panda3d/panda/src/pgraph/nodePath.cxx
2004-09-21 22:21:53 +00:00

5321 lines
198 KiB
C++

// Filename: nodePath.cxx
// Created by: drose (25Feb02)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001 - 2004, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://etc.cmu.edu/panda3d/docs/license/ .
//
// To contact the maintainers of this program write to
// panda3d-general@lists.sourceforge.net .
//
////////////////////////////////////////////////////////////////////
#include "nodePath.h"
#include "nodePathCollection.h"
#include "findApproxPath.h"
#include "findApproxLevelEntry.h"
#include "config_pgraph.h"
#include "colorAttrib.h"
#include "colorScaleAttrib.h"
#include "cullBinAttrib.h"
#include "textureAttrib.h"
#include "texMatrixAttrib.h"
#include "materialAttrib.h"
#include "lightAttrib.h"
#include "polylightEffect.h"
#include "fogAttrib.h"
#include "renderModeAttrib.h"
#include "cullFaceAttrib.h"
#include "alphaTestAttrib.h"
#include "depthTestAttrib.h"
#include "depthWriteAttrib.h"
#include "billboardEffect.h"
#include "compassEffect.h"
#include "showBoundsEffect.h"
#include "transparencyAttrib.h"
#include "texProjectorEffect.h"
#include "lensNode.h"
#include "materialPool.h"
#include "look_at.h"
#include "plist.h"
#include "boundingSphere.h"
#include "geomNode.h"
#include "sceneGraphReducer.h"
#include "textureCollection.h"
#include "textureStageCollection.h"
#include "globPattern.h"
#include "config_gobj.h"
#include "bamFile.h"
#include "preparedGraphicsObjects.h"
#include "dcast.h"
// stack seems to overflow on Intel C++ at 7000. If we need more than
// 7000, need to increase stack size.
int NodePath::_max_search_depth = 7000;
TypeHandle NodePath::_type_handle;
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_num_nodes
// Access: Published
// Description: Returns the number of nodes in the path.
////////////////////////////////////////////////////////////////////
int NodePath::
get_num_nodes() const {
if (is_empty()) {
return 0;
}
return _head->get_length();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_node
// Access: Published
// Description: Returns the nth node of the path, where 0 is the
// referenced (bottom) node and get_num_nodes() - 1 is
// the top node. This requires iterating through the
// path.
//
// Also see node(), which is a convenience function to
// return the same thing as get_node(0) (since the
// bottom node is the most important node in the
// NodePath, and is the one most frequently referenced).
////////////////////////////////////////////////////////////////////
PandaNode *NodePath::
get_node(int index) const {
nassertr(index >= 0 && index < get_num_nodes(), NULL);
NodePathComponent *comp = _head;
while (index > 0) {
// If this assertion fails, the index was out of range; the
// component's length must have been invalid.
nassertr(comp != (NodePathComponent *)NULL, NULL);
comp = comp->get_next();
index--;
}
// If this assertion fails, the index was out of range; the
// component's length must have been invalid.
nassertr(comp != (NodePathComponent *)NULL, NULL);
return comp->get_node();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_top
// Access: Published
// Description: Returns a singleton NodePath that represents the top
// of the path, or empty NodePath if this path is empty.
////////////////////////////////////////////////////////////////////
NodePath NodePath::
get_top() const {
if (is_empty()) {
return *this;
}
NodePathComponent *comp = _head;
while (!comp->is_top_node()) {
comp = comp->get_next();
nassertr(comp != (NodePathComponent *)NULL, NULL);
}
NodePath top;
top._head = comp;
return top;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_children
// Access: Published
// Description: Returns the set of all child nodes of the referenced
// node.
////////////////////////////////////////////////////////////////////
NodePathCollection NodePath::
get_children() const {
NodePathCollection result;
nassertr_always(!is_empty(), result);
PandaNode *bottom_node = node();
PandaNode::Children cr = bottom_node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
NodePath child;
child._head = PandaNode::get_component(_head, cr.get_child(i));
result.add_path(child);
}
return result;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_stashed_children
// Access: Published
// Description: Returns the set of all child nodes of the referenced
// node that have been stashed. These children are not
// normally visible on the node, and do not appear in
// the list returned by get_children().
////////////////////////////////////////////////////////////////////
NodePathCollection NodePath::
get_stashed_children() const {
NodePathCollection result;
nassertr_always(!is_empty(), result);
PandaNode *bottom_node = node();
int num_stashed = bottom_node->get_num_stashed();
for (int i = 0; i < num_stashed; i++) {
NodePath stashed;
stashed._head = PandaNode::get_component(_head, bottom_node->get_stashed(i));
result.add_path(stashed);
}
return result;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_sort
// Access: Published
// Description: Returns the sort value of the referenced node within
// its parent; that is, the sort number passed on the
// last reparenting operation for this node. This will
// control the position of the node within its parent's
// list of children.
////////////////////////////////////////////////////////////////////
int NodePath::
get_sort() const {
if (!has_parent()) {
return 0;
}
PandaNode *parent = _head->get_next()->get_node();
PandaNode *child = node();
nassertr(parent != (PandaNode *)NULL && child != (PandaNode *)NULL, 0);
int child_index = parent->find_child(child);
if (child_index != -1) {
return parent->get_child_sort(child_index);
}
child_index = parent->find_stashed(child);
if (child_index != -1) {
return parent->get_stashed_sort(child_index);
}
nassertr(false, 0);
return 0;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find
// Access: Published
// Description: Searches for a node below the referenced node that
// matches the indicated string. Returns the shortest
// match found, if any, or an empty NodePath if no match
// can be found.
////////////////////////////////////////////////////////////////////
NodePath NodePath::
find(const string &path) const {
nassertr_always(!is_empty(), fail());
NodePathCollection col;
find_matches(col, path, 1);
if (col.is_empty()) {
return NodePath::not_found();
}
return col.get_path(0);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_path_to
// Access: Published
// Description: Searches for the indicated node below this node and
// returns the shortest NodePath that connects them.
////////////////////////////////////////////////////////////////////
NodePath NodePath::
find_path_to(PandaNode *node) const {
nassertr_always(!is_empty(), fail());
nassertr(node != (PandaNode *)NULL, fail());
NodePathCollection col;
FindApproxPath approx_path;
approx_path.add_match_many(0);
approx_path.add_match_pointer(node, 0);
find_matches(col, approx_path, 1);
if (col.is_empty()) {
return NodePath::not_found();
}
return col.get_path(0);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_all_matches
// Access: Published
// Description: Returns the complete set of all NodePaths that begin
// with this NodePath and can be extended by
// path. The shortest paths will be listed
// first.
////////////////////////////////////////////////////////////////////
NodePathCollection NodePath::
find_all_matches(const string &path) const {
NodePathCollection col;
nassertr_always(!is_empty(), col);
nassertr(verify_complete(), col);
find_matches(col, path, -1);
return col;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_all_paths_to
// Access: Published
// Description: Returns the set of all NodePaths that extend from
// this NodePath down to the indicated node. The
// shortest paths will be listed first.
////////////////////////////////////////////////////////////////////
NodePathCollection NodePath::
find_all_paths_to(PandaNode *node) const {
NodePathCollection col;
nassertr_always(!is_empty(), col);
nassertr(verify_complete(), col);
nassertr(node != (PandaNode *)NULL, col);
FindApproxPath approx_path;
approx_path.add_match_many(0);
approx_path.add_match_pointer(node, 0);
find_matches(col, approx_path, -1);
return col;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::reparent_to
// Access: Published
// Description: Removes the referenced node of the NodePath from its
// current parent and attaches it to the referenced node of
// the indicated NodePath.
////////////////////////////////////////////////////////////////////
void NodePath::
reparent_to(const NodePath &other, int sort) {
nassertv(verify_complete());
nassertv(other.verify_complete());
nassertv_always(!is_empty());
nassertv(other._error_type == ET_ok);
// Reparenting implicitly resents the delta vector.
node()->reset_prev_transform();
bool reparented = PandaNode::reparent(other._head, _head, sort, false);
nassertv(reparented);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::wrt_reparent_to
// Access: Published
// Description: This functions identically to reparent_to(), except
// the transform on this node is also adjusted so that
// the node remains in the same place in world
// coordinates, even if it is reparented into a
// different coordinate system.
////////////////////////////////////////////////////////////////////
void NodePath::
wrt_reparent_to(const NodePath &other, int sort) {
nassertv(verify_complete());
nassertv(other.verify_complete());
nassertv_always(!is_empty());
nassertv(other._error_type == ET_ok);
if (get_transform() == get_prev_transform()) {
set_transform(get_transform(other));
node()->reset_prev_transform();
} else {
set_transform(get_transform(other));
set_prev_transform(get_prev_transform(other));
}
reparent_to(other, sort);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::instance_to
// Access: Published
// Description: Adds the referenced node of the NodePath as a child
// of the referenced node of the indicated other
// NodePath. Any other parent-child relations of the
// node are unchanged; in particular, the node is not
// removed from its existing parent, if any.
//
// If the node already had an existing parent, this
// method will create a new instance of the node within
// the scene graph.
//
// This does not change the NodePath itself, but does
// return a new NodePath that reflects the new instance
// node.
////////////////////////////////////////////////////////////////////
NodePath NodePath::
instance_to(const NodePath &other, int sort) const {
nassertr(verify_complete(), NodePath::fail());
nassertr(other.verify_complete(), NodePath::fail());
nassertr_always(!is_empty(), NodePath::fail());
nassertr(other._error_type == ET_ok, NodePath::fail());
NodePath new_instance;
// First, we'll attach to NULL, to guarantee we get a brand new
// instance.
new_instance._head = PandaNode::attach(NULL, node(), sort);
// Now, we'll reparent the new instance to the target node.
bool reparented = PandaNode::reparent(other._head, new_instance._head,
sort, false);
nassertr(reparented, new_instance);
// instance_to() doesn't reset the velocity delta, unlike most of
// the other reparenting operations. The reasoning is that
// instance_to() is not necessarily a reparenting operation, since
// it doesn't change the original instance.
return new_instance;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::instance_under_node
// Access: Published
// Description: Behaves like instance_to(), but implicitly creates a
// new node to instance the geometry under, and returns a
// NodePath to that new node. This allows the
// programmer to set a unique state and/or transform on
// this instance.
////////////////////////////////////////////////////////////////////
NodePath NodePath::
instance_under_node(const NodePath &other, const string &name, int sort) const {
NodePath new_node = other.attach_new_node(name, sort);
NodePath instance = instance_to(new_node);
if (instance.is_empty()) {
new_node.remove_node();
return instance;
}
return new_node;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::copy_to
// Access: Published
// Description: Functions like instance_to(), except a deep
// copy is made of the referenced node and all of its
// descendents, which is then parented to the indicated
// node. A NodePath to the newly created copy is
// returned.
////////////////////////////////////////////////////////////////////
NodePath NodePath::
copy_to(const NodePath &other, int sort) const {
nassertr(verify_complete(), fail());
nassertr(other.verify_complete(), fail());
nassertr_always(!is_empty(), fail());
nassertr(other._error_type == ET_ok, fail());
PandaNode *source_node = node();
PT(PandaNode) copy_node = source_node->copy_subgraph();
nassertr(copy_node != (PandaNode *)NULL, fail());
copy_node->reset_prev_transform();
return other.attach_new_node(copy_node, sort);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::attach_new_node
// Access: Published
// Description: Attaches a new node, with or without existing
// parents, to the scene graph below the referenced node
// of this NodePath. This is the preferred way to add
// nodes to the graph.
//
// If the node was already a child of the parent, this
// returns a NodePath to the existing child.
//
// This does *not* automatically extend the current
// NodePath to reflect the attachment; however, a
// NodePath that does reflect this extension is
// returned.
////////////////////////////////////////////////////////////////////
NodePath NodePath::
attach_new_node(PandaNode *node, int sort) const {
nassertr(verify_complete(), NodePath::fail());
nassertr(_error_type == ET_ok, NodePath::fail());
nassertr(node != (PandaNode *)NULL, NodePath::fail());
NodePath new_path(*this);
new_path._head = PandaNode::attach(_head, node, sort);
return new_path;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::remove_node
// Access: Published
// Description: Disconnects the referenced node from the scene graph.
// This will also delete the node if there are no other
// pointers to it.
//
// Normally, this should be called only when you are
// really done with the node. If you want to remove a
// node from the scene graph but keep it around for
// later, you should probably use detach_node() instead.
//
// In practice, the only difference between
// remove_node() and detach_node() is that remove_node()
// also resets the NodePath to empty, which will cause
// the node to be deleted immediately if there are no
// other references. On the other hand, detach_node()
// leaves the NodePath referencing the node, which will
// keep at least one reference to the node for as long
// as the NodePath exists.
////////////////////////////////////////////////////////////////////
void NodePath::
remove_node() {
nassertv(_error_type != ET_not_found);
// If we have no parents, remove_node() is just a do-nothing
// operation; if we have no nodes, maybe we were already removed.
// In either case, quietly do nothing except to ensure the
// NodePath is clear.
if (!is_empty() && !is_singleton()) {
node()->reset_prev_transform();
PandaNode::detach(_head);
}
if (is_empty() || _head->has_key()) {
// Preserve the key we had on the node before we removed it.
int key = get_key();
(*this) = NodePath::removed();
_backup_key = key;
} else {
// We didn't have a key; just clear the NodePath.
(*this) = NodePath::removed();
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::detach_node
// Access: Published
// Description: Disconnects the referenced node from its parent, but
// does not immediately delete it. The NodePath retains
// a pointer to the node, and becomes a singleton
// NodePath.
//
// This should be called to detach a node from the scene
// graph, with the option of reattaching it later to the
// same parent or to a different parent.
//
// In practice, the only difference between
// remove_node() and detach_node() is that remove_node()
// also resets the NodePath to empty, which will cause
// the node to be deleted immediately if there are no
// other references. On the other hand, detach_node()
// leaves the NodePath referencing the node, which will
// keep at least one reference to the node for as long
// as the NodePath exists.
////////////////////////////////////////////////////////////////////
void NodePath::
detach_node() {
nassertv(_error_type != ET_not_found);
if (!is_empty() && !is_singleton()) {
node()->reset_prev_transform();
PandaNode::detach(_head);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::output
// Access: Published
// Description: Writes a sensible description of the NodePath to the
// indicated output stream.
////////////////////////////////////////////////////////////////////
void NodePath::
output(ostream &out) const {
switch (_error_type) {
case ET_not_found:
out << "**not found**";
return;
case ET_removed:
out << "**removed**";
return;
case ET_fail:
out << "**error**";
return;
default:
break;
}
if (_head == (NodePathComponent *)NULL) {
out << "(empty)";
} else {
_head->output(out);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_state
// Access: Published
// Description: Returns the state changes that must be made to
// transition to the render state of this node from the
// render state of the other node.
