
|
memory fragmentation issues.
|
|
"""
|
|
|
|
NextIndex = 1
|
|
|
|
def __init__(self, gsg = None, limit = None):
|
|
DirectObject.__init__(self)
|
|
|
|
# First, we'll need a name to uniquify the object.
|
|
self.name = 'tex-mem%s' % (TexMemWatcher.NextIndex)
|
|
TexMemWatcher.NextIndex += 1
|
|
|
|
self.cleanedUp = False
|
|
|
|
# If no GSG is specified, use the main GSG.
|
|
if gsg is None:
|
|
gsg = base.win.getGsg()
|
|
elif isinstance(gsg, GraphicsOutput):
|
|
# If we were passed a window, use that window's GSG.
|
|
gsg = gsg.getGsg()
|
|
|
|
self.gsg = gsg
|
|
|
|
# Now open a new window just to render the output.
|
|
self.winSize = (300, 300)
|
|
name = 'Texture Memory'
|
|
props = WindowProperties()
|
|
props.setOrigin(100, 100)
|
|
props.setSize(*self.winSize)
|
|
props.setTitle(name)
|
|
props.setFullscreen(False)
|
|
props.setUndecorated(False)
|
|
|
|
fbprops = FrameBufferProperties.getDefault()
|
|
flags = GraphicsPipe.BFFbPropsOptional | GraphicsPipe.BFRequireWindow
|
|
|
|
self.pipe = None
|
|
|
|
# We should use a tinydisplay pipe, so we don't compete for the
|
|
# graphics memory.
|
|
moduleName = base.config.GetString('tex-mem-pipe', 'tinydisplay')
|
|
if moduleName:
|
|
self.pipe = base.makeModulePipe(moduleName)
|
|
|
|
# If the requested pipe fails for some reason, I guess we'll
|
|
# use the regular pipe.
|
|
if not self.pipe:
|
|
self.pipe = base.pipe
|
|
|
|
self.win = base.graphicsEngine.makeOutput(self.pipe, name, 0, fbprops,
|
|
props, flags)
|
|
assert self.win
|
|
|
|
# We should render at the end of the frame.
|
|
self.win.setSort(10000)
|
|
|
|
# We don't need to clear the color buffer, since we'll be
|
|
# filling it with a texture. We also don't need to clear the
|
|
# depth buffer, since we won't be using it.
|
|
self.win.setClearColor(False)
|
|
self.win.setClearDepth(False)
|
|
|
|
eventName = '%s-window' % (self.name)
|
|
self.win.setWindowEvent(eventName)
|
|
self.accept(eventName, self.windowEvent)
|
|
|
|
# Make a render2d in this new window.
|
|
self.render2d = NodePath('render2d')
|
|
self.render2d.setDepthTest(False)
|
|
self.render2d.setDepthWrite(False)
|
|
self.render2d.setTwoSided(True)
|
|
|
|
# And a camera to view it.
|
|
self.dr = self.win.makeDisplayRegion()
|
|
cam = Camera('cam2d')
|
|
self.lens = OrthographicLens()
|
|
self.lens.setNearFar(-1000, 1000)
|
|
cam.setLens(self.lens)
|
|
|
|
self.cam = self.render2d.attachNewNode(cam)
|
|
self.dr.setCamera(self.cam)
|
|
|
|
# We'll need a Mouse and a MouseWatcher in the data graph, so
|
|
# we can interact with the various textures.
|
|
self.mouse = base.dataRoot.attachNewNode(MouseAndKeyboard(self.win, 0, '%s-mouse' % (self.name)))
|
|
self.mw = MouseWatcher('%s-watcher' % (self.name))
|
|
mwnp = self.mouse.attachNewNode(self.mw)
|
|
bt = ButtonThrower('%s-thrower' % (self.name))
|
|
mwnp.attachNewNode(bt)
|
|
bt.setPrefix('button-%s-' % (self.name))
|
|
self.accept('button-%s-mouse1' % (self.name), self.mouseClick)
|
|
|
|
eventName = '%s-enter' % (self.name)
|
|
self.mw.setEnterPattern(eventName)
|
|
self.accept(eventName, self.enterRegion)
|
|
|
|
eventName = '%s-leave' % (self.name)
|
|
self.mw.setLeavePattern(eventName)
|
|
self.accept(eventName, self.leaveRegion)
|
|
|
|
# Now start handling up the actual stuff in the scene.
|
|
|
|
self.canvas = self.render2d.attachNewNode('canvas')
|
|
self.background = None
|
|
self.overflowing = False
|
|
self.nextTexRecordKey = 0
|
|
self.rollover = None
|
|
self.isolate = None
|
|
self.isolated = None
|
|
self.needsRepack = False
|
|
|
|
self.task = taskMgr.doMethodLater(0.5, self.updateTextures, 'TexMemWatcher')
|
|
|
|
self.setLimit(limit)
|
|
|
|
def setLimit(self, limit):
|
|
self.limit = limit
|
|
self.dynamicLimit = False
|
|
|
|
if limit is None:
