panda3d/panda/src/collide/collisionTube.cxx
2003-10-10 23:19:35 +00:00

758 lines
25 KiB
C++

// Filename: collisionTube.cxx
// Created by: drose (25Sep03)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://www.panda3d.org/license.txt .
//
// To contact the maintainers of this program write to
// panda3d@yahoogroups.com .
//
////////////////////////////////////////////////////////////////////
#include "collisionTube.h"
#include "collisionHandler.h"
#include "collisionEntry.h"
#include "config_collide.h"
#include "look_at.h"
#include "geom.h"
#include "geomNode.h"
#include "geomTristrip.h"
#include "geometricBoundingVolume.h"
#include "datagram.h"
#include "datagramIterator.h"
#include "bamReader.h"
#include "bamWriter.h"
#include "cmath.h"
TypeHandle CollisionTube::_type_handle;
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::make_copy
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
CollisionSolid *CollisionTube::
make_copy() {
return new CollisionTube(*this);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::xform
// Access: Public, Virtual
// Description: Transforms the solid by the indicated matrix.
////////////////////////////////////////////////////////////////////
void CollisionTube::
xform(const LMatrix4f &mat) {
_a = _a * mat;
_b = _b * mat;
// This is a little cheesy and fails miserably in the presence of a
// non-uniform scale.
LVector3f radius_v = LVector3f(_radius, 0.0f, 0.0f) * mat;
_radius = length(radius_v);
recalc_internals();
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::get_collision_origin
// Access: Public, Virtual
// Description: Returns the point in space deemed to be the "origin"
// of the solid for collision purposes. The closest
// intersection point to this origin point is considered
// to be the most significant.
////////////////////////////////////////////////////////////////////
LPoint3f CollisionTube::
get_collision_origin() const {
return get_point_a();
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::output
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
void CollisionTube::
output(ostream &out) const {
out << "tube, a (" << _a << "), b (" << _b << "), r " << _radius;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::recompute_bound
// Access: Protected, Virtual
// Description:
////////////////////////////////////////////////////////////////////
BoundingVolume *CollisionTube::
recompute_bound() {
BoundingVolume *bound = BoundedObject::recompute_bound();
if (bound->is_of_type(GeometricBoundingVolume::get_class_type())) {
GeometricBoundingVolume *gbound;
DCAST_INTO_R(gbound, bound, bound);
LVector3f vec = (_b - _a);
if (vec.normalize()) {
// The bounding volume includes both endpoints, plus a little
// bit more to include the radius in both directions.
LPoint3f points[2];
points[0] = _a - vec * _radius;
points[1] = _b + vec * _radius;
gbound->around(points, points + 2);
} else {
// Both endpoints are coincident; therefore, the bounding volume
// is a sphere.
BoundingSphere sphere(_a, _radius);
gbound->extend_by(&sphere);
}
}
return bound;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::test_intersection_from_sphere
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionTube::
test_intersection_from_sphere(const CollisionEntry &entry) const {
const CollisionSphere *sphere;
DCAST_INTO_R(sphere, entry.get_from(), 0);
LPoint3f from_a = sphere->get_center() * entry.get_wrt_mat();
LPoint3f from_b = from_a;
if (entry.get_wrt_prev_space() != entry.get_wrt_space()) {
// If the sphere is moving relative to the tube, it becomes a tube
// itself.
from_a = sphere->get_center() * entry.get_wrt_prev_mat();
}
LVector3f from_direction = from_b - from_a;
LVector3f from_radius_v =
LVector3f(sphere->get_radius(), 0.0f, 0.0f) * entry.get_wrt_mat();
float from_radius = length(from_radius_v);
double t1, t2;
if (!intersects_line(t1, t2, from_a, from_direction, from_radius)) {
// No intersection.
return NULL;
}
if (t2 < 0.0 || t1 > 1.0) {
// Both intersection points are before the start of the segment or
// after the end of the segment.
return NULL;
}
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << *entry.get_from_node() << " into "
<< entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
LPoint3f into_intersection_point;
if (t1 < 0.0) {
// Point a is within the tube. The first intersection point is
// point a itself.
into_intersection_point = from_a;
} else {
// Point a is outside the tube, and point b is either inside the
// tube or beyond it. The first intersection point is at t1.
