panda3d/panda/src/parametrics/sheetNode.cxx
2005-05-27 22:03:23 +00:00

466 lines
17 KiB
C++

// Filename: sheetNode.cxx
// Created by: drose (11Oct03)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001 - 2004, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://etc.cmu.edu/panda3d/docs/license/ .
//
// To contact the maintainers of this program write to
// panda3d-general@lists.sourceforge.net .
//
////////////////////////////////////////////////////////////////////
#include "sheetNode.h"
#include "cullTraverser.h"
#include "cullTraverserData.h"
#include "cullableObject.h"
#include "cullHandler.h"
#include "geomTristrip.h"
#include "bamWriter.h"
#include "bamReader.h"
#include "datagram.h"
#include "datagramIterator.h"
#include "pStatTimer.h"
#include "qpgeom.h"
#include "qpgeomTristrips.h"
#include "qpgeomVertexWriter.h"
TypeHandle SheetNode::_type_handle;
PStatCollector SheetNode::_sheet_node_pcollector("*:SheetNode");
////////////////////////////////////////////////////////////////////
// Function: SheetNode::CData::make_copy
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
CycleData *SheetNode::CData::
make_copy() const {
return new CData(*this);
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::CData::write_datagram
// Access: Public, Virtual
// Description: Writes the contents of this object to the datagram
// for shipping out to a Bam file.
////////////////////////////////////////////////////////////////////
void SheetNode::CData::
write_datagram(BamWriter *writer, Datagram &dg) const {
// For now, we write a NULL pointer. Eventually we will write out
// the NurbsSurfaceEvaluator pointer.
writer->write_pointer(dg, (TypedWritable *)NULL);
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::CData::fillin
// Access: Public, Virtual
// Description: This internal function is called by make_from_bam to
// read in all of the relevant data from the BamFile for
// the new SheetNode.
////////////////////////////////////////////////////////////////////
void SheetNode::CData::
fillin(DatagramIterator &scan, BamReader *reader) {
// For now, we skip over the NULL pointer that we wrote out.
reader->skip_pointer(scan);
_surface.clear();
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::Constructor
// Access: Public
// Description:
////////////////////////////////////////////////////////////////////
SheetNode::
SheetNode(const string &name) :
PandaNode(name)
{
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::Copy Constructor
// Access: Protected
// Description:
////////////////////////////////////////////////////////////////////
SheetNode::
SheetNode(const SheetNode &copy) :
PandaNode(copy),
_cycler(copy._cycler)
{
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::make_copy
// Access: Public, Virtual
// Description: Returns a newly-allocated Node that is a shallow copy
// of this one. It will be a different Node pointer,
// but its internal data may or may not be shared with
// that of the original Node.
////////////////////////////////////////////////////////////////////
PandaNode *SheetNode::
make_copy() const {
return new SheetNode(*this);
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::safe_to_transform
// Access: Public, Virtual
// Description: Returns true if it is generally safe to transform
// this particular kind of Node by calling the xform()
// method, false otherwise. For instance, it's usually
// a bad idea to attempt to xform a SheetNode.
////////////////////////////////////////////////////////////////////
bool SheetNode::
safe_to_transform() const {
return false;
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::has_cull_callback
// Access: Public, Virtual
// Description: Should be overridden by derived classes to return
// true if cull_callback() has been defined. Otherwise,
// returns false to indicate cull_callback() does not
// need to be called for this node during the cull
// traversal.
////////////////////////////////////////////////////////////////////
bool SheetNode::
has_cull_callback() const {
return true;
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::cull_callback
// Access: Public, Virtual
// Description: If has_cull_callback() returns true, this function
// will be called during the cull traversal to perform
// any additional operations that should be performed at
// cull time. This may include additional manipulation
// of render state or additional visible/invisible
// decisions, or any other arbitrary operation.
//
// By the time this function is called, the node has
// already passed the bounding-volume test for the
// viewing frustum, and the node's transform and state
// have already been applied to the indicated
// CullTraverserData object.
//
// The return value is true if this node should be
// visible, or false if it should be culled.