|
|
# If no limit was specified, use the specified graphics
|
|
# memory limit, if any.
|
|
lruLimit = self.gsg.getPreparedObjects().getGraphicsMemoryLimit()
|
|
if lruLimit < 2**32 - 1:
|
|
# Got a real lruLimit. Use it.
|
|
self.limit = lruLimit
|
|
|
|
else:
|
|
# No LRU limit either, so there won't be a practical
|
|
# limit to the TexMemWatcher. We'll determine our
|
|
# limit on-the-fly instead.
|
|
|
|
self.dynamicLimit = True
|
|
|
|
if not self.dynamicLimit:
|
|
# Set our GSG to limit itself to no more textures than we
|
|
# expect to display onscreen, so we don't go crazy with
|
|
# texture memory.
|
|
self.win.getGsg().getPreparedObjects().setGraphicsMemoryLimit(self.limit)
|
|
|
|
# The actual height of the canvas, including the overflow
|
|
# area. The texture memory itself is restricted to (0..1)
|
|
# vertically; anything higher than 1 is overflow.
|
|
self.top = 1.25
|
|
if self.dynamicLimit:
|
|
# Actually, we'll never exceed texture memory, so never mind.
|
|
self.top = 1
|
|
|
|
self.lens.setFilmSize(1, self.top)
|
|
self.lens.setFilmOffset(0.5, self.top / 2.0) # lens covers 0..1 in x and y
|
|
|
|
self.makeWindowBackground()
|
|
self.reconfigureWindow()
|
|
|
|
def cleanup(self):
|
|
if not self.cleanedUp:
|
|
self.cleanedUp = True
|
|
|
|
# Remove the window.
|
|
base.graphicsEngine.removeWindow(self.win)
|
|
self.win = None
|
|
self.gsg = None
|
|
self.pipe = None
|
|
|
|
# Remove the mouse.
|
|
self.mouse.detachNode()
|
|
|
|
taskMgr.remove(self.task)
|
|
self.ignoreAll()
|
|
|
|
self.canvas.getChildren().detach()
|
|
self.texRecordsByTex = {}
|
|
self.texRecordsByKey = {}
|
|
self.texPlacements = {}
|
|
|
|
|
|
def windowEvent(self, win):
|
|
if win == self.win:
|
|
props = win.getProperties()
|
|
if not props.getOpen():
|
|
# User closed window.
|
|
self.cleanup()
|
|
return
|
|
|
|
size = (props.getXSize(), props.getYSize())
|
|
if size != self.winSize:
|
|
self.winSize = size
|
|
self.reconfigureWindow()
|
|
|
|
def enterRegion(self, region, buttonName):
|
|
""" the mouse has rolled over a texture. """
|
|
if self.isolate:
|
|
return
|
|
|
|
key, pi = map(int, region.getName().split(':'))
|
|
tr = self.texRecordsByKey.get(key)
|
|
if not tr:
|
|
return
|
|
|
|
self.setRollover(tr, pi)
|
|
|
|
def leaveRegion(self, region, buttonName):
|
|
""" the mouse is no longer over a texture. """
|
|
key, pi = map(int, region.getName().split(':'))
|
|
tr = self.texRecordsByKey.get(key)
|
|
if tr != self.rollover:
|
|
return
|
|
|
|
self.setRollover(None, None)
|
|
|
|
def mouseClick(self):
|
|
""" Received a mouse-click within the window. This isolates
|
|
the currently-highlighted texture into a full-window
|
|
presentation. """
|
|
|
|
if self.isolate:
|
|
# We're already isolating a texture; the click undoes this.
|
|
self.isolateTexture(None)
|
|
return
|
|
|
|
if self.rollover:
|
|
self.isolateTexture(self.rollover)
|
|
|
|
def setRollover(self, tr, pi):
|
|
""" Sets the highlighted texture (due to mouse rollover) to
|
|
the indicated texture, or None to clear it. """
|
|
|
|
if self.rollover:
|
|
self.rollover.clearRollover()
|
|
|
|
self.rollover = tr
|
|
|
|
if self.rollover:
|
|
self.rollover.showRollover(pi, self)
|
|
|
|
def isolateTexture(self, tr):
|
|
""" Isolates the indicated texture onscreen, or None to
|
|
restore normal mode. """
|
|
|
|
if self.isolate:
|
|
self.isolate.removeNode()
|
|
self.isolate = None
|
|
|
|
self.isolated = tr
|
|
|
|
self.canvas.show()
|
|
self.background.clearColor()
|
|
self.win.getGsg().setTextureQualityOverride(Texture.QLDefault)
|
|
self.gsg.clearFlashTexture()
|
|
|
|
if not tr:
|
|
return
|
|
|
|
self.canvas.hide()