////////////////////////////////////////////////////////////////////
CPT(RenderState) NodePath::
get_state(const NodePath &other) const {
nassertr(_error_type == ET_ok && other._error_type == ET_ok, RenderState::make_empty());
if (other.is_empty()) {
return get_net_state();
}
if (is_empty()) {
return other.get_net_state()->invert_compose(RenderState::make_empty());
}
nassertr(verify_complete(), RenderState::make_empty());
nassertr(other.verify_complete(), RenderState::make_empty());
int a_count, b_count;
if (find_common_ancestor(*this, other, a_count, b_count) == (NodePathComponent *)NULL) {
if (allow_unrelated_wrt) {
pgraph_cat.debug()
<< *this << " is not related to " << other << "\n";
} else {
pgraph_cat.error()
<< *this << " is not related to " << other << "\n";
nassertr(false, RenderState::make_empty());
}
}
CPT(RenderState) a_state = r_get_partial_state(_head, a_count);
CPT(RenderState) b_state = r_get_partial_state(other._head, b_count);
return b_state->invert_compose(a_state);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_state
// Access: Published
// Description: Sets the state object on this node, relative to
// the other node. This computes a new state object
// that will have the indicated value when seen from the
// other node.
////////////////////////////////////////////////////////////////////
void NodePath::
set_state(const NodePath &other, const RenderState *state) {
nassertv(_error_type == ET_ok && other._error_type == ET_ok);
nassertv_always(!is_empty());
// First, we perform a wrt to the parent, to get the conversion.
CPT(RenderState) rel_state;
if (has_parent()) {
rel_state = other.get_state(get_parent());
} else {
rel_state = other.get_state(NodePath());
}
CPT(RenderState) new_state = rel_state->compose(state);
set_state(new_state);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_transform
// Access: Published
// Description: Returns the relative transform to this node from the
// other node; i.e. the transformation of this node
// as seen from the other node.
////////////////////////////////////////////////////////////////////
CPT(TransformState) NodePath::
get_transform(const NodePath &other) const {
nassertr(_error_type == ET_ok && other._error_type == ET_ok, TransformState::make_identity());
if (other.is_empty()) {
return get_net_transform();
}
if (is_empty()) {
return other.get_net_transform()->invert_compose(TransformState::make_identity());
}
nassertr(verify_complete(), TransformState::make_identity());
nassertr(other.verify_complete(), TransformState::make_identity());
int a_count, b_count;
if (find_common_ancestor(*this, other, a_count, b_count) == (NodePathComponent *)NULL) {
if (allow_unrelated_wrt) {
pgraph_cat.debug()
<< *this << " is not related to " << other << "\n";
} else {
pgraph_cat.error()
<< *this << " is not related to " << other << "\n";
nassertr(false, TransformState::make_identity());
}
}
CPT(TransformState) a_transform = r_get_partial_transform(_head, a_count);
CPT(TransformState) b_transform = r_get_partial_transform(other._head, b_count);
return b_transform->invert_compose(a_transform);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_transform
// Access: Published
// Description: Sets the transform object on this node, relative to
// the other node. This computes a new transform object
// that will have the indicated value when seen from the
// other node.
////////////////////////////////////////////////////////////////////
void NodePath::
set_transform(const NodePath &other, const TransformState *transform) {
nassertv(_error_type == ET_ok && other._error_type == ET_ok);
nassertv_always(!is_empty());
// First, we perform a wrt to the parent, to get the conversion.
CPT(TransformState) rel_trans;
if (has_parent()) {
rel_trans = other.get_transform(get_parent());
} else {
rel_trans = other.get_transform(NodePath());
}
CPT(TransformState) new_trans = rel_trans->compose(transform);
set_transform(new_trans);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_prev_transform
// Access: Published
// Description: Returns the relative "previous" transform to this
// node from the other node; i.e. the position of this
// node in the previous frame, as seen by the other node
// in the previous frame.
////////////////////////////////////////////////////////////////////
CPT(TransformState) NodePath::
get_prev_transform(const NodePath &other) const {
nassertr(_error_type == ET_ok && other._error_type == ET_ok, TransformState::make_identity());
if (other.is_empty()) {
return get_net_prev_transform();
}
if (is_empty()) {
return other.get_net_prev_transform()->invert_compose(TransformState::make_identity());
}
nassertr(verify_complete(), TransformState::make_identity());
nassertr(other.verify_complete(), TransformState::make_identity());
int a_count, b_count;
if (find_common_ancestor(*this, other, a_count, b_count) == (NodePathComponent *)NULL) {
if (allow_unrelated_wrt) {
pgraph_cat.debug()
<< *this << " is not related to " << other << "\n";
} else {
pgraph_cat.error()
<< *this << " is not related to " << other << "\n";
nassertr(false, TransformState::make_identity());
}
}
CPT(TransformState) a_prev_transform = r_get_partial_prev_transform(_head, a_count);
CPT(TransformState) b_prev_transform = r_get_partial_prev_transform(other._head, b_count);
return b_prev_transform->invert_compose(a_prev_transform);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_prev_transform
// Access: Published
// Description: Sets the "previous" transform object on this node,
// relative to the other node. This computes a new
// transform object that will have the indicated value
// when seen from the other node.
////////////////////////////////////////////////////////////////////
void NodePath::
set_prev_transform(const NodePath &other, const TransformState *transform) {
nassertv(_error_type == ET_ok && other._error_type == ET_ok);
nassertv_always(!is_empty());
// First, we perform a wrt to the parent, to get the conversion.
CPT(TransformState) rel_trans;
if (has_parent()) {
rel_trans = other.get_prev_transform(get_parent());
} else {
rel_trans = other.get_prev_transform(NodePath());
}
CPT(TransformState) new_trans = rel_trans->compose(transform);
set_prev_transform(new_trans);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_pos
// Access: Published
// Description: Sets the translation component of the transform,
// leaving rotation and scale untouched. This also
// resets the node's "previous" position, so that the
// collision system will see the node as having suddenly
// appeared in the new position, without passing any
// points in between.
// See Also: NodePath::set_fluid_pos
////////////////////////////////////////////////////////////////////
void NodePath::
set_pos(const LVecBase3f &pos) {
nassertv_always(!is_empty());
set_transform(get_transform()->set_pos(pos));
node()->reset_prev_transform();
}
void NodePath::
set_x(float x) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos();
pos[0] = x;
set_pos(pos);
}
void NodePath::
set_y(float y) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos();
pos[1] = y;
set_pos(pos);
}
void NodePath::
set_z(float z) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos();
pos[2] = z;
set_pos(pos);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_fluid_pos
// Access: Published
// Description: Sets the translation component, without changing the
// "previous" position, so that the collision system
// will see the node as moving fluidly from its previous
// position to its new position.
// See Also: NodePath::set_pos
////////////////////////////////////////////////////////////////////
void NodePath::
set_fluid_pos(const LVecBase3f &pos) {
nassertv_always(!is_empty());
set_transform(get_transform()->set_pos(pos));
}
void NodePath::
set_fluid_x(float x) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos();
pos[0] = x;
set_fluid_pos(pos);
}
void NodePath::
set_fluid_y(float y) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos();
pos[1] = y;
set_fluid_pos(pos);
}
void NodePath::
set_fluid_z(float z) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos();
pos[2] = z;
set_fluid_pos(pos);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_pos
// Access: Published
// Description: Retrieves the translation component of the transform.
////////////////////////////////////////////////////////////////////
LPoint3f NodePath::
get_pos() const {
nassertr_always(!is_empty(), LPoint3f(0.0f, 0.0f, 0.0f));
return get_transform()->get_pos();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_pos_delta
// Access: Published
// Description: Returns the delta vector from this node's position in
// the previous frame (according to
// set_prev_transform(), typically set via the use of
// set_fluid_pos()) and its position in the current
// frame. This is the vector used to determine
// collisions. Generally, if the node was last
// repositioned via set_pos(), the delta will be zero;
// if it was adjusted via set_fluid_pos(), the delta
// will represent the change from the previous frame's
// position.
////////////////////////////////////////////////////////////////////
LVector3f NodePath::
get_pos_delta() const {
nassertr_always(!is_empty(), LPoint3f(0.0f, 0.0f, 0.0f));
return get_transform()->get_pos() - get_prev_transform()->get_pos();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_hpr
// Access: Published
// Description: Sets the rotation component of the transform,
// leaving translation and scale untouched.
////////////////////////////////////////////////////////////////////
void NodePath::
set_hpr(const LVecBase3f &hpr) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
nassertv(transform->has_hpr());
set_transform(transform->set_hpr(hpr));
}
void NodePath::
set_h(float h) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
nassertv(transform->has_hpr());
LVecBase3f hpr = transform->get_hpr();
hpr[0] = h;
set_transform(transform->set_hpr(hpr));
}
void NodePath::
set_p(float p) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
nassertv(transform->has_hpr());
LVecBase3f hpr = transform->get_hpr();
hpr[1] = p;
set_transform(transform->set_hpr(hpr));
}
void NodePath::
set_r(float r) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
nassertv(transform->has_hpr());
LVecBase3f hpr = transform->get_hpr();
hpr[2] = r;
set_transform(transform->set_hpr(hpr));
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_hpr
// Access: Published
// Description: Retrieves the rotation component of the transform.
////////////////////////////////////////////////////////////////////
LVecBase3f NodePath::
get_hpr() const {
nassertr_always(!is_empty(), LVecBase3f(0.0f, 0.0f, 0.0f));
CPT(TransformState) transform = get_transform();
nassertr(transform->has_hpr(), LVecBase3f(0.0f, 0.0f, 0.0f));
// now that we are range checking fields we must clamp this
LVecBase3f hpr = transform->get_hpr();
hpr[0] = fmod(hpr[0], 360);
hpr[1] = fmod(hpr[1], 360);
hpr[2] = fmod(hpr[2], 360);
return hpr;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_quat
// Access: Published
// Description: Sets the rotation component of the transform,
// leaving translation and scale untouched.
////////////////////////////////////////////////////////////////////
void NodePath::
set_quat(const LQuaternionf &quat) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
set_transform(transform->set_quat(quat));
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_quat
// Access: Published
// Description: Retrieves the rotation component of the transform.
////////////////////////////////////////////////////////////////////
LQuaternionf NodePath::
get_quat() const {
nassertr_always(!is_empty(), LQuaternionf::ident_quat());
CPT(TransformState) transform = get_transform();
return transform->get_quat();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_scale
// Access: Published
// Description: Sets the scale component of the transform,
// leaving translation and rotation untouched.
////////////////////////////////////////////////////////////////////
void NodePath::
set_scale(const LVecBase3f &scale) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
set_transform(transform->set_scale(scale));
}
void NodePath::
set_sx(float sx) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
LVecBase3f scale = transform->get_scale();
scale[0] = sx;
set_transform(transform->set_scale(scale));
}
void NodePath::
set_sy(float sy) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
LVecBase3f scale = transform->get_scale();
scale[1] = sy;
set_transform(transform->set_scale(scale));
}
void NodePath::
set_sz(float sz) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
LVecBase3f scale = transform->get_scale();
scale[2] = sz;
set_transform(transform->set_scale(scale));
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_scale
// Access: Published
// Description: Retrieves the scale component of the transform.
////////////////////////////////////////////////////////////////////
LVecBase3f NodePath::
get_scale() const {
nassertr_always(!is_empty(), LVecBase3f(0.0f, 0.0f, 0.0f));
CPT(TransformState) transform = get_transform();
return transform->get_scale();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_shear
// Access: Published
// Description: Sets the shear component of the transform,
// leaving translation and rotation untouched.
////////////////////////////////////////////////////////////////////
void NodePath::
set_shear(const LVecBase3f &shear) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
set_transform(transform->set_shear(shear));
}
void NodePath::
set_shxy(float shxy) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
LVecBase3f shear = transform->get_shear();
shear[0] = shxy;
set_transform(transform->set_shear(shear));
}
void NodePath::
set_shxz(float shxz) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
LVecBase3f shear = transform->get_shear();
shear[1] = shxz;
set_transform(transform->set_shear(shear));
}
void NodePath::
set_shyz(float shyz) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
LVecBase3f shear = transform->get_shear();
shear[2] = shyz;
set_transform(transform->set_shear(shear));
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_shear
// Access: Published
// Description: Retrieves the shear component of the transform.
////////////////////////////////////////////////////////////////////
LVecBase3f NodePath::
get_shear() const {
nassertr_always(!is_empty(), LVecBase3f(0.0f, 0.0f, 0.0f));
CPT(TransformState) transform = get_transform();
return transform->get_shear();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_pos_hpr
// Access: Published
// Description: Sets the translation and rotation component of the
// transform, leaving scale untouched.
////////////////////////////////////////////////////////////////////
void NodePath::
set_pos_hpr(const LVecBase3f &pos, const LVecBase3f &hpr) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
transform = TransformState::make_pos_hpr_scale_shear
(pos, hpr, transform->get_scale(), transform->get_shear());
set_transform(transform);
node()->reset_prev_transform();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_hpr_scale
// Access: Published
// Description: Sets the rotation and scale components of the
// transform, leaving translation untouched.
////////////////////////////////////////////////////////////////////
void NodePath::
set_hpr_scale(const LVecBase3f &hpr, const LVecBase3f &scale) {
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform();
transform = TransformState::make_pos_hpr_scale_shear
(transform->get_pos(), hpr, scale, transform->get_shear());
set_transform(transform);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_pos_hpr_scale
// Access: Published
// Description: Replaces the translation, rotation, and scale
// components, implicitly setting shear to 0.
////////////////////////////////////////////////////////////////////
void NodePath::
set_pos_hpr_scale(const LVecBase3f &pos, const LVecBase3f &hpr,
const LVecBase3f &scale) {
nassertv_always(!is_empty());
set_transform(TransformState::make_pos_hpr_scale
(pos, hpr, scale));
node()->reset_prev_transform();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_pos_quat_scale
// Access: Published
// Description: Replaces the translation, rotation, and scale
// components, implicitly setting shear to 0.
////////////////////////////////////////////////////////////////////
void NodePath::
set_pos_quat_scale(const LVecBase3f &pos, const LQuaternionf &quat,
const LVecBase3f &scale) {
nassertv_always(!is_empty());
set_transform(TransformState::make_pos_quat_scale
(pos, quat, scale));
node()->reset_prev_transform();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_pos_hpr_scale_shear
// Access: Published
// Description: Completely replaces the transform with new
// translation, rotation, scale, and shear components.
////////////////////////////////////////////////////////////////////
void NodePath::
set_pos_hpr_scale_shear(const LVecBase3f &pos, const LVecBase3f &hpr,
const LVecBase3f &scale, const LVecBase3f &shear) {
nassertv_always(!is_empty());
set_transform(TransformState::make_pos_hpr_scale_shear
(pos, hpr, scale, shear));
node()->reset_prev_transform();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_pos_quat_scale_shear
// Access: Published
// Description: Completely replaces the transform with new
// translation, rotation, scale, and shear components.
////////////////////////////////////////////////////////////////////
void NodePath::
set_pos_quat_scale_shear(const LVecBase3f &pos, const LQuaternionf &quat,
const LVecBase3f &scale, const LVecBase3f &shear) {
nassertv_always(!is_empty());
set_transform(TransformState::make_pos_quat_scale_shear
(pos, quat, scale, shear));
node()->reset_prev_transform();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_mat
// Access: Published
// Description: Directly sets an arbitrary 4x4 transform matrix.
