panda3d/panda/src/collide/collisionSphere.cxx
2011-06-18 00:16:48 +00:00

990 lines
34 KiB
C++

// Filename: collisionSphere.cxx
// Created by: drose (24Apr00)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) Carnegie Mellon University. All rights reserved.
//
// All use of this software is subject to the terms of the revised BSD
// license. You should have received a copy of this license along
// with this source code in a file named "LICENSE."
//
////////////////////////////////////////////////////////////////////
#include "collisionDSSolid.h"
#include "collisionSphere.h"
#include "collisionLine.h"
#include "collisionRay.h"
#include "collisionSegment.h"
#include "collisionHandler.h"
#include "collisionEntry.h"
#include "config_collide.h"
#include "boundingSphere.h"
#include "datagram.h"
#include "datagramIterator.h"
#include "bamReader.h"
#include "bamWriter.h"
#include "nearly_zero.h"
#include "cmath.h"
#include "mathNumbers.h"
#include "geom.h"
#include "geomTristrips.h"
#include "geomVertexWriter.h"
PStatCollector CollisionSphere::_volume_pcollector(
"Collision Volumes:CollisionSphere");
PStatCollector CollisionSphere::_test_pcollector(
"Collision Tests:CollisionSphere");
TypeHandle CollisionSphere::_type_handle;
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::make_copy
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
CollisionSolid *CollisionSphere::
make_copy() {
return new CollisionSphere(*this);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::test_intersection
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionSphere::
test_intersection(const CollisionEntry &entry) const {
return entry.get_into()->test_intersection_from_sphere(entry);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::xform
// Access: Public, Virtual
// Description: Transforms the solid by the indicated matrix.
////////////////////////////////////////////////////////////////////
void CollisionSphere::
xform(const LMatrix4f &mat) {
_center = _center * mat;
// This is a little cheesy and fails miserably in the presence of a
// non-uniform scale.
LVector3f radius_v = LVector3f(_radius, 0.0f, 0.0f) * mat;
_radius = length(radius_v);
mark_viz_stale();
mark_internal_bounds_stale();
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::get_collision_origin
// Access: Public, Virtual
// Description: Returns the point in space deemed to be the "origin"
// of the solid for collision purposes. The closest
// intersection point to this origin point is considered
// to be the most significant.
////////////////////////////////////////////////////////////////////
LPoint3f CollisionSphere::
get_collision_origin() const {
return get_center();
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::get_volume_pcollector
// Access: Public, Virtual
// Description: Returns a PStatCollector that is used to count the
// number of bounding volume tests made against a solid
// of this type in a given frame.
////////////////////////////////////////////////////////////////////
PStatCollector &CollisionSphere::
get_volume_pcollector() {
return _volume_pcollector;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::get_test_pcollector
// Access: Public, Virtual
// Description: Returns a PStatCollector that is used to count the
// number of intersection tests made against a solid
// of this type in a given frame.
////////////////////////////////////////////////////////////////////
PStatCollector &CollisionSphere::
get_test_pcollector() {
return _test_pcollector;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::output
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
void CollisionSphere::
output(ostream &out) const {
out << "sphere, c (" << get_center() << "), r " << get_radius();
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::compute_internal_bounds
// Access: Protected, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(BoundingVolume) CollisionSphere::
compute_internal_bounds() const {
return new BoundingSphere(_center, _radius);
}
#define USE_DS_SOLID_PLANES 1
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::test_intersection_from_ds_solid
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionSphere::
test_intersection_from_ds_solid(const CollisionEntry &entry) const {
const CollisionDSSolid *ds_solid;
DCAST_INTO_R(ds_solid, entry.get_from(), 0);
cerr<<"CollisionSphere::test_intersection_from_ds_solid\n";
CPT(TransformState) wrt_space = entry.get_wrt_space();
const LMatrix4f &wrt_mat = wrt_space->get_mat();
LPoint3f into_center = get_center();
float into_radius = get_radius();
LPoint3f sa_center = ds_solid->get_center_a() * wrt_mat;
float sa_radius = length(
LVector3f(ds_solid->get_radius_a(), 0.0f, 0.0f) * wrt_mat);
LVector3f sa_vec = sa_center - into_center;
float sa_distance_squared = dot(sa_vec, sa_vec);
float sa_and_into_radii_squared = (
sa_radius + into_radius) * (sa_radius + into_radius);
if (sa_distance_squared > sa_and_into_radii_squared) {
// No intersection.