|
|
# Disable the red bar at the top.
|
|
self.background.setColor(1, 1, 1, 1, 1)
|
|
|
|
# Show the texture in all its filtered glory.
|
|
self.win.getGsg().setTextureQualityOverride(Texture.QLBest)
|
|
|
|
# Start the texture flashing in the main window.
|
|
self.gsg.setFlashTexture(tr.tex)
|
|
|
|
self.isolate = self.render2d.attachNewNode('isolate')
|
|
self.isolate.setBin('fixed', 0)
|
|
|
|
# Put a label on the bottom of the screen.
|
|
tn = TextNode('tn')
|
|
tn.setText('%s\n%s x %s\n%s bytes' % (
|
|
tr.tex.getName(), tr.tex.getXSize(), tr.tex.getYSize(),
|
|
tr.size))
|
|
tn.setAlign(tn.ACenter)
|
|
tn.setCardAsMargin(100.0, 100.0, 0.1, 0.1)
|
|
tn.setCardColor(0.1, 0.2, 0.4, 1)
|
|
tnp = self.isolate.attachNewNode(tn)
|
|
scale = 15.0 / self.winSize[1]
|
|
tnp.setScale(scale * self.winSize[1] / self.winSize[0], scale, scale)
|
|
tnp.setPos(0.5, 0, -tn.getBottom() * scale)
|
|
|
|
labelTop = tn.getHeight() * scale
|
|
|
|
# Make a card that shows the texture in actual pixel size, but
|
|
# don't let it exceed the screen size.
|
|
tw = tr.tex.getXSize()
|
|
th = tr.tex.getYSize()
|
|
|
|
wx = self.winSize[0] * 0.9
|
|
wy = self.winSize[1] * (1.0 - labelTop) * 0.9
|
|
|
|
w = min(tw, wx)
|
|
h = min(th, wy)
|
|
|
|
sx = w / tw
|
|
sy = h / th
|
|
s = min(sx, sy)
|
|
|
|
w = tw * s / float(self.winSize[0])
|
|
h = th * s / float(self.winSize[1])
|
|
|
|
cx = 0.5
|
|
cy = 1.0 - (1.0 - labelTop) * 0.5
|
|
|
|
l = cx - w * 0.5
|
|
r = cx + w * 0.5
|
|
b = cy - h * 0.5
|
|
t = cy + h * 0.5
|
|
|
|
cm = CardMaker('card')
|
|
cm.setFrame(l, r, b, t)
|
|
c = self.isolate.attachNewNode(cm.generate())
|
|
c.setTexture(tr.tex)
|
|
c.setTransparency(TransparencyAttrib.MAlpha)
|
|
|
|
ls = LineSegs('frame')
|
|
ls.setColor(0, 0, 0, 1)
|
|
ls.moveTo(l, 0, b)
|
|
ls.drawTo(r, 0, b)
|
|
ls.drawTo(r, 0, t)
|
|
ls.drawTo(l, 0, t)
|
|
ls.drawTo(l, 0, b)
|
|
self.isolate.attachNewNode(ls.create())
|
|
|
|
|
|
def reconfigureWindow(self):
|
|
""" Resets everything for a new window size. """
|
|
|
|
self.background.setTexScale(TextureStage.getDefault(),
|
|
self.winSize[0] / 20.0, self.winSize[1] / (20.0 * self.top))
|
|
|
|
if self.isolate:
|
|
# If we're currently showing an isolated texture, refresh
|
|
# that display so we get its size right. And when we come
|
|
# back to the main window (but not now), repack it.
|
|
self.needsRepack = True
|
|
self.isolateTexture(self.isolated)
|
|
|
|
else:
|
|
# If we're showing the main window, just repack it
|
|
# immediately.
|
|
self.repack()
|
|
|
|
def makeWindowBackground(self):
|
|
""" Creates a tile to use for coloring the background of the
|
|
window, so we can tell what empty space looks like. """
|
|
|
|
if self.background:
|
|
self.background.detachNode()
|
|
self.background = None
|
|
|
|
# We start with a simple checkerboard texture image.
|
|
p = PNMImage(2, 2, 1)
|
|
p.setGray(0, 0, 0.40)
|
|
p.setGray(1, 1, 0.40)
|
|
p.setGray(0, 1, 0.80)
|
|
p.setGray(1, 0, 0.80)
|
|
|
|
tex = Texture('check')
|
|
tex.load(p)
|
|
tex.setMagfilter(tex.FTNearest)
|
|
|
|
self.background = self.render2d.attachNewNode('background')
|
|
|
|
cm = CardMaker('background')
|
|
cm.setFrame(0, 1, 0, 1)
|
|
cm.setUvRange((0, 0), (1, 1))
|
|
self.background.attachNewNode(cm.generate())
|
|
|
|
cm.setFrame(0, 1, 1, self.top)
|
|
cm.setUvRange((0, 1), (1, self.top))
|
|
bad = self.background.attachNewNode(cm.generate())
|
|
bad.setColor((0.8, 0.2, 0.2, 1))
|
|
|
|
self.background.setBin('fixed', -100)
|
|
self.background.setTexture(tex)
|
|
|
|
|
|
def updateTextures(self, task):
|
|
""" Gets the current list of resident textures and adds new
|
|
textures or removes old ones from the onscreen display, as
|
|
necessary. """
|
|
|
|
if self.isolate:
|
|
# never mind for now.
|
|
return task.again
|
|
|
|
if self.needsRepack:
|
|
self.needsRepack = False
|
|
self.repack()
|
|
return task.again
|
|
|
|
pgo = self.gsg.getPreparedObjects()
|
|
totalSize = 0
|
|
|
|
texRecords = []
|
|
neverVisited = copy.copy(self.texRecordsByTex)
|
|
for tex in self.gsg.getPreparedTextures():
|
|
# We have visited this texture; remove it from the
|
|
# neverVisited list.
|
|
if tex in neverVisited:
|
|
del neverVisited[tex]
|
|
|
|
size = 0
|
|
if tex.getResident(pgo):
|
|
size = tex.getDataSizeBytes(pgo)
|
|
|
|
tr = self.texRecordsByTex.get(tex, None)
|
|
|
|
if size:
|
|
totalSize += size
|
|
active = tex.getActive(pgo)
|
|
if not tr:
|
|
# This is a new texture; need to record it.
|
|
key = self.nextTexRecordKey
|
|
self.nextTexRecordKey += 1
|
|
tr = TexRecord(key, tex, size, active)
|
|
texRecords.append(tr)
|
|
else:
|
|
tr.setActive(active)
|
|
if tr.size != size or not tr.placements:
|
|
# The size has changed; reapply it.
|
|
tr.setSize(size)
|
|
self.unplaceTexture(tr)
|
|
texRecords.append(tr)
|
|
else:
|
|
if tr:
|
|
# This texture is no longer resident; need to remove it.
|
|
self.unplaceTexture(tr)
|
|
|
|
# Now go through and make sure we unplace (and remove!) any
|
|
# textures that we didn't visit at all this pass.
|
|
for tex, tr in neverVisited.items():
|
|
self.unplaceTexture(tr)
|
|
del self.texRecordsByTex[tex]
|
|
del self.texRecordsByKey[tr.key]
|
|
|
|
self.totalSize = totalSize
|
|
if totalSize > self.limit and self.dynamicLimit:
|
|
# Actually, never mind on the update: we have exceeded the
|
|
# dynamic limit computed before, and therefore we need to
|
|
# repack.
|
|
self.repack()
|
|
|
|
else:
|
|
overflowCount = sum(map(lambda tp: tp.overflowed, self.texPlacements.keys()))
|
|
if overflowCount:
|
|
# Shouldn't be overflowing any more. Better repack.
|
|
self.repack()
|
|
|
|
else:
|
|
# Pack in just the newly-loaded textures.
|
|
|
|
# Sort the regions from largest to smallest to maximize
|
|
# packing effectiveness.
|
|
texRecords.sort(key = lambda tr: (-tr.w, -tr.h))
|
|
|
|
self.overflowing = False
|
|
for tr in texRecords:
|
|
self.placeTexture(tr)
|
|
self.texRecordsByTex[tr.tex] = tr
|
|
self.texRecordsByKey[tr.key] = tr
|
|
|
|
return task.again
|
|
|
|
|
|
def repack(self):
|
|
""" Repacks all of the current textures. """
|
|
|
|
self.canvas.getChildren().detach()
|
|
self.texRecordsByTex = {}
|
|
self.texRecordsByKey = {}
|
|
self.texPlacements = {}
|
|
self.mw.clearRegions()
|
|
self.setRollover(None, None)
|
|
self.w = 1
|
|
self.h = 1
|
|
|
|
pgo = self.gsg.getPreparedObjects()
|
|
totalSize = 0
|
|
|
|
for tex in self.gsg.getPreparedTextures():
|
|
if tex.getResident(pgo):
|
|
size = tex.getDataSizeBytes(pgo)
|
|
if size:
|
|
active = tex.getActive(pgo)
|
|
key = self.nextTexRecordKey
|
|
self.nextTexRecordKey += 1
|
|
tr = TexRecord(key, tex, size, active)
|
|
self.texRecordsByTex[tr.tex] = tr
|
|
self.texRecordsByKey[tr.key] = tr
|
|
totalSize += size
|
|
|
|
self.totalSize = totalSize
|
|
if not self.totalSize:
|
|
return
|
|
|
|
if self.dynamicLimit:
|
|
# Choose a suitable limit by rounding to the next power of two.
|
|
self.limit = Texture.upToPower2(self.totalSize)
|
|
|
|
# Set our GSG to limit itself to no more textures than we
|
|
# expect to display onscreen, so we don't go crazy with
|
|
# texture memory.
|
|
self.win.getGsg().getPreparedObjects().setGraphicsMemoryLimit(self.limit)