////////////////////////////////////////////////////////////////////
void NodePath::
set_mat(const LMatrix4f &mat) {
nassertv_always(!is_empty());
set_transform(TransformState::make_mat(mat));
node()->reset_prev_transform();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::look_at
// Access: Published
// Description: Sets the hpr on this NodePath so that it
// rotates to face the indicated point in space.
////////////////////////////////////////////////////////////////////
void NodePath::
look_at(const LPoint3f &point, const LVector3f &up) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos();
LQuaternionf quat;
::look_at(quat, point - pos, up);
set_quat(quat);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::heads_up
// Access: Published
// Description: Behaves like look_at(), but with a strong preference
// to keeping the up vector oriented in the indicated
// "up" direction.
////////////////////////////////////////////////////////////////////
void NodePath::
heads_up(const LPoint3f &point, const LVector3f &up) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos();
LQuaternionf quat;
::heads_up(quat, point - pos, up);
set_quat(quat);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_pos
// Access: Published
// Description: Sets the translation component of the transform,
// relative to the other node.
////////////////////////////////////////////////////////////////////
void NodePath::
set_pos(const NodePath &other, const LVecBase3f &pos) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
CPT(TransformState) orig_transform = get_transform();
if (orig_transform->has_components()) {
// If we had a componentwise transform before we started, we
// should be careful to preserve the other three components. We
// wouldn't need to do this, except for the possibility of
// numerical error or decompose ambiguity.
const LVecBase3f &orig_hpr = orig_transform->get_hpr();
const LVecBase3f &orig_scale = orig_transform->get_scale();
const LVecBase3f &orig_shear = orig_transform->get_shear();
set_transform(other, rel_transform->set_pos(pos));
set_pos_hpr_scale_shear(get_transform()->get_pos(), orig_hpr, orig_scale, orig_shear);
} else {
// If we didn't have a componentwise transform already, never
// mind.
set_transform(other, rel_transform->set_pos(pos));
}
node()->reset_prev_transform();
}
void NodePath::
set_x(const NodePath &other, float x) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos(other);
pos[0] = x;
set_pos(other, pos);
}
void NodePath::
set_y(const NodePath &other, float y) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos(other);
pos[1] = y;
set_pos(other, pos);
}
void NodePath::
set_z(const NodePath &other, float z) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos(other);
pos[2] = z;
set_pos(other, pos);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_fluid_pos
// Access: Published
// Description: Sets the translation component of the transform,
// relative to the other node.
////////////////////////////////////////////////////////////////////
void NodePath::
set_fluid_pos(const NodePath &other, const LVecBase3f &pos) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
CPT(TransformState) orig_transform = get_transform();
if (orig_transform->has_components()) {
// If we had a componentwise transform before we started, we
// should be careful to preserve the other three components. We
// wouldn't need to do this, except for the possibility of
// numerical error or decompose ambiguity.
const LVecBase3f &orig_hpr = orig_transform->get_hpr();
const LVecBase3f &orig_scale = orig_transform->get_scale();
const LVecBase3f &orig_shear = orig_transform->get_shear();
set_transform(other, rel_transform->set_pos(pos));
set_pos_hpr_scale_shear(get_transform()->get_pos(), orig_hpr, orig_scale, orig_shear);
} else {
// If we didn't have a componentwise transform already, never
// mind.
set_transform(other, rel_transform->set_pos(pos));
}
}
void NodePath::
set_fluid_x(const NodePath &other, float x) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos(other);
pos[0] = x;
set_fluid_pos(other, pos);
}
void NodePath::
set_fluid_y(const NodePath &other, float y) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos(other);
pos[1] = y;
set_fluid_pos(other, pos);
}
void NodePath::
set_fluid_z(const NodePath &other, float z) {
nassertv_always(!is_empty());
LPoint3f pos = get_pos(other);
pos[2] = z;
set_fluid_pos(other, pos);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_pos
// Access: Published
// Description: Returns the relative position of the referenced node
// as seen from the other node.
////////////////////////////////////////////////////////////////////
LPoint3f NodePath::
get_pos(const NodePath &other) const {
nassertr_always(!is_empty(), LPoint3f(0.0f, 0.0f, 0.0f));
return get_transform(other)->get_pos();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_pos_delta
// Access: Published
// Description: Returns the delta vector from this node's position in
// the previous frame (according to
// set_prev_transform(), typically set via the use of
// set_fluid_pos()) and its position in the current
// frame, as seen in the indicated node's coordinate
// space. This is the vector used to determine
// collisions. Generally, if the node was last
// repositioned via set_pos(), the delta will be zero;
// if it was adjusted via set_fluid_pos(), the delta
// will represent the change from the previous frame's
// position.
////////////////////////////////////////////////////////////////////
LVector3f NodePath::
get_pos_delta(const NodePath &other) const {
nassertr_always(!is_empty(), LPoint3f(0.0f, 0.0f, 0.0f));
return get_transform(other)->get_pos() - get_prev_transform(other)->get_pos();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_hpr
// Access: Published
// Description: Sets the rotation component of the transform,
// relative to the other node.
////////////////////////////////////////////////////////////////////
void NodePath::
set_hpr(const NodePath &other, const LVecBase3f &hpr) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
nassertv(rel_transform->has_hpr());
CPT(TransformState) orig_transform = get_transform();
if (orig_transform->has_components()) {
// If we had a componentwise transform before we started, we
// should be careful to preserve the other three components. We
// wouldn't need to do this, except for the possibility of
// numerical error or decompose ambiguity.
const LVecBase3f &orig_pos = orig_transform->get_pos();
const LVecBase3f &orig_scale = orig_transform->get_scale();
const LVecBase3f &orig_shear = orig_transform->get_shear();
set_transform(other, rel_transform->set_hpr(hpr));
const TransformState *new_transform = get_transform();
if (new_transform->has_components()) {
set_transform(TransformState::make_pos_hpr_scale_shear
(orig_pos, new_transform->get_hpr(), orig_scale, orig_shear));
}
} else {
// If we didn't have a componentwise transform already, never
// mind.
set_transform(other, rel_transform->set_hpr(hpr));
}
}
void NodePath::
set_h(const NodePath &other, float h) {
nassertv_always(!is_empty());
LVecBase3f hpr = get_hpr(other);
hpr[0] = h;
set_hpr(other, hpr);
}
void NodePath::
set_p(const NodePath &other, float p) {
nassertv_always(!is_empty());
LVecBase3f hpr = get_hpr(other);
hpr[1] = p;
set_hpr(other, hpr);
}
void NodePath::
set_r(const NodePath &other, float r) {
nassertv_always(!is_empty());
LVecBase3f hpr = get_hpr(other);
hpr[2] = r;
set_hpr(other, hpr);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_hpr
// Access: Published
// Description: Returns the relative orientation of the bottom node
// as seen from the other node.
////////////////////////////////////////////////////////////////////
LVecBase3f NodePath::
get_hpr(const NodePath &other) const {
nassertr_always(!is_empty(), LVecBase3f(0.0f, 0.0f, 0.0f));
CPT(TransformState) transform = get_transform(other);
nassertr(transform->has_hpr(), LVecBase3f(0.0f, 0.0f, 0.0f));
// now that we are range checking fields we must clamp this
LVecBase3f hpr = transform->get_hpr();
hpr[0] = fmod(hpr[0], 360);
hpr[1] = fmod(hpr[1], 360);
hpr[2] = fmod(hpr[2], 360);
return hpr;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_quat
// Access: Published
// Description: Sets the rotation component of the transform,
// relative to the other node.
////////////////////////////////////////////////////////////////////
void NodePath::
set_quat(const NodePath &other, const LQuaternionf &quat) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
CPT(TransformState) orig_transform = get_transform();
if (orig_transform->has_components()) {
// If we had a componentwise transform before we started, we
// should be careful to preserve the other three components. We
// wouldn't need to do this, except for the possibility of
// numerical error or decompose ambiguity.
const LVecBase3f &orig_pos = orig_transform->get_pos();
const LVecBase3f &orig_scale = orig_transform->get_scale();
const LVecBase3f &orig_shear = orig_transform->get_shear();
set_transform(other, rel_transform->set_quat(quat));
const TransformState *new_transform = get_transform();
if (new_transform->has_components()) {
set_transform(TransformState::make_pos_quat_scale_shear
(orig_pos, new_transform->get_quat(), orig_scale, orig_shear));
}
} else {
// If we didn't have a componentwise transform already, never
// mind.
set_transform(other, rel_transform->set_quat(quat));
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_quat
// Access: Published
// Description: Returns the relative orientation of the bottom node
// as seen from the other node.
////////////////////////////////////////////////////////////////////
LQuaternionf NodePath::
get_quat(const NodePath &other) const {
nassertr_always(!is_empty(), LQuaternionf::ident_quat());
CPT(TransformState) transform = get_transform(other);
return transform->get_quat();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_scale
// Access: Published
// Description: Sets the scale component of the transform,
// relative to the other node.
////////////////////////////////////////////////////////////////////
void NodePath::
set_scale(const NodePath &other, const LVecBase3f &scale) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
CPT(TransformState) orig_transform = get_transform();
if (orig_transform->has_components()) {
// If we had a componentwise transform before we started, we
// should be careful to preserve the other three components. We
// wouldn't need to do this, except for the possibility of
// numerical error or decompose ambiguity.
const LVecBase3f &orig_pos = orig_transform->get_pos();
const LVecBase3f &orig_hpr = orig_transform->get_hpr();
const LVecBase3f &orig_shear = orig_transform->get_shear();
set_transform(other, rel_transform->set_scale(scale));
const TransformState *new_transform = get_transform();
if (new_transform->has_components()) {
set_transform(TransformState::make_pos_hpr_scale_shear
(orig_pos, orig_hpr, new_transform->get_scale(), orig_shear));
}
} else {
// If we didn't have a componentwise transform already, never
// mind.
set_transform(other, rel_transform->set_scale(scale));
}
}
void NodePath::
set_sx(const NodePath &other, float sx) {
nassertv_always(!is_empty());
LVecBase3f scale = get_scale(other);
scale[0] = sx;
set_scale(other, scale);
}
void NodePath::
set_sy(const NodePath &other, float sy) {
nassertv_always(!is_empty());
LVecBase3f scale = get_scale(other);
scale[1] = sy;
set_scale(other, scale);
}
void NodePath::
set_sz(const NodePath &other, float sz) {
nassertv_always(!is_empty());
LVecBase3f scale = get_scale(other);
scale[2] = sz;
set_scale(other, scale);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_scale
// Access: Published
// Description: Returns the relative scale of the bottom node
// as seen from the other node.
////////////////////////////////////////////////////////////////////
LVecBase3f NodePath::
get_scale(const NodePath &other) const {
nassertr_always(!is_empty(), LVecBase3f(0.0f, 0.0f, 0.0f));
CPT(TransformState) transform = get_transform(other);
return transform->get_scale();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_shear
// Access: Published
// Description: Sets the shear component of the transform,
// relative to the other node.
////////////////////////////////////////////////////////////////////
void NodePath::
set_shear(const NodePath &other, const LVecBase3f &shear) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
CPT(TransformState) orig_transform = get_transform();
if (orig_transform->has_components()) {
// If we had a componentwise transform before we started, we
// should be careful to preserve the other three components. We
// wouldn't need to do this, except for the possibility of
// numerical error or decompose ambiguity.
const LVecBase3f &orig_pos = orig_transform->get_pos();
const LVecBase3f &orig_hpr = orig_transform->get_hpr();
const LVecBase3f &orig_scale = orig_transform->get_scale();
set_transform(other, rel_transform->set_shear(shear));
const TransformState *new_transform = get_transform();
if (new_transform->has_components()) {
set_transform(TransformState::make_pos_hpr_scale_shear
(orig_pos, orig_hpr, orig_scale, new_transform->get_shear()));
}
} else {
// If we didn't have a componentwise transform already, never
// mind.
set_transform(other, rel_transform->set_shear(shear));
}
}
void NodePath::
set_shxy(const NodePath &other, float shxy) {
nassertv_always(!is_empty());
LVecBase3f shear = get_shear(other);
shear[0] = shxy;
set_shear(other, shear);
}
void NodePath::
set_shxz(const NodePath &other, float shxz) {
nassertv_always(!is_empty());
LVecBase3f shear = get_shear(other);
shear[1] = shxz;
set_shear(other, shear);
}
void NodePath::
set_shyz(const NodePath &other, float shyz) {
nassertv_always(!is_empty());
LVecBase3f shear = get_shear(other);
shear[2] = shyz;
set_shear(other, shear);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_shear
// Access: Published
// Description: Returns the relative shear of the bottom node
// as seen from the other node.
////////////////////////////////////////////////////////////////////
LVecBase3f NodePath::
get_shear(const NodePath &other) const {
nassertr_always(!is_empty(), LVecBase3f(0.0f, 0.0f, 0.0f));
CPT(TransformState) transform = get_transform(other);
return transform->get_shear();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_pos_hpr
// Access: Published
// Description: Sets the translation and rotation component of the
// transform, relative to the other node.
////////////////////////////////////////////////////////////////////
void NodePath::
set_pos_hpr(const NodePath &other, const LVecBase3f &pos,
const LVecBase3f &hpr) {
nassertv_always(!is_empty());
CPT(TransformState) rel_transform = get_transform(other);
CPT(TransformState) orig_transform = get_transform();
if (orig_transform->has_components()) {
// If we had a componentwise transform before we started, we
// should be careful to preserve the other two components. We
// wouldn't need to do this, except for the possibility of
// numerical error or decompose ambiguity.
const LVecBase3f &orig_scale = orig_transform->get_scale();
const LVecBase3f &orig_shear = orig_transform->get_shear();
set_transform(other, TransformState::make_pos_hpr_scale_shear
(pos, hpr, rel_transform->get_scale(), rel_transform->get_shear()));
const TransformState *new_transform = get_transform();
if (new_transform->has_components()) {
set_pos_hpr_scale_shear(new_transform->get_pos(), new_transform->get_hpr(),
orig_scale, orig_shear);
}
} else {
// If we didn't have a componentwise transform already, never
// mind.
set_transform(other, TransformState::make_pos_hpr_scale_shear
(pos, hpr, rel_transform->get_scale(), rel_transform->get_shear()));
node()->reset_prev_transform();
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_hpr_scale
// Access: Published
// Description: Sets the rotation and scale components of the
// transform, leaving translation untouched. This, or
// set_pos_hpr_scale, is the preferred way to update a
// transform when both hpr and scale are to be changed.
////////////////////////////////////////////////////////////////////
void NodePath::
set_hpr_scale(const NodePath &other, const LVecBase3f &hpr, const LVecBase3f &scale) {
// We don't bother trying very hard to preserve pos across this
// operation, unlike the work we do above to preserve hpr or scale,
// since it generally doesn't matter that much if pos is off by a
// few thousandths.
nassertv_always(!is_empty());
CPT(TransformState) transform = get_transform(other);
transform = TransformState::make_pos_hpr_scale_shear
(transform->get_pos(), hpr, scale, transform->get_shear());
set_transform(other, transform);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_pos_hpr_scale
// Access: Published
// Description: Completely replaces the transform with new
// translation, rotation, and scale components, relative
// to the other node, implicitly setting shear to 0.
