panda3d/panda/src/particlesystem/particleSystem.cxx
2001-01-29 23:22:17 +00:00

671 lines
19 KiB
C++

// Filename: particleSystem.cxx
// Created by: charles (14Jun00)
//
////////////////////////////////////////////////////////////////////
#include <stdlib.h>
#include <luse.h>
#include <lmat_ops.h>
#include <get_rel_pos.h>
#include <clockObject.h>
#include <nodeRelation.h>
#include <transformTransition.h>
#include <physicsManager.h>
#include <physicalNode.h>
#include <nearly_zero.h>
#include "config_particlesystem.h"
#include "particleSystem.h"
#include "particleSystemManager.h"
#include "pointParticleRenderer.h"
#include "pointParticleFactory.h"
#include "sphereSurfaceEmitter.h"
////////////////////////////////////////////////////////////////////
// Function : ParticleSystem
// Access : Public
// Description : Default Constructor.
////////////////////////////////////////////////////////////////////
ParticleSystem::
ParticleSystem(int pool_size) :
Physical(pool_size, false)
{
_birth_rate = 0.5f;
_tics_since_birth = _birth_rate;
_litter_size = 1;
_litter_spread = 0;
_living_particles = 0;
_active_system_flag = true;
_local_velocity_flag = true;
_spawn_on_death_flag = false;
_system_grows_older_flag = false;
_system_lifespan = 0.0f;
_i_was_spawned_flag = false;
_particle_pool_size = 0;
// just in case someone tries to do something that requires the
// use of an emitter, renderer, or factory before they've actually
// assigned one. This is ok, because assigning them (set_renderer(),
// set_emitter(), etc...) forces them to set themselves up for the
// system, keeping the pool sizes consistent.
_render_arc.clear();
_render_parent = new NamedNode("ParticleSystem default render parent");
set_emitter(new SphereSurfaceEmitter);
set_renderer(new PointParticleRenderer);
//set_factory(new PointParticleFactory);
_factory = new PointParticleFactory;
clear_physics_objects();
set_pool_size(pool_size);
}
////////////////////////////////////////////////////////////////////
// Function : ParticleSystem
// Access : Public
// Description : Copy Constructor.
////////////////////////////////////////////////////////////////////
ParticleSystem::
ParticleSystem(const ParticleSystem& copy) :
Physical(copy),
_system_age(0.0f),
_template_system_flag(false)
{
_birth_rate = copy._birth_rate;
_litter_size = copy._litter_size;
_litter_spread = copy._litter_spread;
_active_system_flag = copy._active_system_flag;
_local_velocity_flag = copy._local_velocity_flag;
_spawn_on_death_flag = copy._spawn_on_death_flag;
_i_was_spawned_flag = copy._i_was_spawned_flag;
_system_grows_older_flag = copy._system_grows_older_flag;
_emitter = copy._emitter;
_renderer = copy._renderer->make_copy();
_factory = copy._factory;
_render_arc = copy._render_arc;
_render_parent = copy._render_parent;
_tics_since_birth = _birth_rate;
_system_lifespan = copy._system_lifespan;
_living_particles = 0;
set_pool_size(copy._particle_pool_size);
}
////////////////////////////////////////////////////////////////////
// Function : ~ParticleSystem
// Access : Public
// Description : You get the ankles and I'll get the wrists.
////////////////////////////////////////////////////////////////////
ParticleSystem::
~ParticleSystem(void) {
set_pool_size(0);
if (_template_system_flag == false) {
_renderer.clear();
if (_render_arc.is_null() == false)
remove_arc(_render_arc);
}
if (_i_was_spawned_flag == true)
remove_arc(_physical_node_arc);
}
////////////////////////////////////////////////////////////////////
// Function : birth_particle
// Access : Private
// Description : A new particle is born. This doesn't allocate,
// resets an element from the particle pool.
////////////////////////////////////////////////////////////////////
bool ParticleSystem::
birth_particle(void) {
int pool_index;
// make sure there's room for a new particle
if (_living_particles >= _particle_pool_size) {
#ifdef PSDEBUG
if (_living_particles > _particle_pool_size) {
cout << "_living_particles > _particle_pool_size" << endl;
}
#endif
return false;
}
#ifdef PSDEBUG
if (0 == _free_particle_fifo.size()) {
cout << "Error: _free_particle_fifo is empty, but _living_particles < _particle_pool_size" << endl;
return false;
}
#endif
pool_index = _free_particle_fifo.back();
_free_particle_fifo.pop_back();
// get a handle on our particle.
BaseParticle *bp = (BaseParticle *) _physics_objects[pool_index].p();
// start filling out the variables.
_factory->populate_particle(bp);
bp->set_alive(true);
bp->set_active(true);
bp->init();
// get the location of the new particle.