|
|
|
|
# Now make that into a 2-D rectangle of the appropriate shape,
|
|
# such that w * h == limit.
|
|
|
|
# Window size
|
|
x, y = self.winSize
|
|
|
|
# There should be a little buffer on the top so we can see if
|
|
# we overflow.
|
|
y /= self.top
|
|
|
|
r = float(y) / float(x)
|
|
|
|
# Region size
|
|
w = math.sqrt(self.limit) / math.sqrt(r)
|
|
h = w * r
|
|
self.w = w
|
|
self.h = h
|
|
|
|
self.canvas.setScale(1.0 / w, 1.0, 1.0 / h)
|
|
self.mw.setFrame(0, w, 0, h)
|
|
|
|
# Sort the regions from largest to smallest to maximize
|
|
# packing effectiveness.
|
|
texRecords = self.texRecordsByTex.values()
|
|
texRecords.sort(key = lambda tr: (-tr.w, -tr.h))
|
|
|
|
self.overflowing = False
|
|
for tr in texRecords:
|
|
self.placeTexture(tr)
|
|
|
|
def unplaceTexture(self, tr):
|
|
""" Removes the texture from its place on the canvas. """
|
|
for tp in tr.placements:
|
|
del self.texPlacements[tp]
|
|
tr.placements = []
|
|
tr.clearCard(self)
|
|
|
|
def placeTexture(self, tr):
|
|
""" Places the texture somewhere on the canvas where it will
|
|
fit. """
|
|
|
|
if not self.overflowing:
|
|
tp = self.findHole(tr.w, tr.h)
|
|
if tp:
|
|
tr.placements = [tp]
|
|
tr.makeCard(self)
|
|
self.texPlacements[tp] = tr
|
|
return
|
|
|
|
# Couldn't find a hole; can we fit it if we rotate?
|
|
tp = self.findHole(tr.h, tr.w)
|
|
if tp:
|
|
tp.rotated = True
|
|
tr.placements = [tp]
|
|
tr.makeCard(self)
|
|
self.texPlacements[tp] = tr
|
|
return
|
|
|
|
# Couldn't find a hole of the right shape; can we find a
|
|
# single rectangular hole of the right area, but of any shape?
|
|
tp = self.findArea(tr.h * tr.w)
|
|
if tp:
|
|
texCmp = cmp(tr.w, tr.h)
|
|
holeCmp = cmp(tp.p[1] - tp.p[0], tp.p[3] - tp.p[2])
|
|
if texCmp != 0 and holeCmp != 0 and texCmp != holeCmp:
|
|
tp.rotated = True
|
|
tr.placements = [tp]
|
|
tr.makeCard(self)
|
|
self.texPlacements[tp] = tr
|
|
return
|
|
|
|
# Couldn't find a single rectangular hole. We'll have to
|
|
# divide the texture up into several smaller pieces to cram it
|
|
# in.
|
|
tpList = self.findHolePieces(tr.h * tr.w)
|
|
if tpList:
|
|
tr.placements = tpList
|
|
tr.makeCard(self)
|
|
for tp in tpList:
|
|
self.texPlacements[tp] = tr
|
|
return
|
|
|
|
# Just let it overflow.
|
|
self.overflowing = True
|
|
tp = self.findHole(tr.w, tr.h, allowOverflow = True)
|
|
if tp:
|
|
if tp.p[1] > self.w or tp.p[3] > self.h:
|
|
tp.overflowed = 1
|
|
tr.placements = [tp]
|
|
tr.makeCard(self)
|
|
self.texPlacements[tp] = tr
|
|
return
|
|
|
|
# Something went wrong.
|
|
assert False
|
|
|
|
def findHole(self, w, h, allowOverflow = False):
|
|
""" Searches for a hole large enough for (w, h). If one is
|
|
found, returns an appropriate TexPlacement; otherwise, returns
|
|
None. """
|
|
|
|
if w > self.w:
|
|
# It won't fit within the row at all.
|
|
if not allowOverflow:
|
|
return None
|
|
# Just stack it on the top.
|
|
y = 0
|
|
if self.texPlacements:
|
|
y = max(map(lambda tp: tp.p[3], self.texPlacements.keys()))
|
|
tp = TexPlacement(0, w, y, y + h)
|
|
return tp
|
|
|
|
y = 0
|
|
while y + h <= self.h or allowOverflow:
|
|
nextY = None
|
|
|
|
# Scan along the row at 'y'.
|
|
x = 0
|
|
while x + w <= self.w:
|
|
# Consider the spot at x, y.
|
|
tp = TexPlacement(x, x + w, y, y + h)
|
|
overlap = self.findOverlap(tp)
|
|
if not overlap:
|
|
# Hooray!
|
|
return tp
|
|
|
|
nextX = overlap.p[1]
|
|
if nextY is None:
|
|
nextY = overlap.p[3]
|
|
else:
|
|
nextY = min(nextY, overlap.p[3])