return NULL;
}
LPoint3f sb_center = ds_solid->get_center_b() * wrt_mat;
float sb_radius = length(
LVector3f(ds_solid->get_radius_b(), 0.0f, 0.0f) * wrt_mat);
LVector3f sb_vec = sb_center - into_center;
float sb_distance_squared = dot(sb_vec, sb_vec);
float sb_and_into_radii_squared = (
sb_radius + into_radius) * (sb_radius + into_radius);
if (sb_distance_squared > sb_and_into_radii_squared) {
// No intersection.
return NULL;
}
#if USE_DS_SOLID_PLANES
CPT(TransformState) inv_wrt_space = entry.get_inv_wrt_space();
const LMatrix4f &inv_wrt_mat = inv_wrt_space->get_mat();
LPoint3f inv_into_center = get_center() * inv_wrt_mat;
float inv_into_radius = length(
LVector3f(get_radius(), 0.0f, 0.0f) * inv_wrt_mat);
float pa_distance =
ds_solid->dist_to_plane_a(inv_into_center) - inv_into_radius;
if (pa_distance > 0.0f) {
// No intersection.
return NULL;
}
float pb_distance =
ds_solid->dist_to_plane_b(inv_into_center) - inv_into_radius;
if (pb_distance > 0.0f) {
// No intersection.
return NULL;
}
#endif
LVector3f lens_center = ds_solid->get_collision_origin() * wrt_mat;
float lens_radius = length(
LVector3f(ds_solid->get_lens_radius(), 0.0f, 0.0f) * wrt_mat);
LVector3f lens_vec = lens_center - into_center;
// float lens_distance_squared = dot(lens_vec, lens_vec);
LVector3f surface_normal; // into
//LPoint3f surface_point; // into
LPoint3f interior_point; // from
float sa_distance = sqrtf(sa_distance_squared) - sa_radius;
float sb_distance = sqrtf(sb_distance_squared) - sb_radius;
pa_distance = ds_solid->dist_to_plane_a(inv_into_center);
pb_distance = ds_solid->dist_to_plane_b(inv_into_center);
#if USE_DS_SOLID_PLANES
cerr
<<" sa_distance:"<<sa_distance
<<" sb_distance:"<<sb_distance
<<" pa_distance:"<<pa_distance
<<" pb_distance:"<<pb_distance<<"\n";
if ((sa_distance > pa_distance && sa_distance > pb_distance) ||
(sb_distance > pa_distance && sb_distance > pb_distance)) {
#else
cerr
<<" sa_distance:"<<sa_distance
<<" sb_distance:"<<sb_distance<<"\n";
#endif
LVector3f *primary_vec;
LPoint3f *primary_center;
float primary_radius;
LPoint3f *secondary_center;
float secondary_radius;
if (sa_distance > sb_distance) {
// sphere_a is the furthest
cerr<<"sphere_a is the furthest\n";
primary_vec = &sa_vec;
primary_center = &sa_center;
primary_radius = sa_radius;
secondary_center = &sb_center;
secondary_radius = sb_radius;
} else {
// sphere_b is the furthest
cerr<<"sphere_b is the furthest\n";
primary_vec = &sb_vec;
primary_center = &sb_center;
primary_radius = sb_radius;
secondary_center = &sa_center;
secondary_radius = sa_radius;
}
float vec_length = primary_vec->length();
if (IS_NEARLY_ZERO(vec_length)) {
// The centers are coincident, use an arbitrary normal.