LPoint3f new_pos, world_pos;
LVector3f new_vel;
LMatrix4f birth_to_render_xform;
GeomNode *render_node;
_emitter->generate(new_pos, new_vel);
render_node = _renderer->get_render_node();
// go from birth space to render space
get_rel_mat(get_physical_node(), render_node, birth_to_render_xform);
world_pos = new_pos * birth_to_render_xform;
// cout << "New particle at " << world_pos << endl;
// possibly transform the initial velocity as well.
if (_local_velocity_flag == false)
new_vel = new_vel * birth_to_render_xform;
bp->set_position_HandOfGod(world_pos/* + (NORMALIZED_RAND() * new_vel)*/);
bp->set_velocity(new_vel);
_living_particles++;
// propogate information down to renderer
_renderer->birth_particle(pool_index);
return true;
}
////////////////////////////////////////////////////////////////////
// Function : birth_litter
// Access : Private
// Description : spawns a new batch of particles
////////////////////////////////////////////////////////////////////
void ParticleSystem::
birth_litter(void) {
int litter_size, i;
litter_size = _litter_size;
if (_litter_spread != 0)
litter_size += I_SPREAD(_litter_spread);
for (i = 0; i < litter_size; i++) {
if (birth_particle() == false)
return;
}
}
////////////////////////////////////////////////////////////////////
// Function : spawn_child_system
// Access : private
// Description : Creates a new particle system based on local
// template info and adds it to the ps and physics
// managers
////////////////////////////////////////////////////////////////////
void ParticleSystem::
spawn_child_system(BaseParticle *bp) {
// first, make sure that the system exists in the graph via a
// physicalnode reference.
PhysicalNode *this_pn = get_physical_node();
if (!this_pn) {
physics_cat.error() << "ParticleSystem::spawn_child_system: "
<< "Spawning system is not in the scene graph,"
<< " aborting." << endl;
return;
}
if (this_pn->get_num_parents(RenderRelation::get_class_type()) == 0) {
physics_cat.error() << "ParticleSystem::spawn_child_system: "
<< "PhysicalNode this system is contained in "
<< "has no parent, aborting." << endl;
return;
}
NodeRelation *parent_relation =
this_pn->get_parent(RenderRelation::get_class_type(), 0);
Node *parent = parent_relation->get_parent();
// handle the spawn templates
int new_ps_index = rand() % _spawn_templates.size();
ParticleSystem *ps_template = _spawn_templates[new_ps_index];
// create a new particle system
PT(ParticleSystem) new_ps = new ParticleSystem(*ps_template);
new_ps->_i_was_spawned_flag = true;
// first, set up the render node info.
new_ps->_render_parent = _spawn_render_node;
new_ps->_render_arc = new RenderRelation(new_ps->_render_parent,
new_ps->_renderer->get_render_node());
// now set up the new system's PhysicalNode.
PT(PhysicalNode) new_pn = new PhysicalNode;
new_pn->add_physical(new_ps);
// the arc from the parent to the new child has to represent the
// transform from the current system up to its parent, and then
// subsequently down to the new child.
PT(RenderRelation) rr = new RenderRelation(parent, new_pn);
LMatrix4f old_system_to_parent_xform;
get_rel_mat(get_physical_node(), parent, old_system_to_parent_xform);
LMatrix4f child_space_xform = old_system_to_parent_xform *
bp->get_lcs();
rr->set_transition(new TransformTransition(child_space_xform));
// tack the new system onto the managers
_manager->attach_particlesystem(new_ps);
get_physics_manager()->attach_physical(new_ps);
}
////////////////////////////////////////////////////////////////////
// Function : kill_particle
// Access : Private
// Description : Kills a particle, returns its slot to the empty
// stack.
////////////////////////////////////////////////////////////////////
void ParticleSystem::
kill_particle(int pool_index) {
// get a handle on our particle
BaseParticle *bp = (BaseParticle *) _physics_objects[pool_index].p();
// create a new system where this one died, maybe.