|
|
|
|
assert nextX > x
|
|
x = nextX
|
|
|
|
assert nextY > y
|
|
y = nextY
|
|
|
|
# Nope, wouldn't fit anywhere.
|
|
return None
|
|
|
|
|
|
def findArea(self, area):
|
|
""" Searches for a rectangular hole that is at least area
|
|
square units big, regardless of its shape. If one is found,
|
|
returns an appropriate TexPlacement; otherwise, returns
|
|
None. """
|
|
|
|
y = 0
|
|
while y < self.h:
|
|
nextY = self.h
|
|
|
|
# Scan along the row at 'y'.
|
|
x = 0
|
|
while x < self.w:
|
|
nextX = self.w
|
|
|
|
# Consider the spot at x, y.
|
|
|
|
# How wide can we go? Start by trying to go all the
|
|
# way to the edge of the region.
|
|
tpw = self.w - x
|
|
|
|
# Now, given this particular width, how tall do we
|
|
# need to go?
|
|
tph = area / tpw
|
|
|
|
while y + tph < self.h:
|
|
tp = TexPlacement(x, x + tpw, y, y + tph)
|
|
overlap = self.findOverlap(tp)
|
|
if not overlap:
|
|
# Hooray!
|
|
return tp
|
|
|
|
nextX = min(nextX, overlap.p[1])
|
|
nextY = min(nextY, overlap.p[3])
|
|
|
|
# Shorten the available region.
|
|
tpw0 = overlap.p[0] - x
|
|
if tpw0 <= 0.0:
|
|
break
|
|
if x + tpw0 == x + tpw:
|
|
tpw0 *= 0.999 # imprecision hack
|
|
tpw = tpw0
|
|
tph = area / tpw
|
|
|
|
assert nextX > x
|
|
x = nextX
|
|
|
|
assert nextY > y
|
|
y = nextY
|
|
|
|
# Nope, wouldn't fit anywhere.
|
|
return None
|
|
|
|
def findHolePieces(self, area):
|
|
""" Returns a list of holes whose net area sums to the given
|
|
area, or None if there are not enough holes. """
|
|
|
|
# First, save the original value of self.texPlacements, since
|
|
# we will be modifying that during this search.
|
|
savedTexPlacements = copy.copy(self.texPlacements)
|
|
|
|
result = []
|
|
|
|
while area > 0:
|
|
tp = self.findLargestHole()
|
|
if not tp:
|
|
break
|
|
|
|
l, r, b, t = tp.p
|
|
tpArea = (r - l) * (t - b)
|
|
if tpArea >= area:
|
|
# we're done.
|
|
shorten = (tpArea - area) / (r - l)
|
|
tp.p = (l, r, b, t - shorten)
|
|
result.append(tp)
|
|
self.texPlacements = savedTexPlacements
|
|
return result
|
|
|
|
# Keep going.
|
|
area -= tpArea
|
|
result.append(tp)
|
|
self.texPlacements[tp] = None
|
|
|
|
# Huh, not enough room, or no more holes.
|
|
self.texPlacements = savedTexPlacements
|
|
return None
|
|
|
|
def findLargestHole(self):
|
|
""" Searches for the largest available hole. """
|
|
|
|
holes = []
|
|
|
|
y = 0
|
|
while y < self.h:
|
|
nextY = self.h
|
|
|
|
# Scan along the row at 'y'.
|
|
x = 0
|
|
while x < self.w:
|
|
nextX = self.w
|
|
|
|
# Consider the spot at x, y.
|
|
|
|
# How wide can we go? Start by trying to go all the
|
|
# way to the edge of the region.
|
|
tpw = self.w - x
|
|
|
|
# And how tall can we go? Start by trying to go to
|
|
# the top of the region.
|
|
tph = self.h - y
|
|
|
|
while tpw > 0.0 and tph > 0.0:
|
|
tp = TexPlacement(x, x + tpw, y, y + tph)
|
|
overlap = self.findOverlap(tp)
|
|
if not overlap:
|
|
# Here's a hole.
|
|
holes.append((tpw * tph, tp))
|
|
break
|
|
|
|
nextX = min(nextX, overlap.p[1])
|
|
nextY = min(nextY, overlap.p[3])
|
|
|
|
# We've been intersected either on the top or the
|
|
# right. We need to shorten either width or
|
|
# height. Which way results in the largest
|
|
# remaining area?
|
|
|
|
tpw0 = overlap.p[0] - x
|
|
tph0 = overlap.p[2] - y
|
|
|
|
if tpw0 * tph > tpw * tph0:
|
|
# Shortening width results in larger.
|
|
if x + tpw == x + tpw0:
|
|
tpw0 *= 0.999 # imprecision hack
|
|
tpw = tpw0
|
|
else:
|
|
# Shortening height results in larger.
|
|
if y + tph == y + tph0:
|
|
tph0 *= 0.999 # imprecision hack
|
|
tph = tph0
|
|
#print "x = %s, y = %s, tpw = %s, tph = %s" % (x, y, tpw, tph)
|
|
|
|
assert nextX > x
|
|
x = nextX
|
|
|
|
assert nextY > y
|
|
y = nextY
|
|
|
|
if not holes:
|
|
# No holes to be found.
|
|
return None
|
|
|
|
# Return the biggest hole
|
|
return max(holes)[1]
|
|
|
|
def findOverlap(self, tp):
|
|
""" If there is another placement that overlaps the indicated
|
|
TexPlacement, returns it. Otherwise, returns None. """
|
|
|
|
for other in self.texPlacements.keys():
|
|
if other.intersects(tp):
|
|
return other
|
|
|
|
return None
|
|
|
|
|
|
|
|
class TexRecord:
|
|
def __init__(self, key, tex, size, active):
|
|
self.key = key
|
|
self.tex = tex
|
|
self.active = active
|
|
self.root = None
|
|
self.regions = []
|
|
self.placements = []
|
|
self.rollover = None
|
|
|
|
self.setSize(size)
|
|
|
|
def setSize(self, size):
|
|
self.size = size
|
|
x = self.tex.getXSize()
|
|
y = self.tex.getYSize()
|
|
r = float(y) / float(x)
|
|
|
|
# Card size
|
|
w = math.sqrt(self.size) / math.sqrt(r)
|
|
h = w * r
|
|
|
|
self.w = w
|
|
self.h = h
|
|
|
|
|
|
def setActive(self, flag):
|
|
self.active = flag
|
|
if self.active:
|
|
self.backing.clearColor()
|
|
self.matte.clearColor()
|
|
self.card.clearColor()
|
|
else:
|
|
self.backing.setColor((0.2, 0.2, 0.2, 1), 2)
|
|
self.matte.setColor((0.2, 0.2, 0.2, 1), 2)
|
|
self.card.setColor((0.4, 0.4, 0.4, 1), 2)
|
|
|
|
def clearCard(self, tmw):
|
|
if self.root:
|
|
self.root.detachNode()
|
|
self.root = None
|
|
|
|
for r in self.regions:
|
|
tmw.mw.removeRegion(r)
|
|
self.regions = []
|
|
|
|
def makeCard(self, tmw):
|
|
self.clearCard(tmw)
|
|
root = NodePath('root')
|
|
|
|
# A backing to put behind the card.
|
|
backing = root.attachNewNode('backing')
|
|
|
|
# A card to display the texture.
|
|
card = root.attachNewNode('card')
|
|
|
|
# A matte to frame the texture and indicate its status.
|
|
matte = root.attachNewNode('matte')
|
|
|
|
# A wire frame to ring the matte and separate the card from
|
|
# its neighbors.
|
|
frame = root.attachNewNode('frame')
|
|
|
|
|
|
for p in self.placements:
|
|
l, r, b, t = p.p
|
|
cx = (l + r) * 0.5
|
|
cy = (b + t) * 0.5
|
|
shrinkMat = Mat4.translateMat(-cx, 0, -cy) * Mat4.scaleMat(0.9) * Mat4.translateMat(cx, 0, cy)
|
|
|
|
cm = CardMaker('backing')
|
|
cm.setFrame(l, r, b, t)
|
|
cm.setColor(0.1, 0.3, 0.5, 1)
|
|
c = backing.attachNewNode(cm.generate())
|
|
c.setMat(shrinkMat)
|
|
|
|
cm = CardMaker('card')
|
|
cm.setFrame(l, r, b, t)
|
|
if p.rotated:
|
|
cm.setUvRange((0, 1), (0, 0), (1, 0), (1, 1))
|
|
c = card.attachNewNode(cm.generate())
|
|
c.setMat(shrinkMat)
|
|
|
|
cm = CardMaker('matte')
|
|
cm.setFrame(l, r, b, t)
|
|
matte.attachNewNode(cm.generate())
|
|
|
|
ls = LineSegs('frame')
|
|
ls.setColor(0, 0, 0, 1)
|
|
ls.moveTo(l, 0, b)
|
|
ls.drawTo(r, 0, b)
|
|
ls.drawTo(r, 0, t)
|
|
ls.drawTo(l, 0, t)
|
|
ls.drawTo(l, 0, b)
|
|
f1 = frame.attachNewNode(ls.create())
|
|
f2 = f1.copyTo(frame)
|
|
f2.setMat(shrinkMat)
|
|
|
|
matte.setBin('fixed', 0)
|
|
#matte.flattenStrong()
|
|
self.matte = matte
|
|
|
|
backing.setBin('fixed', 10)
|
|
#backing.flattenStrong()
|
|
self.backing = backing
|
|
|
|
card.setTransparency(TransparencyAttrib.MAlpha)
|
|
card.setBin('fixed', 20)
|
|
card.setTexture(self.tex)
|
|
#card.flattenStrong()
|
|
self.card = card
|
|
|
|
frame.setBin('fixed', 30)
|
|
#frame.flattenStrong()
|
|
self.frame = frame
|
|
|
|
root.reparentTo(tmw.canvas)