surface_normal.set(1.0, 0.0, 0.0);
} else {
// Lens face
surface_normal = *primary_vec / vec_length;
}
interior_point = *primary_center - surface_normal * primary_radius;
float temp_length_squared =
(interior_point - *secondary_center).length_squared();
if (temp_length_squared > (secondary_radius * secondary_radius)) {
cerr<<"foo\n";
LVector3f a = (*primary_center - lens_center).normalize();
LVector3f b =
cross(cross(a, (into_center - lens_center).normalize()), a).normalize();
interior_point = lens_center + b * lens_radius;
surface_normal = (interior_point - into_center).normalize();
}
#if USE_DS_SOLID_PLANES
} else {
if (pa_distance > pb_distance) {
// plane_a is the furthest
cerr<<"plane_a is the furthest\n";
surface_normal = -(ds_solid->get_plane_a().get_normal() * wrt_mat);
float d = length(
LVector3f(pa_distance, 0.0f, 0.0f) * wrt_mat);
interior_point = into_center + surface_normal * d;
} else {
// plane_b is the furthest
cerr<<"plane_b is the furthest\n";
//surface_normal = -(ds_solid->get_plane_b().get_normal() * wrt_mat);
surface_normal = -ds_solid->get_plane_b().get_normal();
surface_normal = surface_normal * wrt_mat;
float d = length(
LVector3f(pb_distance, 0.0f, 0.0f) * wrt_mat);
interior_point = into_center + surface_normal * d;
}
}
#endif
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << entry.get_from_node_path()
<< " into " << entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
new_entry->set_surface_normal(surface_normal);
new_entry->set_surface_point(into_center + surface_normal * into_radius);
new_entry->set_interior_point(interior_point);
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::test_intersection_from_sphere
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionSphere::
test_intersection_from_sphere(const CollisionEntry &entry) const {
const CollisionSphere *sphere;
DCAST_INTO_R(sphere, entry.get_from(), 0);
CPT(TransformState) wrt_space = entry.get_wrt_space();
const LMatrix4f &wrt_mat = wrt_space->get_mat();
LPoint3f from_b = sphere->get_center() * wrt_mat;
LPoint3f into_center(get_center());
float into_radius(get_radius());
LVector3f from_radius_v =
LVector3f(sphere->get_radius(), 0.0f, 0.0f) * wrt_mat;
float from_radius = length(from_radius_v);
LPoint3f into_intersection_point(from_b);
double t1, t2;
LPoint3f contact_point(into_intersection_point);
float actual_t = 0.0f;
LVector3f vec = from_b - into_center;
float dist2 = dot(vec, vec);
if (dist2 > (into_radius + from_radius) * (into_radius + from_radius)) {
// No intersection with the current position. Check the delta
// from the previous frame.
CPT(TransformState) wrt_prev_space = entry.get_wrt_prev_space();
LPoint3f from_a = sphere->get_center() * wrt_prev_space->get_mat();
if (!from_a.almost_equal(from_b)) {
LVector3f from_direction = from_b - from_a;
if (!intersects_line(t1, t2, from_a, from_direction, from_radius)) {
// No intersection.
return NULL;
}
if (t2 < 0.0 || t1 > 1.0) {
// Both intersection points are before the start of the segment or
// after the end of the segment.
return NULL;
}
// doubles, not floats, to satisfy min and max templates.
actual_t = min(1.0, max(0.0, t1));
contact_point = from_a + actual_t * (from_b - from_a);
if (t1 < 0.0) {
// Point a is within the sphere. The first intersection point is
// point a itself.
into_intersection_point = from_a;
} else {
// Point a is outside the sphere, and point b is either inside the
// sphere or beyond it. The first intersection point is at t1.
into_intersection_point = from_a + t1 * from_direction;
}
} else {
// No delta, therefore no intersection.
return NULL;
}
}
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << entry.get_from_node_path()
<< " into " << entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
LPoint3f from_center = sphere->get_center() * wrt_mat;
LVector3f surface_normal;
LVector3f v(into_intersection_point - into_center);
float vec_length = v.length();
if (IS_NEARLY_ZERO(vec_length)) {
// If we don't have a collision normal (e.g. the centers are
// exactly coincident), then make up an arbitrary normal--any one
// is as good as any other.
surface_normal.set(1.0, 0.0, 0.0);
} else {
surface_normal = v / vec_length;
}
LVector3f eff_normal = (has_effective_normal() && sphere->get_respect_effective_normal()) ? get_effective_normal() : surface_normal;
LVector3f contact_normal;
LVector3f v2 = contact_point - into_center;
float v2_len = v2.length();
if (IS_NEARLY_ZERO(v2_len)) {
// If we don't have a collision normal (e.g. the centers are
// exactly coincident), then make up an arbitrary normal--any one
// is as good as any other.