if (_spawn_on_death_flag == true)
spawn_child_system(bp);
// tell everyone that it's dead
bp->set_alive(false);
bp->set_active(false);
bp->die();
_free_particle_fifo.push_back(pool_index);
// tell renderer
_renderer->kill_particle(pool_index);
_living_particles--;
}
////////////////////////////////////////////////////////////////////
// Function : resize_pool
// Access : Private
// Description : Resizes the particle pool
////////////////////////////////////////////////////////////////////
#ifdef PSDEBUG
#define PARTICLE_SYSTEM_RESIZE_POOL_SENTRIES
#endif
void ParticleSystem::
resize_pool(int size) {
int i;
int delta = size - _particle_pool_size;
int po_delta = _particle_pool_size - _physics_objects.size();
#ifdef PARTICLE_SYSTEM_RESIZE_POOL_SENTRIES
cout << "resizing particle pool from " << _particle_pool_size
<< " to " << size << endl;
#endif
if (_factory.is_null()) {
particlesystem_cat.error() << "ParticleSystem::resize_pool"
<< " called with null _factory." << endl;
return;
}
if (_renderer.is_null()) {
particlesystem_cat.error() << "ParticleSystem::resize_pool"
<< " called with null _renderer." << endl;
return;
}
_particle_pool_size = size;
// make sure the physics_objects array is OK
if (po_delta) {
if (po_delta > 0) {
for (i = 0; i < po_delta; i++)
{
int free_index = _physics_objects.size();
BaseParticle *new_particle = _factory->alloc_particle();
if (new_particle) {
_factory->populate_particle(new_particle);
_physics_objects.push_back(new_particle);
} else {
#ifdef PSDEBUG
cout << "Error allocating new particle" << endl;
_particle_pool_size--;
#endif
}
}
} else {
#ifdef PSDEBUG
cout << "physics_object array is too large??" << endl;
_particle_pool_size--;
#endif
po_delta = -po_delta;
for (i = 0; i < po_delta; i++) {
int delete_index = _physics_objects.size()-1;
BaseParticle *bp = (BaseParticle *) _physics_objects[delete_index].p();
if (bp->get_alive()) {
kill_particle(delete_index);
_free_particle_fifo.pop_back();
} else {
deque<int>::iterator i;
i = find(_free_particle_fifo.begin(), _free_particle_fifo.end(), delete_index);
if (i != _free_particle_fifo.end()) {
_free_particle_fifo.erase(i);
}
}
_physics_objects.pop_back();
}
}
}
// disregard no change
if (delta == 0)
return;
// update the pool
if (delta > 0) {
// add elements
for (i = 0; i < delta; i++)
{
int free_index = _physics_objects.size();
BaseParticle *new_particle = _factory->alloc_particle();
if (new_particle) {
_factory->populate_particle(new_particle);
_physics_objects.push_back(new_particle);
_free_particle_fifo.push_back(free_index);
} else {
#ifdef PSDEBUG
cout << "Error allocating new particle" << endl;
_particle_pool_size--;
#endif
}
}
} else {
// subtract elements
delta = -delta;
for (i = 0; i < delta; i++) {
int delete_index = _physics_objects.size()-1;
BaseParticle *bp = (BaseParticle *) _physics_objects[delete_index].p();
if (bp->get_alive()) {
#ifdef PSDEBUG
cout << "WAS ALIVE" << endl;
#endif
kill_particle(delete_index);
_free_particle_fifo.pop_back();
} else {
#ifdef PSDEBUG
cout << "WAS NOT ALIVE" << endl;
#endif
deque<int>::iterator i;
i = find(_free_particle_fifo.begin(), _free_particle_fifo.end(), delete_index);
if (i != _free_particle_fifo.end()) {
_free_particle_fifo.erase(i);
}
#ifdef PSDEBUG
else {
cout << "particle not found in free FIFO!!!!!!!!" << endl;
}
#endif
}
_physics_objects.pop_back();
}
}
_renderer->resize_pool(_particle_pool_size);
#ifdef PARTICLE_SYSTEM_RESIZE_POOL_SENTRIES
cout << "particle pool resized" << endl;
#endif
}
//////////////////////////////////////////////////////////////////////
// Function : update
// Access : Public
// Description : Updates the particle system. Call once per frame.
//////////////////////////////////////////////////////////////////////
#ifdef PSDEBUG
//#define PARTICLE_SYSTEM_UPDATE_SENTRIES
#endif
void ParticleSystem::
update(float dt) {
int ttl_updates_left = _living_particles;
int current_index = 0, index_counter = 0;
BaseParticle *bp;
float age;
#ifdef PSSANITYCHECK
// check up on things
if (sanity_check()) return;
#endif
#ifdef PARTICLE_SYSTEM_UPDATE_SENTRIES
cout << "UPDATE: pool size: " << _particle_pool_size
<< ", live particles: " << _living_particles << endl;
#endif
// run through the particle array
while (ttl_updates_left) {
current_index = index_counter;
index_counter++;
#ifdef PSDEBUG
if (current_index >= _particle_pool_size) {
cout << "ERROR: _living_particles is out of sync (too large)" << endl;
cout << "pool size: " << _particle_pool_size
<< ", live particles: " << _living_particles
<< ", updates left: " << ttl_updates_left << endl;
break;
}
#endif
// get the current particle.
bp = (BaseParticle *) _physics_objects[current_index].p();
#ifdef PSDEBUG
if (!bp) {
cout << "NULL ptr at index " << current_index << endl;
continue;
}
#endif
if (bp->get_alive() == false)
continue;
age = bp->get_age() + dt;
bp->set_age(age);
if (age >= bp->get_lifespan())
kill_particle(current_index);
else
bp->update();
// break out early if we're lucky
ttl_updates_left--;
}
// generate new particles if necessary.