////////////////////////////////////////////////////////////////////
void NodePath::
set_pos_hpr_scale(const NodePath &other,
const LVecBase3f &pos, const LVecBase3f &hpr,
const LVecBase3f &scale) {
nassertv_always(!is_empty());
set_transform(other, TransformState::make_pos_hpr_scale
(pos, hpr, scale));
node()->reset_prev_transform();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_pos_quat_scale
// Access: Published
// Description: Completely replaces the transform with new
// translation, rotation, and scale components, relative
// to the other node, implicitly setting shear to 0.
////////////////////////////////////////////////////////////////////
void NodePath::
set_pos_quat_scale(const NodePath &other,
const LVecBase3f &pos, const LQuaternionf &quat,
const LVecBase3f &scale) {
nassertv_always(!is_empty());
set_transform(other, TransformState::make_pos_quat_scale
(pos, quat, scale));
node()->reset_prev_transform();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_pos_hpr_scale_shear
// Access: Published
// Description: Completely replaces the transform with new
// translation, rotation, scale, and shear components,
// relative to the other node.
////////////////////////////////////////////////////////////////////
void NodePath::
set_pos_hpr_scale_shear(const NodePath &other,
const LVecBase3f &pos, const LVecBase3f &hpr,
const LVecBase3f &scale, const LVecBase3f &shear) {
nassertv_always(!is_empty());
set_transform(other, TransformState::make_pos_hpr_scale_shear
(pos, hpr, scale, shear));
node()->reset_prev_transform();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_pos_quat_scale_shear
// Access: Published
// Description: Completely replaces the transform with new
// translation, rotation, scale, and shear components,
// relative to the other node.
////////////////////////////////////////////////////////////////////
void NodePath::
set_pos_quat_scale_shear(const NodePath &other,
const LVecBase3f &pos, const LQuaternionf &quat,
const LVecBase3f &scale, const LVecBase3f &shear) {
nassertv_always(!is_empty());
set_transform(other, TransformState::make_pos_quat_scale_shear
(pos, quat, scale, shear));
node()->reset_prev_transform();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_mat
// Access: Published
// Description: Returns the matrix that describes the coordinate
// space of the bottom node, relative to the other
// path's bottom node's coordinate space.
////////////////////////////////////////////////////////////////////
const LMatrix4f &NodePath::
get_mat(const NodePath &other) const {
CPT(TransformState) transform = get_transform(other);
// We can safely assume the transform won't go away when the
// function returns, since its reference count is also held in the
// cache. This assumption allows us to return a reference to the
// matrix, instead of having to return a matrix on the stack.
nassertr(transform->get_ref_count() > 1, LMatrix4f::ident_mat());
return transform->get_mat();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_mat
// Access: Published
// Description: Converts the indicated matrix from the other's
// coordinate space to the local coordinate space, and
// applies it to the node.
////////////////////////////////////////////////////////////////////
void NodePath::
set_mat(const NodePath &other, const LMatrix4f &mat) {
nassertv_always(!is_empty());
set_transform(other, TransformState::make_mat(mat));
node()->reset_prev_transform();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_relative_point
// Access: Published
// Description: Given that the indicated point is in the coordinate
// system of the other node, returns the same point in
// this node's coordinate system.
////////////////////////////////////////////////////////////////////
LPoint3f NodePath::
get_relative_point(const NodePath &other, const LVecBase3f &point) const {
LPoint3f rel_point = LPoint3f(point) * other.get_mat(*this);
return rel_point;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_relative_vector
// Access: Published
// Description: Given that the indicated vector is in the coordinate
// system of the other node, returns the same vector in
// this node's coordinate system.
////////////////////////////////////////////////////////////////////
LVector3f NodePath::
get_relative_vector(const NodePath &other, const LVecBase3f &vec) const {
LVector3f rel_vector = LVector3f(vec) * other.get_mat(*this);
return rel_vector;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::look_at
// Access: Published
// Description: Sets the transform on this NodePath so that it
// rotates to face the indicated point in space, which
// is relative to the other NodePath.
////////////////////////////////////////////////////////////////////
void NodePath::
look_at(const NodePath &other, const LPoint3f &point, const LVector3f &up) {
nassertv_always(!is_empty());
NodePath parent = get_parent();
LPoint3f rel_point = point * other.get_mat(parent);
LPoint3f pos = get_pos();
LQuaternionf quat;
::look_at(quat, rel_point - pos, up);
set_quat(quat);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::heads_up
// Access: Published
// Description: Behaves like look_at(), but with a strong preference
// to keeping the up vector oriented in the indicated
// "up" direction.
////////////////////////////////////////////////////////////////////
void NodePath::
heads_up(const NodePath &other, const LPoint3f &point, const LVector3f &up) {
nassertv_always(!is_empty());
NodePath parent = get_parent();
LPoint3f rel_point = point * other.get_mat(parent);
LPoint3f pos = get_pos();
LQuaternionf quat;
::heads_up(quat, rel_point - pos, up);
set_quat(quat);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_color
// Access: Published
// Description: Applies a scene-graph color to the referenced node.
// This color will apply to all geometry at this level
// and below (that does not specify a new color or a
// set_color_off()).
////////////////////////////////////////////////////////////////////
void NodePath::
set_color(float r, float g, float b, float a,
int priority) {
set_color(Colorf(r, g, b, a), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_color
// Access: Published
// Description: Applies a scene-graph color to the referenced node.
// This color will apply to all geometry at this level
// and below (that does not specify a new color or a
// set_color_off()).
////////////////////////////////////////////////////////////////////
void NodePath::
set_color(const Colorf &color, int priority) {
nassertv_always(!is_empty());
node()->set_attrib(ColorAttrib::make_flat(color), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_color_off
// Access: Published
// Description: Sets the geometry at this level and below to render
// using the geometry color. This is normally the
// default, but it may be useful to use this to
// contradict set_color() at a higher node level (or,
// with a priority, to override a set_color() at a lower
// level).
////////////////////////////////////////////////////////////////////
void NodePath::
set_color_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(ColorAttrib::make_vertex(), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_color
// Access: Published
// Description: Completely removes any color adjustment from the node.
// This allows the natural color of the geometry, or
// whatever color transitions might be otherwise
// affecting the geometry, to show instead.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_color() {
nassertv_always(!is_empty());
node()->clear_attrib(ColorAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_color
// Access: Published
// Description: Returns true if a color has been applied to the given
// node, false otherwise.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_color() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(ColorAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_color
// Access: Published
// Description: Returns the color that has been assigned to the node,
// or black if no color has been assigned.
////////////////////////////////////////////////////////////////////
Colorf NodePath::
get_color() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(ColorAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const ColorAttrib *ca = DCAST(ColorAttrib, attrib);
if (ca->get_color_type() == ColorAttrib::T_flat) {
return ca->get_color();
}
}
pgraph_cat.warning()
<< "get_color() called on " << *this << " which has no color set.\n";
return Colorf(1.0f, 1.0f, 1.0f, 1.0f);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_color_scale
// Access: Published
// Description: Returns true if a color scale has been applied
// to the referenced node, false otherwise. It is still
// possible that color at this node might have been
// scaled by an ancestor node.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_color_scale() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(ColorScaleAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_color_scale
// Access: Published
// Description: Completely removes any color scale from the
// referenced node. This is preferable to simply
// setting the color scale to identity, as it also
// removes the overhead associated with having a color
// scale at all.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_color_scale() {
nassertv_always(!is_empty());
node()->clear_attrib(ColorScaleAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_color_scale
// Access: Published
// Description: Sets the color scale component of the transform,
// leaving translation and rotation untouched.
////////////////////////////////////////////////////////////////////
void NodePath::
set_color_scale(const LVecBase4f &scale, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ColorScaleAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(ColorScaleAttrib::get_class_type()));
const ColorScaleAttrib *csa = DCAST(ColorScaleAttrib, attrib);
// Modify the existing ColorScaleAttrib to add the indicated
// colorScale.
node()->set_attrib(csa->set_scale(scale), priority);
} else {
// Create a new ColorScaleAttrib for this node.
node()->set_attrib(ColorScaleAttrib::make(scale), priority);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_color_scale_off
// Access: Published
// Description: Disables any color scale attribute inherited from
// above. This is not the same thing as
// clear_color_scale(), which undoes any previous
// set_color_scale() operation on this node; rather,
// this actively disables any set_color_scale() that
// might be inherited from a parent node. This also
// disables set_alpha_scale() at the same time.
//
// It is legal to specify a new color scale on the same
// node with a subsequent call to set_color_scale() or
// set_alpha_scale(); this new scale will apply to lower
// geometry.
////////////////////////////////////////////////////////////////////
void NodePath::
set_color_scale_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(ColorScaleAttrib::make_off(), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_alpha_scale
// Access: Published
// Description: Sets the alpha scale component of the transform
// without (much) affecting the color scale. Note that
// any priority specified will also apply to the color
// scale.
////////////////////////////////////////////////////////////////////
void NodePath::
set_alpha_scale(float scale, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ColorScaleAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(ColorScaleAttrib::get_class_type()));
const ColorScaleAttrib *csa = DCAST(ColorScaleAttrib, attrib);
// Modify the existing ColorScaleAttrib to add the indicated
// colorScale.
const LVecBase4f &sc = csa->get_scale();
node()->set_attrib(csa->set_scale(LVecBase4f(sc[0], sc[1], sc[2], scale)), priority);
} else {
// Create a new ColorScaleAttrib for this node.
node()->set_attrib(ColorScaleAttrib::make(LVecBase4f(1.0f, 1.0f, 1.0f, scale)), priority);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_all_color_scale
// Access: Published
// Description: Scales all the color components of the object by the
// same amount, darkening the object, without (much)
// affecting alpha. Note that any priority specified
// will also apply to the alpha scale.
////////////////////////////////////////////////////////////////////
void NodePath::
set_all_color_scale(float scale, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(ColorScaleAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(ColorScaleAttrib::get_class_type()));
const ColorScaleAttrib *csa = DCAST(ColorScaleAttrib, attrib);
// Modify the existing ColorScaleAttrib to add the indicated
// colorScale.
const LVecBase4f &sc = csa->get_scale();
node()->set_attrib(csa->set_scale(LVecBase4f(scale, scale, scale, sc[3])), priority);
} else {
// Create a new ColorScaleAttrib for this node.
node()->set_attrib(ColorScaleAttrib::make(LVecBase4f(scale, scale, scale, 1.0f)), priority);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_color_scale
// Access: Published
// Description: Returns the complete color scale vector that has been
// applied to this node via a previous call to
// set_color_scale() and/or set_alpha_scale(), or all
// 1's (identity) if no scale has been applied to this
// particular node.
////////////////////////////////////////////////////////////////////
const LVecBase4f &NodePath::
get_color_scale() const {
static const LVecBase4f ident_scale(1.0f, 1.0f, 1.0f, 1.0f);
nassertr_always(!is_empty(), ident_scale);
const RenderAttrib *attrib =
node()->get_attrib(ColorScaleAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const ColorScaleAttrib *csa = DCAST(ColorScaleAttrib, attrib);
return csa->get_scale();
}
return ident_scale;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_light
// Access: Published
// Description: Adds the indicated Light or PolylightNode to the list
// of lights that illuminate geometry at this node and
// below. The light itself should be parented into the
// scene graph elsewhere, to represent the light's
// position in space; but until set_light() is called it
// will illuminate no geometry.
////////////////////////////////////////////////////////////////////
void NodePath::
set_light(const NodePath &light, int priority) {
nassertv_always(!is_empty());
if (!light.is_empty()) {
Light *light_obj = light.node()->as_light();
if (light_obj != (Light *)NULL) {
// It's an actual Light object.
const RenderAttrib *attrib =
node()->get_attrib(LightAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(LightAttrib::get_class_type()));
const LightAttrib *la = DCAST(LightAttrib, attrib);
// Modify the existing LightAttrib to add the indicated
// light.
node()->set_attrib(la->add_on_light(light), priority);
} else {
// Create a new LightAttrib for this node.
CPT(LightAttrib) la = DCAST(LightAttrib, LightAttrib::make());
node()->set_attrib(la->add_on_light(light), priority);
}
return;
} else if (light.node()->is_of_type(PolylightNode::get_class_type())) {
// It's a Polylight object.
if (priority != 0) {
// PolylightEffects can't have a priority, since they're just
// an effect to be applied immediately.
pgraph_cat.warning()
<< "Ignoring priority on set_light(" << light << ")\n";
}
const RenderEffect *effect =
node()->get_effect(PolylightEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
const PolylightEffect *ple = DCAST(PolylightEffect, effect);
// Modify the existing PolylightEffect to add the indicated
// light.
node()->set_effect(ple->add_light(light));
} else {
// Create a new PolylightEffect for this node.
CPT(PolylightEffect) ple = DCAST(PolylightEffect, PolylightEffect::make());
node()->set_effect(ple->add_light(light));
}
return;
}
}
nassert_raise("Not a Light object.");
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_light_off
// Access: Published
// Description: Sets the geometry at this level and below to render
// using no lights at all. This is different
// from not specifying a light; rather, this
// specifically contradicts set_light() at a higher
// node level (or, with a priority, overrides a
// set_light() at a lower level).
//
// If no lights are in effect on a particular piece of
// geometry, that geometry is rendered with lighting
// disabled.
////////////////////////////////////////////////////////////////////
void NodePath::
set_light_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(LightAttrib::make_all_off(), priority);
node()->clear_effect(PolylightEffect::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_light_off
// Access: Published
// Description: Sets the geometry at this level and below to render
// using without the indicated Light. This is different
// from not specifying the Light; rather, this
// specifically contradicts set_light() at a higher node
// level (or, with a priority, overrides a set_light()
// at a lower level).
//
// This interface does not support PolylightNodes, which
// cannot be turned off at a lower level.
////////////////////////////////////////////////////////////////////
void NodePath::
set_light_off(const NodePath &light, int priority) {
nassertv_always(!is_empty());
if (!light.is_empty()) {
Light *light_obj = light.node()->as_light();
if (light_obj != (Light *)NULL) {
const RenderAttrib *attrib =
node()->get_attrib(LightAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(LightAttrib::get_class_type()));
const LightAttrib *la = DCAST(LightAttrib, attrib);
// Modify the existing LightAttrib to add the indicated light
// to the "off" list. This also, incidentally, removes it from
// the "on" list if it is there.
node()->set_attrib(la->add_off_light(light), priority);
} else {
// Create a new LightAttrib for this node that turns off the
// indicated light.