////////////////////////////////////////////////////////////////////
bool SheetNode::
cull_callback(CullTraverser *trav, CullTraverserData &data) {
// Statistics
PStatTimer timer(_sheet_node_pcollector);
// Create some geometry on-the-fly to render the sheet.
if (get_num_u_subdiv() > 0 && get_num_v_subdiv() > 0) {
NurbsSurfaceEvaluator *surface = get_surface();
if (surface != (NurbsSurfaceEvaluator *)NULL) {
PT(NurbsSurfaceResult) result = surface->evaluate(data._node_path.get_node_path());
if (result->get_num_u_segments() > 0 && result->get_num_v_segments() > 0) {
render_sheet(trav, data, result);
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::output
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
void SheetNode::
output(ostream &out) const {
PandaNode::output(out);
NurbsSurfaceEvaluator *surface = get_surface();
if (surface != (NurbsSurfaceEvaluator *)NULL) {
out << " " << *surface;
} else {
out << " (no surface)";
}
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::write
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
void SheetNode::
write(ostream &out, int indent_level) const {
PandaNode::write(out, indent_level);
NurbsSurfaceEvaluator *surface = get_surface();
if (surface != (NurbsSurfaceEvaluator *)NULL) {
indent(out, indent_level + 2) << *surface << "\n";
} else {
indent(out, indent_level + 2) << "(no surface)\n";
}
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::reset_bound
// Access: Published
// Description: Recomputes the bounding volume. This is normally
// called automatically, but it must occasionally be
// called explicitly when the surface has changed
// properties outside of this node's knowledge.
////////////////////////////////////////////////////////////////////
void SheetNode::
reset_bound(const NodePath &rel_to) {
do_recompute_bound(rel_to);
changed_internal_bound();
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::recompute_internal_bound
// Access: Protected, Virtual
// Description: Called when needed to recompute the node's
// _internal_bound object. Nodes that contain anything
// of substance should redefine this to do the right
// thing.
////////////////////////////////////////////////////////////////////
BoundingVolume *SheetNode::
recompute_internal_bound() {
return do_recompute_bound(NodePath(this));
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::do_recompute_bound
// Access: Private
// Description: Does the actual internal recompute.
////////////////////////////////////////////////////////////////////
BoundingVolume *SheetNode::
do_recompute_bound(const NodePath &rel_to) {
// First, get ourselves a fresh, empty bounding volume.
BoundingVolume *bound = PandaNode::recompute_internal_bound();
nassertr(bound != (BoundingVolume *)NULL, bound);
NurbsSurfaceEvaluator *surface = get_surface();
if (surface != (NurbsSurfaceEvaluator *)NULL) {
pvector<LPoint3f> verts;
get_surface()->get_vertices(verts, rel_to);
GeometricBoundingVolume *gbv;
DCAST_INTO_R(gbv, bound, bound);
gbv->around(&verts[0], &verts[0] + verts.size());
}
return bound;
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::render_sheet
// Access: Private
// Description: Draws the sheet as a series of tristrips along its
// length.
////////////////////////////////////////////////////////////////////
void SheetNode::
render_sheet(CullTraverser *trav, CullTraverserData &data,
NurbsSurfaceResult *result) {
bool use_vertex_color = get_use_vertex_color();
int num_u_segments = result->get_num_u_segments();
int num_v_segments = result->get_num_v_segments();
int num_u_verts = get_num_u_subdiv() + 1;
int num_v_verts = get_num_v_subdiv() + 1;
if (use_qpgeom) {
CPT(qpGeomVertexFormat) format;
if (use_vertex_color) {
format = qpGeomVertexFormat::get_v3n3cpt2();
} else {
format = qpGeomVertexFormat::get_v3n3t2();
}
PT(qpGeomVertexData) vdata = new qpGeomVertexData
("sheet", format, qpGeom::UH_stream);
qpGeomVertexWriter vertex(vdata, InternalName::get_vertex());
qpGeomVertexWriter normal(vdata, InternalName::get_normal());
qpGeomVertexWriter color(vdata, InternalName::get_color());
qpGeomVertexWriter texcoord(vdata, InternalName::get_texcoord());
PT(qpGeomTristrips) strip = new qpGeomTristrips(qpGeom::UH_stream);
for (int ui = 0; ui < num_u_segments; ui++) {
for (int uni = 0; uni < num_u_verts; uni++) {
float u0 = (float)uni / (float)num_u_verts;
float u1 = (float)(uni + 1) / (float)num_u_verts;
float u0_tc = result->get_segment_u(ui, u0);
float u1_tc = result->get_segment_u(ui, u1);
for (int vi = 0; vi < num_v_segments; vi++) {
for (int vni = 0; vni < num_v_verts; vni++) {
float v = (float)vni / (float)(num_v_verts - 1);
float v_tc = result->get_segment_v(vi, v);
LPoint3f point;
LVector3f norm;
result->eval_segment_point(ui, vi, u0, v, point);
result->eval_segment_normal(ui, vi, u0, v, norm);
vertex.add_data3f(point);
normal.add_data3f(norm);
texcoord.add_data2f(u0_tc, v_tc);
result->eval_segment_point(ui, vi, u1, v, point);
result->eval_segment_normal(ui, vi, u1, v, norm);
vertex.add_data3f(point);
normal.add_data3f(norm);
texcoord.add_data2f(u1_tc, v_tc);
if (use_vertex_color) {
Colorf c0, c1;
result->eval_segment_extended_points(ui, vi, u0, v, 0, &c0[0], 4);
result->eval_segment_extended_points(ui, vi, u1, v, 0, &c1[0], 4);
color.add_data4f(c0);
color.add_data4f(c1);
}
}
strip->add_next_vertices(num_v_verts * 2);
strip->close_primitive();
}
}
}
PT(qpGeom) geom = new qpGeom;
geom->set_vertex_data(vdata);
geom->add_primitive(strip);
CullableObject *object = new CullableObject(geom, data._state,
data._modelview_transform);
trav->get_cull_handler()->record_object(object, trav);
} else {
PTA_Vertexf verts;
PTA_Normalf normals;
PTA_TexCoordf uvs;
PTA_Colorf colors;
PTA_int lengths;
// We define a series of triangle strips, parallel to the V
// direction.