_tics_since_birth += dt;
while (_tics_since_birth >= _birth_rate) {
birth_litter();
_tics_since_birth -= _birth_rate;
}
#ifdef PARTICLE_SYSTEM_UPDATE_SENTRIES
cout << "particle update complete" << endl;
#endif
}
#ifdef PSSANITYCHECK
//////////////////////////////////////////////////////////////////////
// Function : sanity_check
// Access : Private
// Description : Checks consistency of live particle count, free
// particle list, etc. returns 0 if everything is normal
//////////////////////////////////////////////////////////////////////
#ifndef NDEBUG
#define PSSCVERBOSE
#endif
class SC_valuenamepair : public ReferenceCount {
public:
int value;
char *name;
SC_valuenamepair(int v, char *s) : value(v), name(s) {}
};
// returns 0 if OK, # of errors if not OK
static int check_free_live_total_particles(vector<PT(SC_valuenamepair)> live_counts,
vector<PT(SC_valuenamepair)> dead_counts, vector<PT(SC_valuenamepair)> total_counts,
int print_all = 0) {
int val = 0;
int l, d, t;
for(l = 0; l < live_counts.size(); l++) {
for(d = 0; d < dead_counts.size(); d++) {
for(t = 0; t < total_counts.size(); t++) {
int live = live_counts[l]->value;
int dead = dead_counts[d]->value;
int total = total_counts[t]->value;
if ((live + dead) != total) {
#ifdef PSSCVERBOSE
cout << "free/live/total count: "
<< live_counts[l]->name << " (" << live << ") + "
<< dead_counts[d]->name << " (" << dead << ") = "
<< live + dead << ", != "
<< total_counts[t]->name << " (" << total << ")"
<< endl;
#endif
val++;
}
}
}
}
return val;
}
int ParticleSystem::
sanity_check() {
int result = 0;
int i;
BaseParticle *bp;
int pool_size;
///////////////////////////////////////////////////////////////////
// check pool size
if (_particle_pool_size != _physics_objects.size()) {
#ifdef PSSCVERBOSE
cout << "_particle_pool_size (" << _particle_pool_size
<< ") != particle array size (" << _physics_objects.size() << ")" << endl;
#endif
result++;
}
pool_size = min(_particle_pool_size, _physics_objects.size());
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// find out how many particles are REALLY alive and dead
int real_live_particle_count = 0;
int real_dead_particle_count = 0;
for (i = 0; i < _physics_objects.size(); i++) {
bp = (BaseParticle *) _physics_objects[i].p();
if (true == bp->get_alive()) {
real_live_particle_count++;
} else {
real_dead_particle_count++;
}
}
if (real_live_particle_count != _living_particles) {
#ifdef PSSCVERBOSE
cout << "manually counted live particle count (" << real_live_particle_count
<< ") != _living_particles (" << _living_particles << ")" << endl;
#endif
result++;
}
if (real_dead_particle_count != _free_particle_fifo.size()) {
#ifdef PSSCVERBOSE
cout << "manually counted dead particle count (" << real_dead_particle_count
<< ") != free particle fifo size (" << _free_particle_fifo.size() << ")" << endl;
#endif
result++;
}
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// check the free particle pool
for (i = 0; i < _free_particle_fifo.size(); i++) {
int index = _free_particle_fifo[i];
// check that we're in bounds
if (index >= pool_size) {
#ifdef PSSCVERBOSE
cout << "index from free particle fifo (" << index
<< ") is too large; pool size is " << pool_size << endl;
#endif
result++;
continue;
}
// check that the particle is indeed dead
bp = (BaseParticle *) _physics_objects[index].p();
if (true == bp->get_alive()) {
#ifdef PSSCVERBOSE
cout << "particle " << index << " in free fifo is not dead" << endl;
#endif
result++;
}
}
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// check the numbers of free particles, live particles, and total particles
vector<PT(SC_valuenamepair)> live_counts;
vector<PT(SC_valuenamepair)> dead_counts;
vector<PT(SC_valuenamepair)> total_counts;
live_counts.push_back(new SC_valuenamepair(real_live_particle_count, "real_live_particle_count"));
dead_counts.push_back(new SC_valuenamepair(real_dead_particle_count, "real_dead_particle_count"));
dead_counts.push_back(new SC_valuenamepair(_free_particle_fifo.size(), "free particle fifo size"));
total_counts.push_back(new SC_valuenamepair(_particle_pool_size, "_particle_pool_size"));
total_counts.push_back(new SC_valuenamepair(_physics_objects.size(), "actual particle pool size"));
result += check_free_live_total_particles(live_counts, dead_counts, total_counts);
///////////////////////////////////////////////////////////////////
return result;
}
#endif