CPT(LightAttrib) la = DCAST(LightAttrib, LightAttrib::make());
node()->set_attrib(la->add_off_light(light), priority);
}
return;
}
}
nassert_raise("Not a Light object.");
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_light
// Access: Published
// Description: Completely removes any lighting operations that may
// have been set via set_light() or set_light_off()
// from this particular node.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_light() {
nassertv_always(!is_empty());
node()->clear_attrib(LightAttrib::get_class_type());
node()->clear_effect(PolylightEffect::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_light
// Access: Published
// Description: Removes any reference to the indicated Light or
// PolylightNode from the NodePath.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_light(const NodePath &light) {
nassertv_always(!is_empty());
if (!light.is_empty()) {
Light *light_obj = light.node()->as_light();
if (light_obj != (Light *)NULL) {
const RenderAttrib *attrib =
node()->get_attrib(LightAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
CPT(LightAttrib) la = DCAST(LightAttrib, attrib);
la = DCAST(LightAttrib, la->remove_on_light(light));
la = DCAST(LightAttrib, la->remove_off_light(light));
if (la->is_identity()) {
node()->clear_attrib(LightAttrib::get_class_type());
} else {
int priority = node()->get_state()->get_override(LightAttrib::get_class_type());
node()->set_attrib(la, priority);
}
}
return;
} else if (light.node()->is_of_type(PolylightNode::get_class_type())) {
const RenderEffect *effect =
node()->get_effect(PolylightEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
CPT(PolylightEffect) ple = DCAST(PolylightEffect, effect);
ple = DCAST(PolylightEffect, ple->remove_light(light));
node()->set_effect(ple);
}
return;
}
}
nassert_raise("Not a Light object.");
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_light
// Access: Published
// Description: Returns true if the indicated Light or PolylightNode
// has been specifically enabled on this particular
// node. This means that someone called set_light() on
// this node with the indicated light.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_light(const NodePath &light) const {
nassertr_always(!is_empty(), false);
if (!light.is_empty()) {
Light *light_obj = light.node()->as_light();
if (light_obj != (Light *)NULL) {
const RenderAttrib *attrib =
node()->get_attrib(LightAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const LightAttrib *la = DCAST(LightAttrib, attrib);
return la->has_on_light(light);
}
return false;
} else if (light.node()->is_of_type(PolylightNode::get_class_type())) {
const RenderEffect *effect =
node()->get_effect(PolylightEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
const PolylightEffect *ple = DCAST(PolylightEffect, effect);
return ple->has_light(light);
}
return false;
}
}
nassert_raise("Not a Light object.");
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_light_off
// Access: Published
// Description: Returns true if all Lights have been specifically
// disabled on this particular node. This means that
// someone called set_light_off() on this node with no
// parameters.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_light_off() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(LightAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const LightAttrib *la = DCAST(LightAttrib, attrib);
return la->has_all_off();
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_light_off
// Access: Published
// Description: Returns true if the indicated Light has been
// specifically disabled on this particular node. This
// means that someone called set_light_off() on this
// node with the indicated light.
//
// This interface does not support PolylightNodes, which
// cannot be turned off at a lower level.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_light_off(const NodePath &light) const {
nassertr_always(!is_empty(), false);
if (!light.is_empty()) {
Light *light_obj = light.node()->as_light();
if (light_obj != (Light *)NULL) {
const RenderAttrib *attrib =
node()->get_attrib(LightAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const LightAttrib *la = DCAST(LightAttrib, attrib);
return la->has_off_light(light);
}
}
}
nassert_raise("Not a Light object.");
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_bin
// Access: Published
// Description: Assigns the geometry at this level and below to the
// named rendering bin. It is the user's responsibility
// to ensure that such a bin already exists, either via
// the cull-bin Configrc variable, or by explicitly
// creating a GeomBin of the appropriate type at
// runtime.
//
// There are two default bins created when Panda is
// started: "default" and "fixed". Normally, all
// geometry is assigned to "default" unless specified
// otherwise. This bin renders opaque geometry in
// state-sorted order, followed by transparent geometry
// sorted back-to-front. If any geometry is assigned to
// "fixed", this will be rendered following all the
// geometry in "default", in the order specified by
// draw_order for each piece of geometry so assigned.
//
// The draw_order parameter is meaningful only for
// GeomBinFixed type bins, e.g. "fixed". Other kinds of
// bins ignore it.
////////////////////////////////////////////////////////////////////
void NodePath::
set_bin(const string &bin_name, int draw_order, int priority) {
nassertv_always(!is_empty());
node()->set_attrib(CullBinAttrib::make(bin_name, draw_order), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_bin
// Access: Published
// Description: Completely removes any bin adjustment that may have
// been set via set_bin() from this particular node.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_bin() {
nassertv_always(!is_empty());
node()->clear_attrib(CullBinAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_bin
// Access: Published
// Description: Returns true if the node has been assigned to the a
// particular rendering bin via set_bin(), false
// otherwise.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_bin() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(CullBinAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_bin_name
// Access: Published
// Description: Returns the name of the bin that this particular node
// was assigned to via set_bin(), or the empty string if
// no bin was assigned. See set_bin() and has_bin().
////////////////////////////////////////////////////////////////////
string NodePath::
get_bin_name() const {
nassertr_always(!is_empty(), string());
const RenderAttrib *attrib =
node()->get_attrib(CullBinAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const CullBinAttrib *ba = DCAST(CullBinAttrib, attrib);
return ba->get_bin_name();
}
return string();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_bin_draw_order
// Access: Published
// Description: Returns the drawing order associated with the bin
// that this particular node was assigned to via
// set_bin(), or 0 if no bin was assigned. See
// set_bin() and has_bin().
////////////////////////////////////////////////////////////////////
int NodePath::
get_bin_draw_order() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(CullBinAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const CullBinAttrib *ba = DCAST(CullBinAttrib, attrib);
return ba->get_draw_order();
}
return 0;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_texture
// Access: Published
// Description: Adds the indicated texture to the list of textures
// that will be rendered on the default texture stage.
//
// This is the deprecated single-texture variant of this
// method; it is now superceded by set_texture() that
// accepts a stage and texture. However, this method
// may be used in the presence of multitexture if you
// just want to adjust the default stage.
////////////////////////////////////////////////////////////////////
void NodePath::
set_texture(Texture *tex, int priority) {
nassertv_always(!is_empty());
PT(TextureStage) stage = TextureStage::get_default();
set_texture(stage, tex, priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_texture
// Access: Published
// Description: Adds the indicated texture to the list of textures
// that will be rendered on the indicated multitexture
// stage. If there are multiple texture stages
// specified (possibly on multiple different nodes at
// different levels), they will all be applied to
// geometry together, according to the stage
// specification set up in the TextureStage object.
////////////////////////////////////////////////////////////////////
void NodePath::
set_texture(TextureStage *stage, Texture *tex, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(TextureAttrib::get_class_type()));
const TextureAttrib *tsa = DCAST(TextureAttrib, attrib);
// Modify the existing TextureAttrib to add the indicated
// texture.
node()->set_attrib(tsa->add_on_stage(stage, tex), priority);
} else {
// Create a new TextureAttrib for this node.
CPT(TextureAttrib) tsa = DCAST(TextureAttrib, TextureAttrib::make());
node()->set_attrib(tsa->add_on_stage(stage, tex), priority);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_texture_off
// Access: Published
// Description: Sets the geometry at this level and below to render
// using no texture, on any stage. This is different
// from not specifying a texture; rather, this
// specifically contradicts set_texture() at a higher
// node level (or, with a priority, overrides a
// set_texture() at a lower level).
////////////////////////////////////////////////////////////////////
void NodePath::
set_texture_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(TextureAttrib::make_all_off(), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_texture_off
// Access: Published
// Description: Sets the geometry at this level and below to render
// using no texture, on the indicated stage. This is
// different from not specifying a texture; rather, this
// specifically contradicts set_texture() at a higher
// node level (or, with a priority, overrides a
// set_texture() at a lower level).
////////////////////////////////////////////////////////////////////
void NodePath::
set_texture_off(TextureStage *stage, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(TextureAttrib::get_class_type()));
const TextureAttrib *tsa = DCAST(TextureAttrib, attrib);
// Modify the existing TextureAttrib to add the indicated texture
// to the "off" list. This also, incidentally, removes it from
// the "on" list if it is there.
node()->set_attrib(tsa->add_off_stage(stage), priority);
} else {
// Create a new TextureAttrib for this node that turns off the
// indicated stage.
CPT(TextureAttrib) tsa = DCAST(TextureAttrib, TextureAttrib::make());
node()->set_attrib(tsa->add_off_stage(stage), priority);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_texture
// Access: Published
// Description: Completely removes any texture adjustment that may
// have been set via set_texture() or set_texture_off()
// from this particular node. This allows whatever
// textures might be otherwise affecting the geometry to
// show instead.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_texture() {
nassertv_always(!is_empty());
node()->clear_attrib(TextureAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_texture
// Access: Published
// Description: Removes any reference to the indicated texture stage
// from the NodePath.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_texture(TextureStage *stage) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
CPT(TextureAttrib) tsa = DCAST(TextureAttrib, attrib);
tsa = DCAST(TextureAttrib, tsa->remove_on_stage(stage));
tsa = DCAST(TextureAttrib, tsa->remove_off_stage(stage));
if (tsa->is_identity()) {
node()->clear_attrib(TextureAttrib::get_class_type());
} else {
int priority = node()->get_state()->get_override(TextureAttrib::get_class_type());
node()->set_attrib(tsa, priority);
}
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_texture
// Access: Published
// Description: Returns true if a texture has been applied to this
// particular node via set_texture(), false otherwise.
// This is not the same thing as asking whether the
// geometry at this node will be rendered with
// texturing, as there may be a texture in effect from a
// higher or lower level.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_texture() const {
return get_texture() != (Texture *)NULL;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_texture
// Access: Published
// Description: Returns true if texturing has been specifically
// enabled on this particular node for the indicated
// stage. This means that someone called
// set_texture() on this node with the indicated stage
// name, or the stage_name is the default stage_name,
// and someone called set_texture() on this node.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_texture(TextureStage *stage) const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
return ta->has_on_stage(stage);
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_texture_off
// Access: Published
// Description: Returns true if texturing has been specifically
// disabled on this particular node via
// set_texture_off(), false otherwise. This is not the
// same thing as asking whether the geometry at this
// node will be rendered untextured, as there may be a
// texture in effect from a higher or lower level.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_texture_off() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
return ta->has_all_off();
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_texture_off
// Access: Published
// Description: Returns true if texturing has been specifically
// disabled on this particular node for the indicated
// stage. This means that someone called
// set_texture_off() on this node with the indicated
// stage name, or that someone called set_texture_off()
// on this node to remove all stages.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_texture_off(TextureStage *stage) const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
return ta->has_off_stage(stage);
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_texture
// Access: Published
// Description: Returns the base-level texture that has been set on
// this particular node, or NULL if no texture has been
// set. This is not necessarily the texture that will
// be applied to the geometry at or below this level, as
// another texture at a higher or lower level may
// override.
//
// See also find_texture().
////////////////////////////////////////////////////////////////////
Texture *NodePath::
get_texture() const {
nassertr_always(!is_empty(), NULL);
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
return ta->get_texture();
}
return NULL;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_texture
// Access: Published
// Description: Returns the texture that has been set on the
// indicated stage for this particular node, or NULL if
// no texture has been set for this stage.
////////////////////////////////////////////////////////////////////
Texture *NodePath::
get_texture(TextureStage *stage) const {
nassertr_always(!is_empty(), NULL);
const RenderAttrib *attrib =
node()->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
return ta->get_on_texture(stage);
}
return NULL;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_tex_transform
// Access: Published
// Description: Sets the texture matrix on the current node to the
// indicated transform for the given stage.
////////////////////////////////////////////////////////////////////
void NodePath::
set_tex_transform(TextureStage *stage, const TransformState *transform) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TexMatrixAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TexMatrixAttrib *tma = DCAST(TexMatrixAttrib, attrib);
// Modify the existing TexMatrixAttrib to add the indicated
// stage.
node()->set_attrib(tma->add_stage(stage, transform));
} else {
// Create a new TexMatrixAttrib for this node.
node()->set_attrib(TexMatrixAttrib::make(stage, transform));
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_tex_transform
// Access: Published
// Description: Removes all texture matrices from the current node.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_tex_transform() {
nassertv_always(!is_empty());
node()->clear_attrib(TexMatrixAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_tex_transform
// Access: Published
// Description: Removes the texture matrix on the current node for
// the given stage.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_tex_transform(TextureStage *stage) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TexMatrixAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
CPT(TexMatrixAttrib) tma = DCAST(TexMatrixAttrib, attrib);
tma = DCAST(TexMatrixAttrib, tma->remove_stage(stage));
if (tma->is_empty()) {
node()->clear_attrib(TexMatrixAttrib::get_class_type());
} else {
node()->set_attrib(tma);
}
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_tex_transform
// Access: Published
// Description: Returns true if there is an explicit texture matrix
// on the current node for the given stage.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_tex_transform(TextureStage *stage) const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(TexMatrixAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TexMatrixAttrib *tma = DCAST(TexMatrixAttrib, attrib);
return tma->has_stage(stage);
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_tex_transform
// Access: Published
// Description: Returns the texture matrix on the current node for the
// given stage, or identity transform if there is no
// explicit transform set for the given stage.
////////////////////////////////////////////////////////////////////
CPT(TransformState) NodePath::
get_tex_transform(TextureStage *stage) const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(TexMatrixAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TexMatrixAttrib *tma = DCAST(TexMatrixAttrib, attrib);
return tma->get_transform(stage);
}
return TransformState::make_identity();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_tex_transform
// Access: Published
// Description: Sets the texture matrix on the current node to the
// indicated transform for the given stage.
////////////////////////////////////////////////////////////////////
void NodePath::
set_tex_transform(const NodePath &other, TextureStage *stage, const TransformState *transform) {
nassertv(_error_type == ET_ok && other._error_type == ET_ok);
nassertv_always(!is_empty());
CPT(RenderState) state = get_state(other);
const RenderAttrib *attrib =
state->get_attrib(TexMatrixAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TexMatrixAttrib *tma = DCAST(TexMatrixAttrib, attrib);
// Modify the existing TexMatrixAttrib to add the indicated
// stage.
state = state->add_attrib(tma->add_stage(stage, transform));
} else {
// Create a new TexMatrixAttrib for this node.
state = state->add_attrib(TexMatrixAttrib::make(stage, transform));
}
// Now compose that with our parent's state.
CPT(RenderState) rel_state;
if (has_parent()) {
rel_state = other.get_state(get_parent());
} else {
rel_state = other.get_state(NodePath());
}
CPT(RenderState) new_state = rel_state->compose(state);
// And apply only the TexMatrixAttrib to the current node, leaving
// the others unchanged.
node()->set_attrib(new_state->get_attrib(TexMatrixAttrib::get_class_type()));
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_tex_transform
// Access: Published
// Description: Returns the texture matrix on the current node for the
// given stage, relative to the other node.
////////////////////////////////////////////////////////////////////
CPT(TransformState) NodePath::
get_tex_transform(const NodePath &other, TextureStage *stage) const {
nassertr(_error_type == ET_ok && other._error_type == ET_ok, TransformState::make_identity());
CPT(RenderState) state = get_state(other);
const RenderAttrib *attrib =
state->get_attrib(TexMatrixAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TexMatrixAttrib *tma = DCAST(TexMatrixAttrib, attrib);
return tma->get_transform(stage);
}
return TransformState::make_identity();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_tex_gen
// Access: Published
// Description: Enables automatic texture coordinate generation for
// the indicated texture stage.