for (int ui = 0; ui < num_u_segments; ui++) {
for (int uni = 0; uni < num_u_verts; uni++) {
float u0 = (float)uni / (float)num_u_verts;
float u1 = (float)(uni + 1) / (float)num_u_verts;
float u0_tc = result->get_segment_u(ui, u0);
float u1_tc = result->get_segment_u(ui, u1);
for (int vi = 0; vi < num_v_segments; vi++) {
for (int vni = 0; vni < num_v_verts; vni++) {
float v = (float)vni / (float)(num_v_verts - 1);
float v_tc = result->get_segment_v(vi, v);
LPoint3f point;
LVector3f normal;
result->eval_segment_point(ui, vi, u0, v, point);
result->eval_segment_normal(ui, vi, u0, v, normal);
verts.push_back(point);
normals.push_back(normal);
uvs.push_back(TexCoordf(u0_tc, v_tc));
result->eval_segment_point(ui, vi, u1, v, point);
result->eval_segment_normal(ui, vi, u1, v, normal);
verts.push_back(point);
normals.push_back(normal);
uvs.push_back(TexCoordf(u1_tc, v_tc));
if (use_vertex_color) {
Colorf c0, c1;
result->eval_segment_extended_points(ui, vi, u0, v, 0, &c0[0], 4);
result->eval_segment_extended_points(ui, vi, u1, v, 0, &c1[0], 4);
colors.push_back(c0);
colors.push_back(c1);
}
}
lengths.push_back(num_v_verts * 2);
}
}
}
colors.push_back(Colorf(1.0f, 1.0f, 1.0f, 1.0f));
PT(GeomTristrip) geom = new GeomTristrip;
geom->set_num_prims(lengths.size());
geom->set_coords(verts);
geom->set_normals(normals, G_PER_VERTEX);
geom->set_texcoords(uvs, G_PER_VERTEX);
if (use_vertex_color) {
geom->set_colors(colors, G_PER_VERTEX);
} else {
colors.push_back(Colorf(1.0f, 1.0f, 1.0f, 1.0f));
geom->set_colors(colors, G_OVERALL);
}
geom->set_lengths(lengths);
CullableObject *object = new CullableObject(geom, data._state,
data._modelview_transform);
trav->get_cull_handler()->record_object(object, trav);
}
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::register_with_read_factory
// Access: Public, Static
// Description: Tells the BamReader how to create objects of type
// SheetNode.
////////////////////////////////////////////////////////////////////
void SheetNode::
register_with_read_factory() {
BamReader::get_factory()->register_factory(get_class_type(), make_from_bam);
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::write_datagram
// Access: Public, Virtual
// Description: Writes the contents of this object to the datagram
// for shipping out to a Bam file.
////////////////////////////////////////////////////////////////////
void SheetNode::
write_datagram(BamWriter *manager, Datagram &dg) {
PandaNode::write_datagram(manager, dg);
manager->write_cdata(dg, _cycler);
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::make_from_bam
// Access: Protected, Static
// Description: This function is called by the BamReader's factory
// when a new object of type SheetNode is encountered
// in the Bam file. It should create the SheetNode
// and extract its information from the file.
////////////////////////////////////////////////////////////////////
TypedWritable *SheetNode::
make_from_bam(const FactoryParams &params) {
SheetNode *node = new SheetNode("");
DatagramIterator scan;
BamReader *manager;
parse_params(params, scan, manager);
node->fillin(scan, manager);
return node;
}
////////////////////////////////////////////////////////////////////
// Function: SheetNode::fillin
// Access: Protected
// Description: This internal function is called by make_from_bam to
// read in all of the relevant data from the BamFile for
// the new SheetNode.
////////////////////////////////////////////////////////////////////
void SheetNode::
fillin(DatagramIterator &scan, BamReader *manager) {
PandaNode::fillin(scan, manager);
manager->read_cdata(scan, _cycler);
}