into_intersection_point = from_a + t1 * from_direction;
}
set_intersection_point(new_entry, into_intersection_point, from_radius);
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::test_intersection_from_ray
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionTube::
test_intersection_from_ray(const CollisionEntry &entry) const {
const CollisionRay *ray;
DCAST_INTO_R(ray, entry.get_from(), 0);
LPoint3f from_origin = ray->get_origin() * entry.get_wrt_mat();
LVector3f from_direction = ray->get_direction() * entry.get_wrt_mat();
double t1, t2;
if (!intersects_line(t1, t2, from_origin, from_direction, 0.0f)) {
// No intersection.
return NULL;
}
if (t2 < 0.0) {
// Both intersection points are before the start of the ray.
return NULL;
}
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << *entry.get_from_node() << " into "
<< entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
LPoint3f into_intersection_point;
if (t1 < 0.0) {
// Point a is within the tube. The first intersection point is
// point a itself.
into_intersection_point = from_origin;
} else {
// Point a is outside the tube. The first intersection point is
// at t1.
into_intersection_point = from_origin + t1 * from_direction;
}
set_intersection_point(new_entry, into_intersection_point, 0.0);
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::test_intersection_from_segment
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionTube::
test_intersection_from_segment(const CollisionEntry &entry) const {
const CollisionSegment *segment;
DCAST_INTO_R(segment, entry.get_from(), 0);
LPoint3f from_a = segment->get_point_a() * entry.get_wrt_mat();
LPoint3f from_b = segment->get_point_b() * entry.get_wrt_mat();
LVector3f from_direction = from_b - from_a;
double t1, t2;
if (!intersects_line(t1, t2, from_a, from_direction, 0.0f)) {
// No intersection.
return NULL;
}
if (t2 < 0.0 || t1 > 1.0) {
// Both intersection points are before the start of the segment or
// after the end of the segment.
return NULL;
}
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << *entry.get_from_node() << " into "
<< entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
LPoint3f into_intersection_point;
if (t1 < 0.0) {
// Point a is within the tube. The first intersection point is
// point a itself.
into_intersection_point = from_a;
} else {
// Point a is outside the tube, and point b is either inside the
// tube or beyond it. The first intersection point is at t1.
into_intersection_point = from_a + t1 * from_direction;
}
set_intersection_point(new_entry, into_intersection_point, 0.0);
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::fill_viz_geom
// Access: Protected, Virtual
// Description: Fills the _viz_geom GeomNode up with Geoms suitable
// for rendering this solid.
////////////////////////////////////////////////////////////////////
void CollisionTube::
fill_viz_geom() {
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "Recomputing viz for " << *this << "\n";
}
// Generate the vertices such that we draw a tube with one endpoint
// at (0, 0, 0), and another at (0, length, 0). Then we'll rotate
// and translate it into place with the appropriate look_at matrix.
LVector3f direction = (_b - _a);
float length = direction.length();
PTA_Vertexf verts;
PTA_int lengths;
// Generate the first endcap.
static const int num_slices = 8;
static const int num_rings = 4;
int ri, si;
for (ri = 0; ri < num_rings; ri++) {
for (si = 0; si <= num_slices; si++) {
verts.push_back(calc_sphere1_vertex(ri, si, num_rings, num_slices));
verts.push_back(calc_sphere1_vertex(ri + 1, si, num_rings, num_slices));
}
lengths.push_back((num_slices + 1) * 2);
}
// Now the cylinder sides.
for (si = 0; si <= num_slices; si++) {
verts.push_back(calc_sphere1_vertex(num_rings, si, num_rings, num_slices));
verts.push_back(calc_sphere2_vertex(num_rings, si, num_rings, num_slices,
length));
}
lengths.push_back((num_slices + 1) * 2);
// And the second endcap.
for (ri = num_rings - 1; ri >= 0; ri--) {
for (si = 0; si <= num_slices; si++) {
verts.push_back(calc_sphere2_vertex(ri + 1, si, num_rings, num_slices, length));
verts.push_back(calc_sphere2_vertex(ri, si, num_rings, num_slices, length));
}
lengths.push_back((num_slices + 1) * 2);
}
// Now transform the vertices to their actual location.