contact_normal.set(1.0, 0.0, 0.0);
} else {
contact_normal = v2 / v2_len;
}
new_entry->set_surface_normal(eff_normal);
new_entry->set_surface_point(into_center + surface_normal * into_radius);
new_entry->set_interior_point(from_center - surface_normal * from_radius);
new_entry->set_contact_pos(contact_point);
new_entry->set_contact_normal(contact_normal);
new_entry->set_t(actual_t);
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::test_intersection_from_line
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionSphere::
test_intersection_from_line(const CollisionEntry &entry) const {
const CollisionLine *line;
DCAST_INTO_R(line, entry.get_from(), 0);
const LMatrix4f &wrt_mat = entry.get_wrt_mat();
LPoint3f from_origin = line->get_origin() * wrt_mat;
LVector3f from_direction = line->get_direction() * wrt_mat;
double t1, t2;
if (!intersects_line(t1, t2, from_origin, from_direction, 0.0f)) {
// No intersection.
return NULL;
}
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << entry.get_from_node_path()
<< " into " << entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
LPoint3f into_intersection_point = from_origin + t1 * from_direction;
new_entry->set_surface_point(into_intersection_point);
if (has_effective_normal() && line->get_respect_effective_normal()) {
new_entry->set_surface_normal(get_effective_normal());
} else {
LVector3f normal = into_intersection_point - get_center();
normal.normalize();
new_entry->set_surface_normal(normal);
}
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::test_intersection_from_box
// Access: Public, Virtual
// Description: Double dispatch point for box as a FROM object
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionSphere::
test_intersection_from_box(const CollisionEntry &entry) const {
const CollisionBox *box;
DCAST_INTO_R(box, entry.get_from(), 0);
CPT(TransformState) wrt_space = entry.get_wrt_space();
CPT(TransformState) wrt_prev_space = entry.get_wrt_prev_space();
const LMatrix4f &wrt_mat = wrt_space->get_mat();
CollisionBox local_b( *box );
local_b.xform( wrt_mat );
LPoint3f from_center = local_b.get_center();
LPoint3f orig_center = get_center();
LPoint3f to_center = orig_center;
LPoint3f contact_point(from_center);
float actual_t = 1.0f;
float to_radius = get_radius();
float to_radius_2 = to_radius * to_radius;
int ip;
float max_dist = 0.0f;
float dist = 0.0f; // initial assignment to squelch silly compiler warning
bool intersect;
Planef plane;
LVector3f normal;
for (ip = 0, intersect=false; ip < 6 && !intersect; ip++) {
plane = local_b.get_plane( ip );
if (local_b.get_plane_points(ip).size() < 3) {
continue;
}
normal = (has_effective_normal() && box->get_respect_effective_normal()) ? get_effective_normal() : plane.get_normal();
#ifndef NDEBUG
/*
if (!IS_THRESHOLD_EQUAL(normal.length_squared(), 1.0f, 0.001), NULL) {
collide_cat.info()
<< "polygon being collided with " << entry.get_into_node_path()
<< " has normal " << normal << " of length " << normal.length()
<< "\n";
normal.normalize();
}
*/
#endif
// The nearest point within the plane to our center is the
// intersection of the line (center, center - normal) with the plane.
if (!plane.intersects_line(dist, to_center, -(plane.get_normal()))) {
// No intersection with plane? This means the plane's effective
// normal was within the plane itself. A useless polygon.
continue;
}
if (dist > to_radius || dist < -to_radius) {
// No intersection with the plane.
continue;
}
LPoint2f p = local_b.to_2d(to_center - dist * plane.get_normal(), ip);
float edge_dist = 0.0f;
edge_dist = local_b.dist_to_polygon(p, local_b.get_plane_points(ip));
if(edge_dist < 0) {
intersect = true;
continue;
}
if((edge_dist > 0) &&
((edge_dist * edge_dist + dist * dist) > to_radius_2)) {
// No intersection; the circle is outside the polygon.
continue;
}
// The sphere appears to intersect the polygon. If the edge is less
// than to_radius away, the sphere may be resting on an edge of
// the polygon. Determine how far the center of the sphere must
// remain from the plane, based on its distance from the nearest
// edge.