|
|
|
|
self.root = root
|
|
|
|
# Also, make one or more clickable MouseWatcherRegions.
|
|
assert self.regions == []
|
|
for pi in range(len(self.placements)):
|
|
p = self.placements[pi]
|
|
r = MouseWatcherRegion('%s:%s' % (self.key, pi), *p.p)
|
|
tmw.mw.addRegion(r)
|
|
self.regions.append(p)
|
|
|
|
def showRollover(self, pi, tmw):
|
|
self.clearRollover()
|
|
try:
|
|
p = self.placements[pi]
|
|
except IndexError:
|
|
return
|
|
|
|
# Center the rollover rectangle over the placement
|
|
l, r, b, t = p.p
|
|
cx0 = (l + r) * 0.5
|
|
cy0 = (b + t) * 0.5
|
|
|
|
# Exaggerate its size a bit
|
|
w = self.w
|
|
h = self.h
|
|
|
|
cx = cx0
|
|
if cx + w > tmw.w:
|
|
cx = tmw.w - w
|
|
if cx - w < 0:
|
|
cx = w
|
|
|
|
cy = cy0
|
|
if cy + h > tmw.h:
|
|
cy = tmw.h - h
|
|
if cy - h < 0:
|
|
cy = h
|
|
|
|
# But keep it within the window
|
|
l = max(cx - w, 0)
|
|
r = min(cx + w, tmw.w)
|
|
b = max(cy - h, 0)
|
|
t = min(cy + h, tmw.h)
|
|
|
|
# If it needs to be shrunk to fit within the window, keep it
|
|
# the same aspect ratio.
|
|
sx = float(r - l) / float(w)
|
|
sy = float(t - b) / float(h)
|
|
if sx != sy:
|
|
s = min(sx, sy)
|
|
w *= s / sx
|
|
h *= s / sy
|
|
|
|
cx = cx0
|
|
if cx + w > tmw.w:
|
|
cx = tmw.w - w
|
|
if cx - w < 0:
|
|
cx = w
|
|
|
|
cy = cy0
|
|
if cy + h > tmw.h:
|
|
cy = tmw.h - h
|
|
if cy - h < 0:
|
|
cy = h
|
|
|
|
l = max(cx - w, 0)
|
|
r = min(cx + w, tmw.w)
|
|
b = max(cy - h, 0)
|
|
t = min(cy + h, tmw.h)
|
|
|
|
self.rollover = tmw.canvas.attachNewNode('rollover')
|
|
|
|
cm = CardMaker('backing')
|
|
cm.setFrame(l, r, b, t)
|
|
cm.setColor(0.1, 0.3, 0.5, 1)
|
|
c = self.rollover.attachNewNode(cm.generate())
|
|
c.setBin('fixed', 100)
|
|
|
|
cm = CardMaker('card')
|
|
cm.setFrame(l, r, b, t)
|
|
c = self.rollover.attachNewNode(cm.generate())
|
|
c.setTexture(self.tex)
|
|
c.setBin('fixed', 110)
|
|
c.setTransparency(TransparencyAttrib.MAlpha)
|
|
|
|
# Label the font too.
|
|
tn = TextNode('tn')
|
|
tn.setText('%s\n%s x %s' % (self.tex.getName(), self.tex.getXSize(), self.tex.getYSize()))
|
|
tn.setAlign(tn.ACenter)
|
|
tn.setShadow(0.05, 0.05)
|
|
tnp = self.rollover.attachNewNode(tn)
|
|
scale = 20.0 / tmw.winSize[1] * tmw.h
|
|
tnp.setScale(scale)
|
|
tx = (l + r) * 0.5
|
|
ty = b + scale * 2
|
|
tnp.setPos(tx, 0, ty)
|
|
if tx + tn.getWidth() * scale * 0.5 > tmw.w:
|
|
tn.setAlign(tn.ARight)
|
|
tnp.setX(r)
|
|
elif tx - tn.getWidth() * scale * 0.5 < 0:
|
|
tn.setAlign(tn.ALeft)
|
|
tnp.setX(l)
|
|
tnp.setBin('fixed', 120)
|
|
|
|
def clearRollover(self):
|
|
if self.rollover:
|
|
self.rollover.removeNode()
|
|
self.rollover = None
|
|
|
|
class TexPlacement:
|
|
def __init__(self, l, r, b, t):
|
|
self.p = (l, r, b, t)
|
|
self.rotated = False
|
|
self.overflowed = 0
|
|
|
|
def intersects(self, other):
|
|
""" Returns True if the placements intersect, False
|
|
otherwise. """
|
|
|
|
ml, mr, mb, mt = self.p
|
|
tl, tr, tb, tt = other.p
|
|
|
|
return (tl < mr and tr > ml and
|
|
tb < mt and tt > mb)
|
|
|