LMatrix4f mat;
look_at(mat, direction, LVector3f(0.0f, 0.0f, 1.0f), CS_zup_right);
mat.set_row(3, _a);
for (size_t i = 0; i < verts.size(); i++) {
verts[i] = verts[i] * mat;
}
GeomTristrip *tube = new GeomTristrip;
tube->set_coords(verts);
tube->set_num_prims(lengths.size());
tube->set_lengths(lengths);
_viz_geom->add_geom(tube, get_solid_viz_state());
//_viz_geom->add_geom(tube, get_wireframe_viz_state());
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::recalc_internals
// Access: Private
// Description: Should be called internally to recompute the matrix
// and length when the properties of the tube have
// changed.
////////////////////////////////////////////////////////////////////
void CollisionTube::
recalc_internals() {
LVector3f direction = (_b - _a);
_length = direction.length();
look_at(_mat, direction, LVector3f(0.0f, 0.0f, 1.0f), CS_zup_right);
_mat.set_row(3, _a);
_inv_mat.invert_from(_mat);
mark_viz_stale();
mark_bound_stale();
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::calc_sphere1_vertex
// Access: Private
// Description: Calculates a particular vertex on the surface of the
// first endcap hemisphere, for use in generating the
// viz geometry.
////////////////////////////////////////////////////////////////////
Vertexf CollisionTube::
calc_sphere1_vertex(int ri, int si, int num_rings, int num_slices) {
float r = (float)ri / (float)num_rings;
float s = (float)si / (float)num_slices;
// Find the point on the rim, based on the slice.
float theta = s * 2.0f * MathNumbers::pi_f;
float x_rim = ccos(theta);
float z_rim = csin(theta);
// Now pull that point in towards the pole, based on the ring.
float phi = r * 0.5f * MathNumbers::pi_f;
float to_pole = csin(phi);
float x = _radius * x_rim * to_pole;
float y = -_radius * ccos(phi);
float z = _radius * z_rim * to_pole;
return Vertexf(x, y, z);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::calc_sphere2_vertex
// Access: Private
// Description: Calculates a particular vertex on the surface of the
// second endcap hemisphere, for use in generating the
// viz geometry.
////////////////////////////////////////////////////////////////////
Vertexf CollisionTube::
calc_sphere2_vertex(int ri, int si, int num_rings, int num_slices,
float length) {
float r = (float)ri / (float)num_rings;
float s = (float)si / (float)num_slices;
// Find the point on the rim, based on the slice.
float theta = s * 2.0f * MathNumbers::pi_f;
float x_rim = ccos(theta);
float z_rim = csin(theta);
// Now pull that point in towards the pole, based on the ring.
float phi = r * 0.5f * MathNumbers::pi_f;
float to_pole = csin(phi);
float x = _radius * x_rim * to_pole;
float y = length + _radius * ccos(phi);
float z = _radius * z_rim * to_pole;
return Vertexf(x, y, z);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::intersects_line
// Access: Private
// Description: Determine the point(s) of intersection of a parametric
// line with the tube. The line is infinite in both
// directions, and passes through "from" and from+delta.
// If the line does not intersect the tube, the
// function returns false, and t1 and t2 are undefined.
// If it does intersect the tube, it returns true, and
// t1 and t2 are set to the points along the equation
// from+t*delta that correspond to the two points of
// intersection.
////////////////////////////////////////////////////////////////////
bool CollisionTube::
intersects_line(double &t1, double &t2,
LPoint3f from, LVector3f delta, float inflate_radius) const {
// Convert the line into our canonical coordinate space: the tube is
// aligned with the y axis.
from = from * _inv_mat;
delta = delta * _inv_mat;
float radius = _radius + inflate_radius;
// Now project the line into the X-Z plane to test for intersection
// with a 2-d circle around the origin. The equation for this is
// very similar to the formula for the intersection of a line with a
// sphere; see CollisionSphere::intersects_line() for the complete
// derivation. It's a little bit simpler because the circle is
// centered on the origin.
LVector2f from2(from[0], from[2]);
LVector2f delta2(delta[0], delta[2]);
double A = dot(delta2, delta2);
if (IS_NEARLY_ZERO(A)) {
// If the delta2 is 0, the line is perpendicular to the X-Z plane.