max_dist = to_radius;
if (edge_dist >= 0.0f) {
float max_dist_2 = max(to_radius_2 - edge_dist * edge_dist, 0.0f);
max_dist = csqrt(max_dist_2);
}
if (dist > max_dist) {
// There's no intersection: the sphere is hanging off the edge.
continue;
}
intersect = true;
}
if( !intersect )
return NULL;
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << entry.get_from_node_path()
<< " into " << entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
float into_depth = max_dist - dist;
new_entry->set_surface_normal(normal);
new_entry->set_surface_point(to_center - normal * dist);
new_entry->set_interior_point(to_center - normal * (dist + into_depth));
new_entry->set_contact_pos(contact_point);
new_entry->set_contact_normal(plane.get_normal());
new_entry->set_t(actual_t);
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::test_intersection_from_ray
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionSphere::
test_intersection_from_ray(const CollisionEntry &entry) const {
const CollisionRay *ray;
DCAST_INTO_R(ray, entry.get_from(), 0);
const LMatrix4f &wrt_mat = entry.get_wrt_mat();
LPoint3f from_origin = ray->get_origin() * wrt_mat;
LVector3f from_direction = ray->get_direction() * wrt_mat;
double t1, t2;
if (!intersects_line(t1, t2, from_origin, from_direction, 0.0f)) {
// No intersection.
return NULL;
}
if (t2 < 0.0) {
// Both intersection points are before the start of the ray.
return NULL;
}
t1 = max(t1, 0.0);
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << entry.get_from_node_path()
<< " into " << entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
LPoint3f into_intersection_point = from_origin + t1 * from_direction;
new_entry->set_surface_point(into_intersection_point);
if (has_effective_normal() && ray->get_respect_effective_normal()) {
new_entry->set_surface_normal(get_effective_normal());
} else {
LVector3f normal = into_intersection_point - get_center();
normal.normalize();
new_entry->set_surface_normal(normal);
}
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::test_intersection_from_segment
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionSphere::
test_intersection_from_segment(const CollisionEntry &entry) const {
const CollisionSegment *segment;
DCAST_INTO_R(segment, entry.get_from(), 0);
const LMatrix4f &wrt_mat = entry.get_wrt_mat();
LPoint3f from_a = segment->get_point_a() * wrt_mat;
LPoint3f from_b = segment->get_point_b() * wrt_mat;
LVector3f from_direction = from_b - from_a;
double t1, t2;
if (!intersects_line(t1, t2, from_a, from_direction, 0.0f)) {
// No intersection.
return NULL;
}
if (t2 < 0.0 || t1 > 1.0) {
// Both intersection points are before the start of the segment or
// after the end of the segment.
return NULL;
}
t1 = max(t1, 0.0);
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << entry.get_from_node_path()
<< " into " << entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
LPoint3f into_intersection_point = from_a + t1 * from_direction;
new_entry->set_surface_point(into_intersection_point);
if (has_effective_normal() && segment->get_respect_effective_normal()) {
new_entry->set_surface_normal(get_effective_normal());
} else {
LVector3f normal = into_intersection_point - get_center();
normal.normalize();
new_entry->set_surface_normal(normal);
}
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::test_intersection_from_parabola
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PT(CollisionEntry) CollisionSphere::
test_intersection_from_parabola(const CollisionEntry &entry) const {
const CollisionParabola *parabola;
DCAST_INTO_R(parabola, entry.get_from(), 0);
const LMatrix4f &wrt_mat = entry.get_wrt_mat();
// Convert the parabola into local coordinate space.
Parabolaf local_p(parabola->get_parabola());
local_p.xform(wrt_mat);
double t;
if (!intersects_parabola(t, local_p, parabola->get_t1(), parabola->get_t2(),
local_p.calc_point(parabola->get_t1()),
local_p.calc_point(parabola->get_t2()))) {
// No intersection.
return NULL;
}
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "intersection detected from " << entry.get_from_node_path()
<< " into " << entry.get_into_node_path() << "\n";
}
PT(CollisionEntry) new_entry = new CollisionEntry(entry);
LPoint3f into_intersection_point = local_p.calc_point(t);
new_entry->set_surface_point(into_intersection_point);
if (has_effective_normal() && parabola->get_respect_effective_normal()) {
new_entry->set_surface_normal(get_effective_normal());
} else {
LVector3f normal = into_intersection_point - get_center();
normal.normalize();
new_entry->set_surface_normal(normal);
}
return new_entry;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::fill_viz_geom
// Access: Protected, Virtual
// Description: Fills the _viz_geom GeomNode up with Geoms suitable
// for rendering this solid.