////////////////////////////////////////////////////////////////////
void NodePath::
set_tex_gen(TextureStage *stage, TexGenAttrib::Mode mode, int priority) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TexGenAttrib::get_class_type());
CPT(TexGenAttrib) tga;
if (attrib != (const RenderAttrib *)NULL) {
priority = max(priority,
node()->get_state()->get_override(TextureAttrib::get_class_type()));
tga = DCAST(TexGenAttrib, attrib);
} else {
tga = DCAST(TexGenAttrib, TexGenAttrib::make());
}
node()->set_attrib(tga->add_stage(stage, mode), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_tex_gen
// Access: Published
// Description: Removes the texture coordinate generation mode from
// all texture stages on this node.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_tex_gen() {
nassertv_always(!is_empty());
node()->clear_attrib(TexGenAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_tex_gen
// Access: Published
// Description: Disables automatic texture coordinate generation for
// the indicated texture stage.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_tex_gen(TextureStage *stage) {
nassertv_always(!is_empty());
const RenderAttrib *attrib =
node()->get_attrib(TexGenAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
CPT(TexGenAttrib) tga = DCAST(TexGenAttrib, attrib);
tga = DCAST(TexGenAttrib, tga->remove_stage(stage));
if (tga->is_empty()) {
node()->clear_attrib(TexGenAttrib::get_class_type());
} else {
node()->set_attrib(tga);
}
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_tex_gen
// Access: Published
// Description: Returns true if there is a mode for automatic texture
// coordinate generation on the current node for the
// given stage.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_tex_gen(TextureStage *stage) const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(TexGenAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TexGenAttrib *tga = DCAST(TexGenAttrib, attrib);
return tga->has_stage(stage);
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_tex_gen
// Access: Published
// Description: Returns the texture coordinate generation mode for
// the given stage, or M_off if there is no explicit
// mode set for the given stage.
////////////////////////////////////////////////////////////////////
TexGenAttrib::Mode NodePath::
get_tex_gen(TextureStage *stage) const {
nassertr_always(!is_empty(), TexGenAttrib::M_off);
const RenderAttrib *attrib =
node()->get_attrib(TexGenAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TexGenAttrib *tga = DCAST(TexGenAttrib, attrib);
return tga->get_mode(stage);
}
return TexGenAttrib::M_off;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_tex_projector
// Access: Published
// Description: Establishes a TexProjectorEffect on this node, which
// can be used to establish projective texturing (but
// see also the NodePath::project_texture() convenience
// function), or it can be used to bind this node's
// texture transform to particular node's position in
// space, allowing a LerpInterval (for instance) to
// adjust this node's texture coordinates.
////////////////////////////////////////////////////////////////////
void NodePath::
set_tex_projector(TextureStage *stage, const NodePath &from, const NodePath &to) {
nassertv_always(!is_empty());
const RenderEffect *effect =
node()->get_effect(TexProjectorEffect::get_class_type());
CPT(TexProjectorEffect) tpe;
if (effect != (const RenderEffect *)NULL) {
tpe = DCAST(TexProjectorEffect, effect);
} else {
tpe = DCAST(TexProjectorEffect, TexProjectorEffect::make());
}
node()->set_effect(tpe->add_stage(stage, from, to));
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_tex_projector
// Access: Published
// Description: Removes the TexProjectorEffect for the indicated
// stage from this node.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_tex_projector(TextureStage *stage) {
nassertv_always(!is_empty());
const RenderEffect *effect =
node()->get_effect(TexProjectorEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
CPT(TexProjectorEffect) tpe = DCAST(TexProjectorEffect, effect);
tpe = DCAST(TexProjectorEffect, tpe->remove_stage(stage));
if (tpe->is_empty()) {
node()->clear_effect(TexProjectorEffect::get_class_type());
} else {
node()->set_effect(tpe);
}
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_tex_projector
// Access: Published
// Description: Removes the TexProjectorEffect for all stages from
// this node.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_tex_projector() {
nassertv_always(!is_empty());
node()->clear_effect(TexProjectorEffect::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_tex_projector
// Access: Published
// Description: Returns true if this node has a TexProjectorEffect
// for the indicated stage, false otherwise.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_tex_projector(TextureStage *stage) const {
nassertr_always(!is_empty(), false);
const RenderEffect *effect =
node()->get_effect(TexProjectorEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
const TexProjectorEffect *tpe = DCAST(TexProjectorEffect, effect);
return tpe->has_stage(stage);
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_tex_projector_from
// Access: Published
// Description: Returns the "from" node associated with the
// TexProjectorEffect on the indicated stage. The
// relative transform between the "from" and the "to"
// nodes is automatically applied to the texture
// transform each frame.
////////////////////////////////////////////////////////////////////
NodePath NodePath::
get_tex_projector_from(TextureStage *stage) const {
nassertr_always(!is_empty(), NodePath::fail());
const RenderEffect *effect =
node()->get_effect(TexProjectorEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
const TexProjectorEffect *tpe = DCAST(TexProjectorEffect, effect);
return tpe->get_from(stage);
}
return NodePath::not_found();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_tex_projector_to
// Access: Published
// Description: Returns the "to" node associated with the
// TexProjectorEffect on the indicated stage. The
// relative transform between the "from" and the "to"
// nodes is automatically applied to the texture
// transform each frame.
////////////////////////////////////////////////////////////////////
NodePath NodePath::
get_tex_projector_to(TextureStage *stage) const {
nassertr_always(!is_empty(), NodePath::fail());
const RenderEffect *effect =
node()->get_effect(TexProjectorEffect::get_class_type());
if (effect != (const RenderEffect *)NULL) {
const TexProjectorEffect *tpe = DCAST(TexProjectorEffect, effect);
return tpe->get_to(stage);
}
return NodePath::not_found();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::project_texture
// Access: Published
// Description: A convenience function to enable projective texturing
// at this node level and below, using the indicated
// NodePath (which should contain a LensNode) as the
// projector.
////////////////////////////////////////////////////////////////////
void NodePath::
project_texture(TextureStage *stage, Texture *tex, const NodePath &projector) {
nassertv(!projector.is_empty() && projector.node()->is_of_type(LensNode::get_class_type()));
set_texture(stage, tex);
set_tex_gen(stage, TexGenAttrib::M_world_position);
set_tex_projector(stage, NodePath(), projector);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_texture
// Access: Published
// Description: Returns the first texture found applied to geometry
// at this node or below that matches the indicated name
// (which may contain wildcards). Returns the texture
// if it is found, or NULL if it is not.
////////////////////////////////////////////////////////////////////
Texture *NodePath::
find_texture(const string &name) const {
GlobPattern glob(name);
return r_find_texture(node(), get_net_state(), glob);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_texture
// Access: Published
// Description: Returns the first texture found applied to geometry
// at this node or below that is assigned to the
// indicated texture stage. Returns the texture if it
// is found, or NULL if it is not.
////////////////////////////////////////////////////////////////////
Texture *NodePath::
find_texture(TextureStage *stage) const {
return r_find_texture(node(), stage);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_all_textures
// Access: Published
// Description: Returns a list of a textures applied to geometry at
// this node and below.
////////////////////////////////////////////////////////////////////
TextureCollection NodePath::
find_all_textures() const {
Textures textures;
r_find_all_textures(node(), get_net_state(), textures);
TextureCollection tc;
Textures::iterator ti;
for (ti = textures.begin(); ti != textures.end(); ++ti) {
tc.add_texture(*ti);
}
return tc;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_all_textures
// Access: Published
// Description: Returns a list of a textures applied to geometry at
// this node and below that match the indicated name
// (which may contain wildcard characters).
////////////////////////////////////////////////////////////////////
TextureCollection NodePath::
find_all_textures(const string &name) const {
Textures textures;
r_find_all_textures(node(), get_net_state(), textures);
GlobPattern glob(name);
TextureCollection tc;
Textures::iterator ti;
for (ti = textures.begin(); ti != textures.end(); ++ti) {
Texture *texture = (*ti);
if (glob.matches(texture->get_name())) {
tc.add_texture(texture);
}
}
return tc;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_all_textures
// Access: Published
// Description: Returns a list of a textures on geometry at
// this node and below that are assigned to the
// indicated texture stage.
////////////////////////////////////////////////////////////////////
TextureCollection NodePath::
find_all_textures(TextureStage *stage) const {
Textures textures;
r_find_all_textures(node(), stage, textures);
TextureCollection tc;
Textures::iterator ti;
for (ti = textures.begin(); ti != textures.end(); ++ti) {
Texture *texture = (*ti);
tc.add_texture(texture);
}
return tc;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_texture_stage
// Access: Published
// Description: Returns the first TextureStage found applied to
// geometry at this node or below that matches the
// indicated name (which may contain wildcards).
// Returns the TextureStage if it is found, or NULL if
// it is not.
////////////////////////////////////////////////////////////////////
TextureStage *NodePath::
find_texture_stage(const string &name) const {
GlobPattern glob(name);
return r_find_texture_stage(node(), get_net_state(), glob);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_all_texture_stages
// Access: Published
// Description: Returns a list of a TextureStages applied to geometry
// at this node and below.
////////////////////////////////////////////////////////////////////
TextureStageCollection NodePath::
find_all_texture_stages() const {
TextureStages texture_stages;
r_find_all_texture_stages(node(), get_net_state(), texture_stages);
TextureStageCollection tc;
TextureStages::iterator ti;
for (ti = texture_stages.begin(); ti != texture_stages.end(); ++ti) {
tc.add_texture_stage(*ti);
}
return tc;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::unify_texture_stages
// Access: Published
// Description: Searches through all TextureStages at this node and
// below. Any TextureStages that share the same name as
// the indicated TextureStage object are replaced with
// this object, thus ensuring that all geometry at this
// node and below with a particular TextureStage name is
// using the same TextureStage object.
////////////////////////////////////////////////////////////////////
void NodePath::
unify_texture_stages(TextureStage *stage) {
r_unify_texture_stages(node(), stage);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_all_texture_stages
// Access: Published
// Description: Returns a list of a TextureStages applied to geometry
// at this node and below that match the indicated name
// (which may contain wildcard characters).
////////////////////////////////////////////////////////////////////
TextureStageCollection NodePath::
find_all_texture_stages(const string &name) const {
TextureStages texture_stages;
r_find_all_texture_stages(node(), get_net_state(), texture_stages);
GlobPattern glob(name);
TextureStageCollection tc;
TextureStages::iterator ti;
for (ti = texture_stages.begin(); ti != texture_stages.end(); ++ti) {
TextureStage *texture_stage = (*ti);
if (glob.matches(texture_stage->get_name())) {
tc.add_texture_stage(texture_stage);
}
}
return tc;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_material
// Access: Published
// Description: Sets the geometry at this level and below to render
// using the indicated material.
//
// This operation copies the given material pointer. If
// the material structure is changed later, it must be
// reapplied via another call to set_material().
////////////////////////////////////////////////////////////////////
void NodePath::
set_material(Material *mat, int priority) {
nassertv_always(!is_empty());
nassertv(mat != NULL);
// We create a temporary Material pointer, a copy of the one we are
// given, to allow the user to monkey with the material and set it
// again later, with the desired effect. If we stored the user's
// pointer directly, it would be bad if the user later modified the
// values within the Material.
PT(Material) temp = new Material(*mat);
const Material *mp = MaterialPool::get_material(temp);
node()->set_attrib(MaterialAttrib::make(mp), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_material_off
// Access: Published
// Description: Sets the geometry at this level and below to render
// using no material. This is normally the default, but
// it may be useful to use this to contradict
// set_material() at a higher node level (or, with a
// priority, to override a set_material() at a lower
// level).
////////////////////////////////////////////////////////////////////
void NodePath::
set_material_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(MaterialAttrib::make_off(), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_material
// Access: Published
// Description: Completely removes any material adjustment that may
// have been set via set_material() from this particular
// node.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_material() {
nassertv_always(!is_empty());
node()->clear_attrib(MaterialAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_material
// Access: Published
// Description: Returns true if a material has been applied to this
// particular node via set_material(), false otherwise.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_material() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(MaterialAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const MaterialAttrib *ma = DCAST(MaterialAttrib, attrib);
return !ma->is_off();
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_material
// Access: Published
// Description: Returns the material that has been set on this
// particular node, or NULL if no material has been set.
// This is not necessarily the material that will be
// applied to the geometry at or below this level, as
// another material at a higher or lower level may
// override.
//
// This function returns a copy of the given material,
// to allow changes, if desired. Once changes are made,
// they should be reapplied via set_material().
////////////////////////////////////////////////////////////////////
PT(Material) NodePath::
get_material() const {
nassertr_always(!is_empty(), NULL);
const RenderAttrib *attrib =
node()->get_attrib(MaterialAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const MaterialAttrib *ma = DCAST(MaterialAttrib, attrib);
return new Material(*ma->get_material());
}
return NULL;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_fog
// Access: Published
// Description: Sets the geometry at this level and below to render
// using the indicated fog.
////////////////////////////////////////////////////////////////////
void NodePath::
set_fog(Fog *fog, int priority) {
nassertv_always(!is_empty());
node()->set_attrib(FogAttrib::make(fog), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_fog_off
// Access: Published
// Description: Sets the geometry at this level and below to render
// using no fog. This is normally the default, but
// it may be useful to use this to contradict
// set_fog() at a higher node level (or, with a
// priority, to override a set_fog() at a lower
// level).
////////////////////////////////////////////////////////////////////
void NodePath::
set_fog_off(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(FogAttrib::make_off(), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_fog
// Access: Published
// Description: Completely removes any fog adjustment that may
// have been set via set_fog() or set_fog_off()
// from this particular node. This allows whatever
// fogs might be otherwise affecting the geometry to
// show instead.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_fog() {
nassertv_always(!is_empty());
node()->clear_attrib(FogAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_fog
// Access: Published
// Description: Returns true if a fog has been applied to this
// particular node via set_fog(), false otherwise.
// This is not the same thing as asking whether the
// geometry at this node will be rendered with
// fog, as there may be a fog in effect from a higher or
// lower level.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_fog() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(FogAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const FogAttrib *fa = DCAST(FogAttrib, attrib);
return !fa->is_off();
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_fog_off
// Access: Published
// Description: Returns true if a fog has been specifically
// disabled on this particular node via
// set_fog_off(), false otherwise. This is not the
// same thing as asking whether the geometry at this
// node will be rendered unfogged, as there may be a
// fog in effect from a higher or lower level.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_fog_off() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(FogAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const FogAttrib *fa = DCAST(FogAttrib, attrib);
return fa->is_off();
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_fog
// Access: Published
// Description: Returns the fog that has been set on this
// particular node, or NULL if no fog has been set.
// This is not necessarily the fog that will be
// applied to the geometry at or below this level, as
// another fog at a higher or lower level may
// override.
////////////////////////////////////////////////////////////////////
Fog *NodePath::
get_fog() const {
nassertr_always(!is_empty(), NULL);
const RenderAttrib *attrib =
node()->get_attrib(FogAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const FogAttrib *fa = DCAST(FogAttrib, attrib);
return fa->get_fog();
}
return NULL;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_render_mode_wireframe
// Access: Published
// Description: Sets up the geometry at this level and below (unless
// overridden) to render in wireframe mode.
////////////////////////////////////////////////////////////////////
void NodePath::
set_render_mode_wireframe(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(RenderModeAttrib::make(RenderModeAttrib::M_wireframe), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_render_mode_filled
// Access: Published
// Description: Sets up the geometry at this level and below (unless
// overridden) to render in filled (i.e. not wireframe)
// mode.