// The whole line intersects with the infinite cylinder if the
// point is within the circle.
if (from2.dot(from2) > radius * radius) {
// Nope, the 2-d point is outside the circle, so no
// intersection.
return false;
}
if (IS_NEARLY_ZERO(delta[1])) {
// Actually, the whole delta vector is 0, so the line is just a
// point. In this case, (since we have already shown the point
// is within the infinite cylinder), we intersect if and only if
// the three-dimensional point is between the endcaps.
if (from[1] < -radius || from[1] > _length + radius) {
// Way out.
return false;
}
if (from[1] < 0.0f) {
// Possibly within the first endcap.
if (from.dot(from) > radius * radius) {
return false;
}
} else if (from[1] > _length) {
// Possibly within the second endcap.
from[1] -= _length;
if (from.dot(from) > radius * radius) {
return false;
}
}
// The point is within the tube!
t1 = t2 = 0.0;
return true;
}
// The 2-d point is within the circle, so compute our intersection
// points to include the entire vertical slice of the cylinder.
t1 = (-radius - from[1]) / delta[1];
t2 = (_length + radius - from[1]) / delta[1];
} else {
// The line is not perpendicular to the X-Z plane, so its
// projection into the plane is 2-d line. Test that 2-d line for
// intersection with the circular projection of the cylinder.
double B = 2.0f * dot(delta2, from2);
double fc_d2 = dot(from2, from2);
double C = fc_d2 - radius * radius;
double radical = B*B - 4.0*A*C;
if (IS_NEARLY_ZERO(radical)) {
// Tangent.
t1 = t2 = -B / (2.0*A);
} else if (radical < 0.0) {
// No real roots: no intersection with the line.
return false;
} else {
double reciprocal_2A = 1.0 / (2.0 * A);
double sqrt_radical = sqrtf(radical);
t1 = ( -B - sqrt_radical ) * reciprocal_2A;
t2 = ( -B + sqrt_radical ) * reciprocal_2A;
}
}
// Now we need to verify that the intersection points fall within
// the length of the cylinder.
float t1_y = from[1] + t1 * delta[1];
float t2_y = from[1] + t2 * delta[1];
if (t1_y < -radius && t2_y < -radius) {
// Both points are way off the bottom of the tube; no
// intersection.
return false;
} else if (t1_y > _length + radius && t2_y > _length + radius) {
// Both points are way off the top of the tube; no intersection.
return false;
}
if (t1_y < 0.0f) {
// The starting point is off the bottom of the tube. Test the
// line against the first endcap.
double t1a, t2a;
if (!sphere_intersects_line(t1a, t2a, 0.0f, from, delta, inflate_radius)) {
// If there's no intersection with the endcap, there can't be an
// intersection with the cylinder.
return false;
}
t1 = t1a;
} else if (t1_y > _length) {
// The starting point is off the top of the tube. Test the
// line against the second endcap.
double t1b, t2b;
if (!sphere_intersects_line(t1b, t2b, _length, from, delta, inflate_radius)) {
// If there's no intersection with the endcap, there can't be an
// intersection with the cylinder.
return false;
}
t1 = t1b;
}
if (t2_y < 0.0f) {
// The ending point is off the bottom of the tube. Test the
// line against the first endcap.
double t1a, t2a;
if (!sphere_intersects_line(t1a, t2a, 0.0f, from, delta, inflate_radius)) {
// If there's no intersection with the endcap, there can't be an
// intersection with the cylinder.
return false;
}
t2 = t2a;
} else if (t2_y > _length) {
// The ending point is off the top of the tube. Test the
// line against the second endcap.
double t1b, t2b;
if (!sphere_intersects_line(t1b, t2b, _length, from, delta, inflate_radius)) {
// If there's no intersection with the endcap, there can't be an
// intersection with the cylinder.
return false;
}
t2 = t2b;
}
return true;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::sphere_intersects_line
// Access: Private
// Description: After confirming that the line intersects an infinite
// cylinder, test whether it intersects one or the other
// endcaps. The y parameter specifies the center of the
// sphere (and hence the particular endcap.