////////////////////////////////////////////////////////////////////
void CollisionSphere::
fill_viz_geom() {
if (collide_cat.is_debug()) {
collide_cat.debug()
<< "Recomputing viz for " << *this << "\n";
}
static const int num_slices = 16;
static const int num_stacks = 8;
PT(GeomVertexData) vdata = new GeomVertexData
("collision", GeomVertexFormat::get_v3(),
Geom::UH_static);
GeomVertexWriter vertex(vdata, InternalName::get_vertex());
PT(GeomTristrips) strip = new GeomTristrips(Geom::UH_static);
for (int sl = 0; sl < num_slices; ++sl) {
float longitude0 = (float)sl / (float)num_slices;
float longitude1 = (float)(sl + 1) / (float)num_slices;
vertex.add_data3f(compute_point(0.0, longitude0));
for (int st = 1; st < num_stacks; ++st) {
float latitude = (float)st / (float)num_stacks;
vertex.add_data3f(compute_point(latitude, longitude0));
vertex.add_data3f(compute_point(latitude, longitude1));
}
vertex.add_data3f(compute_point(1.0, longitude0));
strip->add_next_vertices(num_stacks * 2);
strip->close_primitive();
}
PT(Geom) geom = new Geom(vdata);
geom->add_primitive(strip);
_viz_geom->add_geom(geom, get_solid_viz_state());
_bounds_viz_geom->add_geom(geom, get_solid_bounds_viz_state());
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::intersects_line
// Access: Protected
// Description: Determine the point(s) of intersection of a parametric
// line with the sphere. The line is infinite in both
// directions, and passes through "from" and from+delta.
// If the line does not intersect the sphere, the
// function returns false, and t1 and t2 are undefined.
// If it does intersect the sphere, it returns true, and
// t1 and t2 are set to the points along the equation
// from+t*delta that correspond to the two points of
// intersection.
////////////////////////////////////////////////////////////////////
bool CollisionSphere::
intersects_line(double &t1, double &t2,
const LPoint3f &from, const LVector3f &delta,
float inflate_radius) const {
// Solve the equation for the intersection of a line with a sphere
// using the quadratic equation.
// A line segment from f to f+d is defined as all P such that
// P = f + td for 0 <= t <= 1.
// A sphere with radius r about point c is defined as all P such
// that r^2 = (P - c)^2.
// Substituting P in the above we have:
// r^2 = (f + td - c)^2 =
// (f^2 + ftd - fc + ftd + t^2d^2 - tdc - fc - tdc + c^2) =
// t^2(d^2) + t(fd + fd - dc - dc) + (f^2 - fc - fc + c^2) =
// t^2(d^2) + t(2d(f - c)) + (f - c)^2
// Thus, the equation is quadratic in t, and we have
// at^2 + bt + c = 0
// Where a = d^2
// b = 2d(f - c)
// c = (f - c)^2 - r^2
// Solving for t using the quadratic equation gives us the point of
// intersection along the line segment. Actually, there are two
// solutions (since it is quadratic): one for the front of the
// sphere, and one for the back. In the case where the line is
// tangent to the sphere, there is only one solution (and the
// radical is zero).
double A = dot(delta, delta);
nassertr(A != 0.0, false);
LVector3f fc = from - get_center();
double B = 2.0f* dot(delta, fc);
double fc_d2 = dot(fc, fc);
double radius = get_radius() + inflate_radius;
double C = fc_d2 - radius * radius;
double radical = B*B - 4.0*A*C;
if (IS_NEARLY_ZERO(radical)) {
// Tangent.
t1 = t2 = -B /(2.0*A);
return true;
} else if (radical < 0.0) {
// No real roots: no intersection with the line.
return false;
}
double reciprocal_2A = 1.0/(2.0*A);
double sqrt_radical = sqrtf(radical);
t1 = ( -B - sqrt_radical ) * reciprocal_2A;
t2 = ( -B + sqrt_radical ) * reciprocal_2A;
return true;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::intersects_parabola
// Access: Protected
// Description: Determine a point of intersection of a parametric
// parabola with the sphere.