////////////////////////////////////////////////////////////////////
void NodePath::
set_render_mode_filled(int priority) {
nassertv_always(!is_empty());
node()->set_attrib(RenderModeAttrib::make(RenderModeAttrib::M_filled), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_render_mode
// Access: Published
// Description: Completely removes any render mode adjustment that
// may have been set on this node via
// set_render_mode_wireframe() or
// set_render_mode_filled().
////////////////////////////////////////////////////////////////////
void NodePath::
clear_render_mode() {
nassertv_always(!is_empty());
node()->clear_attrib(RenderModeAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_render_mode
// Access: Published
// Description: Returns true if a render mode has been explicitly set
// on this particular node via
// set_render_mode_wireframe() or
// set_render_mode_filled(), false otherwise.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_render_mode() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(RenderModeAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_two_sided
// Access: Published
// Description: Specifically sets or disables two-sided rendering
// mode on this particular node. If no other nodes
// override, this will cause backfacing polygons to be
// drawn (in two-sided mode, true) or culled (in
// one-sided mode, false).
////////////////////////////////////////////////////////////////////
void NodePath::
set_two_sided(bool two_sided, int priority) {
nassertv_always(!is_empty());
CullFaceAttrib::Mode mode =
two_sided ?
CullFaceAttrib::M_cull_none :
CullFaceAttrib::M_cull_clockwise;
node()->set_attrib(CullFaceAttrib::make(mode), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_two_sided
// Access: Published
// Description: Completely removes any two-sided adjustment that
// may have been set on this node via set_two_sided().
// The geometry at this level and below will
// subsequently be rendered either two-sided or
// one-sided, according to whatever other nodes may have
// had set_two_sided() on it, or according to the
// initial state otherwise.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_two_sided() {
nassertv_always(!is_empty());
node()->clear_attrib(CullFaceAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_two_sided
// Access: Published
// Description: Returns true if a two-sided adjustment has been
// explicitly set on this particular node via
// set_two_sided(). If this returns true, then
// get_two_sided() may be called to determine which has
// been set.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_two_sided() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(CullFaceAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_two_sided
// Access: Published
// Description: Returns true if two-sided rendering has been
// specifically set on this node via set_two_sided(), or
// false if one-sided rendering has been specifically
// set, or if nothing has been specifically set. See
// also has_two_sided(). This does not necessarily
// imply that the geometry will or will not be rendered
// two-sided, as there may be other nodes that override.
////////////////////////////////////////////////////////////////////
bool NodePath::
get_two_sided() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(CullFaceAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const CullFaceAttrib *cfa = DCAST(CullFaceAttrib, attrib);
return (cfa->get_actual_mode() == CullFaceAttrib::M_cull_none);
}
return false;
}
#if 0
// programmers prolly wont need alpha-test control
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_alpha_test
// Access: Published
// Description: Specifically sets or disables the testing of the
// alpha buffer on this particular node. This is
// normally on in the 3-d scene graph and off in the 2-d
// scene graph; it should be on for rendering most 3-d
// objects properly.
////////////////////////////////////////////////////////////////////
void NodePath::
set_alpha_test(RenderAttrib::PandaCompareFunc alpha_test_mode,float reference_alpha, int priority) {
nassertv_always(!is_empty());
node()->set_attrib(AlphaTestAttrib::make(alpha_test_mode,reference_alpha), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_alpha_test
// Access: Published
// Description: Completely removes any alpha-test adjustment that
// may have been set on this node via set_alpha_test().
////////////////////////////////////////////////////////////////////
void NodePath::
clear_alpha_test() {
nassertv_always(!is_empty());
node()->clear_attrib(AlphaTestAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_alpha_test
// Access: Published
// Description: Returns true if a alpha-test adjustment has been
// explicitly set on this particular node via
// set_alpha_test(). If this returns true, then
// get_alpha_test() may be called to determine which has
// been set.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_alpha_test() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(AlphaTestAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_alpha_test
// Access: Published
// Description: Returns true if alpha-test rendering has been
// specifically set on this node via set_alpha_test(), or
// false if alpha-test rendering has been specifically
// disabled, or if nothing has been specifically set. See
// also has_alpha_test().
////////////////////////////////////////////////////////////////////
bool NodePath::
get_alpha_test() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(AlphaTestAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const AlphaTestAttrib *dta = DCAST(AlphaTestAttrib, attrib);
return (dta->get_mode() != AlphaTestAttrib::M_none);
}
return false;
}
#endif
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_depth_test
// Access: Published
// Description: Specifically sets or disables the testing of the
// depth buffer on this particular node. This is
// normally on in the 3-d scene graph and off in the 2-d
// scene graph; it should be on for rendering most 3-d
// objects properly.
////////////////////////////////////////////////////////////////////
void NodePath::
set_depth_test(bool depth_test, int priority) {
nassertv_always(!is_empty());
DepthTestAttrib::PandaCompareFunc mode =
depth_test ?
DepthTestAttrib::M_less :
DepthTestAttrib::M_none;
node()->set_attrib(DepthTestAttrib::make(mode), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_depth_test
// Access: Published
// Description: Completely removes any depth-test adjustment that
// may have been set on this node via set_depth_test().
////////////////////////////////////////////////////////////////////
void NodePath::
clear_depth_test() {
nassertv_always(!is_empty());
node()->clear_attrib(DepthTestAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_depth_test
// Access: Published
// Description: Returns true if a depth-test adjustment has been
// explicitly set on this particular node via
// set_depth_test(). If this returns true, then
// get_depth_test() may be called to determine which has
// been set.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_depth_test() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(DepthTestAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_depth_test
// Access: Published
// Description: Returns true if depth-test rendering has been
// specifically set on this node via set_depth_test(), or
// false if depth-test rendering has been specifically
// disabled, or if nothing has been specifically set. See
// also has_depth_test().
////////////////////////////////////////////////////////////////////
bool NodePath::
get_depth_test() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(DepthTestAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const DepthTestAttrib *dta = DCAST(DepthTestAttrib, attrib);
return (dta->get_mode() != DepthTestAttrib::M_none);
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_depth_write
// Access: Published
// Description: Specifically sets or disables the writing to the
// depth buffer on this particular node. This is
// normally on in the 3-d scene graph and off in the 2-d
// scene graph; it should be on for rendering most 3-d
// objects properly.
////////////////////////////////////////////////////////////////////
void NodePath::
set_depth_write(bool depth_write, int priority) {
nassertv_always(!is_empty());
DepthWriteAttrib::Mode mode =
depth_write ?
DepthWriteAttrib::M_on :
DepthWriteAttrib::M_off;
node()->set_attrib(DepthWriteAttrib::make(mode), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_depth_write
// Access: Published
// Description: Completely removes any depth-write adjustment that
// may have been set on this node via set_depth_write().
////////////////////////////////////////////////////////////////////
void NodePath::
clear_depth_write() {
nassertv_always(!is_empty());
node()->clear_attrib(DepthWriteAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_depth_write
// Access: Published
// Description: Returns true if a depth-write adjustment has been
// explicitly set on this particular node via
// set_depth_write(). If this returns true, then
// get_depth_write() may be called to determine which has
// been set.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_depth_write() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(DepthWriteAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_depth_write
// Access: Published
// Description: Returns true if depth-write rendering has been
// specifically set on this node via set_depth_write(), or
// false if depth-write rendering has been specifically
// disabled, or if nothing has been specifically set. See
// also has_depth_write().
////////////////////////////////////////////////////////////////////
bool NodePath::
get_depth_write() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(DepthWriteAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const DepthWriteAttrib *dta = DCAST(DepthWriteAttrib, attrib);
return (dta->get_mode() != DepthWriteAttrib::M_off);
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::do_billboard_axis
// Access: Published
// Description: Performs a billboard-type rotate to the indicated
// camera node, one time only, and leaves the object
// rotated. This is similar in principle to heads_up().
////////////////////////////////////////////////////////////////////
void NodePath::
do_billboard_axis(const NodePath &camera, float offset) {
nassertv_always(!is_empty());
NodePath parent = get_parent();
LMatrix4f rel_mat = camera.get_mat(parent);
LVector3f up = LVector3f::up();
LVector3f rel_pos = -rel_mat.get_row3(3);
LQuaternionf quat;
::heads_up(quat, rel_pos, up);
set_quat(quat);
// Also slide the geometry towards the camera according to the
// offset factor.
if (offset != 0.0f) {
LVector3f translate = rel_mat.get_row3(3);
translate.normalize();
translate *= offset;
set_pos(translate);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::do_billboard_point_eye
// Access: Published
// Description: Performs a billboard-type rotate to the indicated
// camera node, one time only, and leaves the object
// rotated. This is similar in principle to look_at(),
// although the point_eye billboard effect cannot be
// achieved using the ordinary look_at() call.
////////////////////////////////////////////////////////////////////
void NodePath::
do_billboard_point_eye(const NodePath &camera, float offset) {
nassertv_always(!is_empty());
NodePath parent = get_parent();
LMatrix4f rel_mat = camera.get_mat(parent);
LVector3f up = LVector3f::up() * rel_mat;
LVector3f rel_pos = LVector3f::forward() * rel_mat;
LQuaternionf quat;
::look_at(quat, rel_pos, up);
set_quat(quat);
// Also slide the geometry towards the camera according to the
// offset factor.
if (offset != 0.0f) {
LVector3f translate = rel_mat.get_row3(3);
translate.normalize();
translate *= offset;
set_pos(translate);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::do_billboard_point_world
// Access: Published
// Description: Performs a billboard-type rotate to the indicated
// camera node, one time only, and leaves the object
// rotated. This is similar in principle to look_at().
////////////////////////////////////////////////////////////////////
void NodePath::
do_billboard_point_world(const NodePath &camera, float offset) {
nassertv_always(!is_empty());
NodePath parent = get_parent();
LMatrix4f rel_mat = camera.get_mat(parent);
LVector3f up = LVector3f::up();
LVector3f rel_pos = -rel_mat.get_row3(3);
LQuaternionf quat;
::look_at(quat, rel_pos, up);
set_quat(quat);
// Also slide the geometry towards the camera according to the
// offset factor.
if (offset != 0.0f) {
LVector3f translate = rel_mat.get_row3(3);
translate.normalize();
translate *= offset;
set_pos(translate);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_billboard_axis
// Access: Published
// Description: Puts a billboard transition on the node such that it
// will rotate in two dimensions around the up axis,
// towards a specified "camera" instead of to the
// viewing camera.
////////////////////////////////////////////////////////////////////
void NodePath::
set_billboard_axis(const NodePath &camera, float offset) {
nassertv_always(!is_empty());
CPT(RenderEffect) billboard = BillboardEffect::make
(LVector3f::up(), false, true,
offset, camera, LPoint3f(0.0f, 0.0f, 0.0f));
node()->set_effect(billboard);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_billboard_point_eye
// Access: Published
// Description: Puts a billboard transition on the node such that it
// will rotate in three dimensions about the origin,
// keeping its up vector oriented to the top of the
// camera, towards a specified "camera" instead of to
// the viewing camera.
////////////////////////////////////////////////////////////////////
void NodePath::
set_billboard_point_eye(const NodePath &camera, float offset) {
nassertv_always(!is_empty());
CPT(RenderEffect) billboard = BillboardEffect::make
(LVector3f::up(), true, false,
offset, camera, LPoint3f(0.0f, 0.0f, 0.0f));
node()->set_effect(billboard);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_billboard_point_world
// Access: Published
// Description: Puts a billboard transition on the node such that it
// will rotate in three dimensions about the origin,
// keeping its up vector oriented to the sky, towards a
// specified "camera" instead of to the viewing camera.
////////////////////////////////////////////////////////////////////
void NodePath::
set_billboard_point_world(const NodePath &camera, float offset) {
nassertv_always(!is_empty());
CPT(RenderEffect) billboard = BillboardEffect::make
(LVector3f::up(), false, false,
offset, camera, LPoint3f(0.0f, 0.0f, 0.0f));
node()->set_effect(billboard);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_billboard
// Access: Published
// Description: Removes any billboard effect from the node.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_billboard() {
nassertv_always(!is_empty());
node()->clear_effect(BillboardEffect::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_billboard
// Access: Published
// Description: Returns true if there is any billboard effect on
// the node.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_billboard() const {
nassertr_always(!is_empty(), false);
return node()->has_effect(BillboardEffect::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_compass
// Access: Published
// Description: Puts a compass effect on the node, so that it will
// retain a fixed rotation relative to the reference
// node (or render if the reference node is empty)
// regardless of the transforms above it.
////////////////////////////////////////////////////////////////////
void NodePath::
set_compass(const NodePath &reference) {
nassertv_always(!is_empty());
node()->set_effect(CompassEffect::make(reference));
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_compass
// Access: Published
// Description: Removes any compass effect from the node.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_compass() {
nassertv_always(!is_empty());
node()->clear_effect(CompassEffect::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_compass
// Access: Published
// Description: Returns true if there is any compass effect on
// the node.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_compass() const {
nassertr_always(!is_empty(), false);
return node()->has_effect(CompassEffect::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::set_transparency
// Access: Published
// Description: Specifically sets or disables transparent rendering
// mode on this particular node. If no other nodes
// override, this will cause items with a non-1 value
// for alpha color to be rendered partially transparent.
////////////////////////////////////////////////////////////////////
void NodePath::
set_transparency(bool transparency, int priority) {
nassertv_always(!is_empty());
TransparencyAttrib::Mode mode =
transparency ?
TransparencyAttrib::M_alpha :
TransparencyAttrib::M_none;
node()->set_attrib(TransparencyAttrib::make(mode), priority);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::clear_transparency
// Access: Published
// Description: Completely removes any transparency adjustment that
// may have been set on this node via set_transparency().
// The geometry at this level and below will
// subsequently be rendered either transparent or not,
// to whatever other nodes may have had
// set_transparency() on them.
////////////////////////////////////////////////////////////////////
void NodePath::
clear_transparency() {
nassertv_always(!is_empty());
node()->clear_attrib(TransparencyAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::has_transparency
// Access: Published
// Description: Returns true if a transparent-rendering adjustment
// has been explicitly set on this particular node via
// set_transparency(). If this returns true, then
// get_transparency() may be called to determine whether
// transparency has been explicitly enabled or
// explicitly disabled for this node.
////////////////////////////////////////////////////////////////////
bool NodePath::
has_transparency() const {
nassertr_always(!is_empty(), false);
return node()->has_attrib(TransparencyAttrib::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_transparency
// Access: Published
// Description: Returns true if transparent rendering has been
// specifically set on this node via set_transparency(), or
// false if nontransparent rendering has been specifically
// set, or if nothing has been specifically set. See
// also has_transparency(). This does not necessarily
// imply that the geometry will or will not be rendered
// transparent, as there may be other nodes that override.
////////////////////////////////////////////////////////////////////
bool NodePath::
get_transparency() const {
nassertr_always(!is_empty(), false);
const RenderAttrib *attrib =
node()->get_attrib(TransparencyAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TransparencyAttrib *ta = DCAST(TransparencyAttrib, attrib);
return (ta->get_mode() != TransparencyAttrib::M_none);
}
return false;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_hidden_ancestor
// Access: Published
// Description: Returns the NodePath at or above the referenced node
// that is hidden to the indicated camera(s), or an
// empty NodePath if no ancestor of the referenced node
// is hidden (and the node should be visible).