////////////////////////////////////////////////////////////////////
bool CollisionTube::
sphere_intersects_line(double &t1, double &t2, float center_y,
const LPoint3f &from, const LVector3f &delta,
float inflate_radius) const {
// See CollisionSphere::intersects_line() for a derivation of the
// formula here.
float radius = _radius + inflate_radius;
double A = dot(delta, delta);
nassertr(A != 0.0, false);
LVector3f fc = from;
fc[1] -= center_y;
double B = 2.0f* dot(delta, fc);
double fc_d2 = dot(fc, fc);
double C = fc_d2 - radius * radius;
double radical = B*B - 4.0*A*C;
if (IS_NEARLY_ZERO(radical)) {
// Tangent.
t1 = t2 = -B / (2.0 * A);
return true;
} else if (radical < 0.0) {
// No real roots: no intersection with the line.
return false;
}
double reciprocal_2A = 1.0 / (2.0 * A);
double sqrt_radical = sqrtf(radical);
t1 = ( -B - sqrt_radical ) * reciprocal_2A;
t2 = ( -B + sqrt_radical ) * reciprocal_2A;
return true;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::set_intersection_point
// Access: Private
// Description: After an intersection has been detected, record the
// computed intersection point in the CollisionEntry,
// and also compute the relevant normal based on that
// point.
////////////////////////////////////////////////////////////////////
void CollisionTube::
set_intersection_point(CollisionEntry *new_entry,
const LPoint3f &into_intersection_point,
double extra_radius) const {
// Convert the point into our canonical space for analysis.
LPoint3f point = into_intersection_point * _inv_mat;
LVector3f normal;
if (point[1] <= 0.0) {
// The point is on the first endcap.
normal = point;
if (!normal.normalize()) {
normal.set(0.0, -1.0, 0.0);
}
point = normal * _radius;
} else if (point[1] >= _length) {
// The point is on the second endcap.
normal.set(point[0], point[1] - _length, point[2]);
if (!normal.normalize()) {
normal.set(0.0, 1.0, 0.0);
}
point = normal * _radius;
point[1] += _length;
} else {
// The point is within the cylinder part.
LVector2d normal2d(point[0], point[2]);
if (!normal2d.normalize()) {
normal2d.set(0.0, 1.0);
}
normal.set(normal2d[0], 0.0, normal2d[1]);
point.set(normal[0] * _radius, point[1], normal[2] * _radius);
}
// Now convert the point and normal back into real space.
point = point * _mat;
normal = normal * _mat;
// Also adjust the original point into the tube by the amount of
// extra_radius, which should put it on the surface of the tube if
// our collision was tangential.
LPoint3f orig_point = into_intersection_point - normal * extra_radius;
// And the difference between point and orig_point is the depth to
// which the object has intersected the tube.
float depth = (point - orig_point).length();
new_entry->set_into_intersection_point(point);
new_entry->set_into_surface_normal(normal);
new_entry->set_into_depth(depth);
LVector3f from_depth_vec = (normal * depth) * new_entry->get_inv_wrt_mat();
new_entry->set_from_depth(from_depth_vec.length());
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::register_with_read_factory
// Access: Public, Static
// Description: Tells the BamReader how to create objects of type
// CollisionTube.
////////////////////////////////////////////////////////////////////
void CollisionTube::
register_with_read_factory() {
BamReader::get_factory()->register_factory(get_class_type(), make_from_bam);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::write_datagram
// Access: Public, Virtual
// Description: Writes the contents of this object to the datagram
// for shipping out to a Bam file.
////////////////////////////////////////////////////////////////////
void CollisionTube::
write_datagram(BamWriter *manager, Datagram &dg) {
CollisionSolid::write_datagram(manager, dg);
_a.write_datagram(dg);
_b.write_datagram(dg);
dg.add_float32(_radius);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::make_from_bam
// Access: Protected, Static
// Description: This function is called by the BamReader's factory
// when a new object of type CollisionTube is encountered
// in the Bam file. It should create the CollisionTube
// and extract its information from the file.
////////////////////////////////////////////////////////////////////
TypedWritable *CollisionTube::
make_from_bam(const FactoryParams &params) {
CollisionTube *node = new CollisionTube();
DatagramIterator scan;
BamReader *manager;
parse_params(params, scan, manager);
node->fillin(scan, manager);
return node;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionTube::fillin
// Access: Protected
// Description: This internal function is called by make_from_bam to
// read in all of the relevant data from the BamFile for
// the new CollisionTube.
////////////////////////////////////////////////////////////////////
void CollisionTube::
fillin(DatagramIterator &scan, BamReader *manager) {
CollisionSolid::fillin(scan, manager);
_a.read_datagram(scan);
_b.read_datagram(scan);
_radius = scan.get_float32();
recalc_internals();
}