//
// We only consider the segment of the parabola between
// t1 and t2, which has already been computed as
// corresponding to points p1 and p2. If there is an
// intersection, t is set to the parametric point of
// intersection, and true is returned; otherwise, false
// is returned.
////////////////////////////////////////////////////////////////////
bool CollisionSphere::
intersects_parabola(double &t, const Parabolaf &parabola,
double t1, double t2,
const LPoint3f &p1, const LPoint3f &p2) const {
if (t1 == t2) {
// Special case: a single point.
if ((p1 - _center).length_squared() > _radius * _radius) {
// No intersection.
return false;
}
t = t1;
return true;
}
// To directly test for intersection between a parabola (quadratic)
// and a sphere (also quadratic) requires solving a quartic
// equation. Doable, but hard, and I'm a programmer, not a
// mathematician. So I'll solve it the programmer's way instead, by
// approximating the parabola with a series of line segments.
// Hence, this function works by recursively subdividing the
// parabola as necessary.
// First, see if the line segment (p1 - p2) comes sufficiently close
// to the parabola. Do this by computing the parametric intervening
// point and comparing its distance from the linear intervening
// point.
double tmid = (t1 + t2) * 0.5;
if (tmid != t1 && tmid != t2) {
LPoint3f pmid = parabola.calc_point(tmid);
LPoint3f pmid2 = (p1 + p2) * 0.5f;
if ((pmid - pmid2).length_squared() > 0.001f) {
// Subdivide.
if (intersects_parabola(t, parabola, t1, tmid, p1, pmid)) {
return true;
}
return intersects_parabola(t, parabola, tmid, t2, pmid, p2);
}
}
// The line segment is sufficiently close; compare the segment itself.
double t1a, t2a;
if (!intersects_line(t1a, t2a, p1, p2 - p1, 0.0f)) {
return false;
}
if (t2a < 0.0 || t1a > 1.0) {
return false;
}
t = max(t1a, 0.0);
return true;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::compute_point
// Access: Protected
// Description: Returns a point on the surface of the sphere.
// latitude and longitude range from 0.0 to 1.0. This
// is used by fill_viz_geom() to create a visible
// representation of the sphere.
////////////////////////////////////////////////////////////////////
Vertexf CollisionSphere::
compute_point(float latitude, float longitude) const {
float s1, c1;
csincos(latitude * MathNumbers::pi_f, &s1, &c1);
float s2, c2;
csincos(longitude * 2.0f * MathNumbers::pi_f, &s2, &c2);
Vertexf p(s1 * c2, s1 * s2, c1);
return p * get_radius() + get_center();
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::register_with_read_factory
// Access: Public, Static
// Description: Factory method to generate a CollisionSphere object
////////////////////////////////////////////////////////////////////
void CollisionSphere::
register_with_read_factory() {
BamReader::get_factory()->register_factory(get_class_type(), make_CollisionSphere);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::write_datagram
// Access: Public
// Description: Function to write the important information in
// the particular object to a Datagram
////////////////////////////////////////////////////////////////////
void CollisionSphere::
write_datagram(BamWriter *manager, Datagram &me) {
CollisionSolid::write_datagram(manager, me);
_center.write_datagram(me);
me.add_float32(_radius);
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::make_CollisionSphere
// Access: Protected
// Description: Factory method to generate a CollisionSphere object
////////////////////////////////////////////////////////////////////
TypedWritable *CollisionSphere::
make_CollisionSphere(const FactoryParams &params) {
CollisionSphere *me = new CollisionSphere;
DatagramIterator scan;
BamReader *manager;
parse_params(params, scan, manager);
me->fillin(scan, manager);
return me;
}
////////////////////////////////////////////////////////////////////
// Function: CollisionSphere::fillin
// Access: Protected
// Description: Function that reads out of the datagram (or asks
// manager to read) all of the data that is needed to
// re-create this object and stores it in the appropiate
// place
////////////////////////////////////////////////////////////////////
void CollisionSphere::
fillin(DatagramIterator& scan, BamReader* manager) {
CollisionSolid::fillin(scan, manager);
_center.read_datagram(scan);
_radius = scan.get_float32();
}