////////////////////////////////////////////////////////////////////
NodePath NodePath::
get_hidden_ancestor(DrawMask camera_mask) const {
NodePathComponent *comp;
for (comp = _head;
comp != (NodePathComponent *)NULL;
comp = comp->get_next()) {
PandaNode *node = comp->get_node();
if ((node->get_draw_mask() & camera_mask).is_zero()) {
NodePath result;
result._head = comp;
return result;
}
}
return not_found();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::stash
// Access: Published
// Description: Removes the referenced node (and the entire subgraph
// below this node) from the scene graph in any normal
// sense. The node will no longer be visible and is not
// tested for collisions; furthermore, no normal scene
// graph traversal will visit the node. The node's
// bounding volume no longer contributes to its parent's
// bounding volume.
//
// A stashed node cannot be located by a normal find()
// operation (although a special find string can still
// retrieve it).
////////////////////////////////////////////////////////////////////
void NodePath::
stash(int sort) {
nassertv_always(!is_singleton() && !is_empty());
nassertv(verify_complete());
bool reparented = PandaNode::reparent(_head->get_next(), _head, sort, true);
nassertv(reparented);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::unstash
// Access: Published
// Description: Undoes the effect of a previous stash() on this
// node: makes the referenced node (and the entire
// subgraph below this node) once again part of the
// scene graph.
////////////////////////////////////////////////////////////////////
void NodePath::
unstash(int sort) {
nassertv_always(!is_singleton() && !is_empty());
nassertv(verify_complete());
bool reparented = PandaNode::reparent(_head->get_next(), _head, sort, false);
nassertv(reparented);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::unstash_all
// Access: Published
// Description: Unstashes this node and all stashed child nodes.
////////////////////////////////////////////////////////////////////
void NodePath::
unstash_all() {
NodePathCollection stashed_descendents = find_all_matches("**/@@*");
stashed_descendents.unstash();
unstash();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_stashed_ancestor
// Access: Published
// Description: Returns the NodePath at or above the referenced node
// that is stashed, or an empty NodePath if no ancestor
// of the referenced node is stashed (and the node should
// be visible).
////////////////////////////////////////////////////////////////////
NodePath NodePath::
get_stashed_ancestor() const {
NodePathComponent *comp = _head;
if (comp != (NodePathComponent *)NULL) {
NodePathComponent *next = comp->get_next();
while (next != (NodePathComponent *)NULL) {
PandaNode *node = comp->get_node();
PandaNode *parent_node = next->get_node();
if (parent_node->find_stashed(node) >= 0) {
NodePath result;
result._head = comp;
return result;
}
comp = next;
next = next->get_next();
}
}
return not_found();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::compare_to
// Access: Published
// Description: Returns a number less than zero if this NodePath
// sorts before the other one, greater than zero if it
// sorts after, or zero if they are equivalent.
//
// Two NodePaths are considered equivalent if they
// consist of exactly the same list of nodes in the same
// order. Otherwise, they are different; different
// NodePaths will be ranked in a consistent but
// undefined ordering; the ordering is useful only for
// placing the NodePaths in a sorted container like an
// STL set.
////////////////////////////////////////////////////////////////////
int NodePath::
compare_to(const NodePath &other) const {
// Nowadays, the NodePathComponents at the head are pointerwise
// equivalent if and only if the NodePaths are equivalent. So we
// only have to compare pointers.
if (_head != other._head) {
return _head < other._head ? -1 : 1;
}
return 0;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::verify_complete
// Access: Published
// Description: Returns true if all of the nodes described in the
// NodePath are connected, or false otherwise.
////////////////////////////////////////////////////////////////////
bool NodePath::
verify_complete() const {
if (is_empty()) {
return true;
}
const NodePathComponent *comp = _head;
nassertr(comp != (const NodePathComponent *)NULL, false);
PandaNode *node = comp->get_node();
nassertr(node != (const PandaNode *)NULL, false);
int length = comp->get_length();
comp = comp->get_next();
length--;
while (comp != (const NodePathComponent *)NULL) {
PandaNode *next_node = comp->get_node();
nassertr(next_node != (const PandaNode *)NULL, false);
if (node->find_parent(next_node) < 0) {
pgraph_cat.warning()
<< *this << " is incomplete; " << *node << " is not a child of "
<< *next_node << "\n";
return false;
}
if (comp->get_length() != length) {
pgraph_cat.warning()
<< *this << " is incomplete; length at " << *next_node
<< " indicates " << comp->get_length() << " while length at "
<< *node << " indicates " << length << "\n";
return false;
}
node = next_node;
comp = comp->get_next();
length--;
}
return true;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::prepare_scene
// Access: Published
// Description: Walks through the scene graph beginning at the bottom
// node, and does whatever initialization is required to
// render the scene properly with the indicated GSG. It
// is not strictly necessary to call this, since the GSG
// will initialize itself when the scene is rendered,
// but this may take some of the overhead away from that
// process.
//
// In particular, this will ensure that textures within
// the scene are loaded in texture memory, and display
// lists are built up from static geometry.
////////////////////////////////////////////////////////////////////
void NodePath::
prepare_scene(GraphicsStateGuardianBase *gsg) {
nassertv_always(!is_empty());
PreparedGraphicsObjects *prepared_objects = gsg->get_prepared_objects();
CPT(RenderState) net_state = get_net_state();
r_prepare_scene(node(), net_state, prepared_objects);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::show_bounds
// Access: Published
// Description: Causes the bounding volume of the bottom node and all
// of its descendants (that is, the bounding volume
// associated with the the bottom arc) to be rendered,
// if possible. The rendering method is less than
// optimal; this is intended primarily for debugging.
////////////////////////////////////////////////////////////////////
void NodePath::
show_bounds() {
nassertv_always(!is_empty());
node()->set_effect(ShowBoundsEffect::make());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::hide_bounds
// Access: Published
// Description: Stops the rendering of the bounding volume begun with
// show_bounds().
////////////////////////////////////////////////////////////////////
void NodePath::
hide_bounds() {
nassertv_always(!is_empty());
node()->clear_effect(ShowBoundsEffect::get_class_type());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::get_bounds
// Access: Published
// Description: Returns a newly-allocated bounding volume containing
// the bottom node and all of its descendants. This is
// the bounding volume on the bottom arc, converted to
// the local coordinate space of the node.
////////////////////////////////////////////////////////////////////
PT(BoundingVolume) NodePath::
get_bounds() const {
nassertr_always(!is_empty(), new BoundingSphere);
return node()->get_bound().make_copy();
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::force_recompute_bounds
// Access: Published
// Description: Forces the recomputing of all the bounding volumes at
// every node in the subgraph beginning at this node and
// below.
//
// This should not normally need to be called, since the
// bounding volumes are supposed to be recomputed
// automatically when necessary. It may be useful when
// debugging, to verify that the bounding volumes have
// not become inadvertently stale; it may also be useful
// to force animated characters to update their bounding
// volumes (which does not presently happen
// automatically).
////////////////////////////////////////////////////////////////////
void NodePath::
force_recompute_bounds() {
nassertv_always(!is_empty());
r_force_recompute_bounds(node());
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::write_bounds
// Access: Published
// Description: Writes a description of the bounding volume
// containing the bottom node and all of its descendants
// to the indicated output stream.
////////////////////////////////////////////////////////////////////
void NodePath::
write_bounds(ostream &out) const {
get_bounds()->write(out);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::calc_tight_bounds
// Access: Published
// Description: Calculates the minimum and maximum vertices of all
// Geoms at this NodePath's bottom node and below. This
// is a tight bounding box; it will generally be tighter
// than the bounding volume returned by get_bounds()
// (but it is more expensive to compute).
//
// The return value is true if any points are within the
// bounding volume, or false if none are.
////////////////////////////////////////////////////////////////////
bool NodePath::
calc_tight_bounds(LPoint3f &min_point, LPoint3f &max_point) {
min_point.set(0.0f, 0.0f, 0.0f);
max_point.set(0.0f, 0.0f, 0.0f);
nassertr_always(!is_empty(), false);
bool found_any = false;
node()->calc_tight_bounds(min_point, max_point, found_any,
TransformState::make_identity());
return found_any;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::flatten_light
// Access: Published
// Description: Lightly flattens out the hierarchy below this node by
// applying transforms, colors, and texture matrices
// from the arcs onto the vertices, but does not remove
// any nodes.
//
// This can result in improved rendering performance
// because there will be fewer transforms in the
// resulting scene graph, but the number of nodes will
// remain the same.
//
// Particularly, any NodePaths that reference nodes
// within this hierarchy will not be damaged. However,
// since this operation will remove transforms from the
// scene graph, it may be dangerous to apply to arcs
// where you expect to dynamically modify the transform,
// or where you expect the geometry to remain in a
// particular local coordinate system.
//
// The return value is always 0, since flatten_light
// does not remove any arcs.
////////////////////////////////////////////////////////////////////
int NodePath::
flatten_light() {
nassertr_always(!is_empty(), 0);
SceneGraphReducer gr;
gr.apply_attribs(node());
return 0;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::flatten_medium
// Access: Published
// Description: A more thorough flattening than flatten_light(), this
// first applies all the transforms, colors, and texture
// matrices from the arcs onto the vertices, and then
// removes unneeded grouping nodes--nodes that have
// exactly one child, for instance, but have no special
// properties in themselves.
//
// This results in improved perforamance over
// flatten_light() because the number of nodes in the
// scene graph is reduced.
//
// If max_children is specified, it represents the
// maximum number of children a node is allowed to have
// and still be flattened. Normally, this is 1; we
// don't typically want to flatten a node that has
// multiple children. However, sometimes this may be
// desirable; set this parameter to control the limit.
// If this is set to -1, there is no limit.
//
// The return value is the number of arcs removed.
////////////////////////////////////////////////////////////////////
int NodePath::
flatten_medium() {
nassertr_always(!is_empty(), 0);
SceneGraphReducer gr;
gr.apply_attribs(node());
int num_removed = gr.flatten(node(), 0);
return num_removed;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::flatten_strong
// Access: Published
// Description: The strongest possible flattening. This first
// applies all of the transforms to the vertices, as in
// flatten_medium(), but then it will combine sibling
// nodes together when possible, in addition to removing
// unnecessary parent-child nodes. This can result in
// substantially fewer nodes, but any nicely-grouped
// hierachical bounding volumes may be lost.
//
// It is generally a good idea to apply this kind of
// flattening only to nodes that will be culled largely
// as a single unit, like a car. Applying this to an
// entire scene may result in overall poorer performance
// because of less-effective culling.
////////////////////////////////////////////////////////////////////
int NodePath::
flatten_strong() {
nassertr_always(!is_empty(), 0);
SceneGraphReducer gr;
gr.apply_attribs(node());
int num_removed = gr.flatten(node(), ~0);
return num_removed;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_net_tag
// Access: Published
// Description: Returns the lowest ancestor of this node that
// contains a tag definition with the indicated key, if
// any, or an empty NodePath if no ancestor of this node
// contains this tag definition. See set_tag().
////////////////////////////////////////////////////////////////////
NodePath NodePath::
find_net_tag(const string &key) const {
if (is_empty()) {
return NodePath::not_found();
}
if (has_tag(key)) {
return *this;
}
return get_parent().find_net_tag(key);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::write_bam_file
// Access: Published
// Description: Writes the contents of this node and below out to a
// bam file with the indicated filename. This file may
// then be read in again, as is, at some later point.
// Returns true if successful, false on some kind of
// error.
////////////////////////////////////////////////////////////////////
bool NodePath::
write_bam_file(const string &filename) const {
nassertr_always(!is_empty(), false);
BamFile bam_file;
bool okflag = false;
if (bam_file.open_write(filename)) {
if (bam_file.write_object(node())) {
okflag = true;
}
bam_file.close();
}
return okflag;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_common_ancestor
// Access: Private, Static
// Description: Walks up from both NodePaths to find the first node
// that both have in common, if any. Fills a_count and
// b_count with the number of nodes below the common
// node in each path.
//
// The return value is the NodePathComponent of the node
// they have in common, or NULL if they have nothing in
// common.
////////////////////////////////////////////////////////////////////
NodePathComponent *NodePath::
find_common_ancestor(const NodePath &a, const NodePath &b,
int &a_count, int &b_count) {
nassertr(!a.is_empty() && !b.is_empty(), NULL);
NodePathComponent *ac = a._head;
NodePathComponent *bc = b._head;
a_count = 0;
b_count = 0;
// Shorten up the longer one until they are the same length.
while (ac->get_length() > bc->get_length()) {
nassertr(ac != (NodePathComponent *)NULL, NULL);
ac = ac->get_next();
a_count++;
}
while (bc->get_length() > ac->get_length()) {
nassertr(bc != (NodePathComponent *)NULL, NULL);
bc = bc->get_next();
b_count++;
}
// Now shorten them both up until we reach the same component.
while (ac != bc) {
// These shouldn't go to NULL unless they both go there together.
nassertr(ac != (NodePathComponent *)NULL, NULL);
nassertr(bc != (NodePathComponent *)NULL, NULL);
ac = ac->get_next();
a_count++;
bc = bc->get_next();
b_count++;
}
return ac;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_get_net_state
// Access: Private
// Description: Recursively determines the net state changes to the
// indicated component node from the root of the graph.
////////////////////////////////////////////////////////////////////
CPT(RenderState) NodePath::
r_get_net_state(NodePathComponent *comp) const {
if (comp == (NodePathComponent *)NULL) {
return RenderState::make_empty();
} else {
CPT(RenderState) state = comp->get_node()->get_state();
return r_get_net_state(comp->get_next())->compose(state);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_get_partial_state
// Access: Private
// Description: Recursively determines the net state changes to the
// indicated component node from the nth node above it.
// If n exceeds the length of the path, this returns the
// net transform from the root of the graph.
////////////////////////////////////////////////////////////////////
CPT(RenderState) NodePath::
r_get_partial_state(NodePathComponent *comp, int n) const {
if (n == 0 || comp == (NodePathComponent *)NULL) {
return RenderState::make_empty();
} else {
CPT(RenderState) state = comp->get_node()->get_state();
return r_get_partial_state(comp->get_next(), n - 1)->compose(state);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_get_net_transform
// Access: Private
// Description: Recursively determines the net transform to the
// indicated component node from the root of the graph.
////////////////////////////////////////////////////////////////////
CPT(TransformState) NodePath::
r_get_net_transform(NodePathComponent *comp) const {
if (comp == (NodePathComponent *)NULL) {
return TransformState::make_identity();
} else {
CPT(TransformState) transform = comp->get_node()->get_transform();
return r_get_net_transform(comp->get_next())->compose(transform);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_get_partial_transform
// Access: Private
// Description: Recursively determines the net transform to the
// indicated component node from the nth node above it.
// If n exceeds the length of the path, this returns the
// net transform from the root of the graph.
////////////////////////////////////////////////////////////////////
CPT(TransformState) NodePath::
r_get_partial_transform(NodePathComponent *comp, int n) const {
if (n == 0 || comp == (NodePathComponent *)NULL) {
return TransformState::make_identity();
} else {
CPT(TransformState) transform = comp->get_node()->get_transform();
return r_get_partial_transform(comp->get_next(), n - 1)->compose(transform);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_get_net_prev_transform
// Access: Private
// Description: Recursively determines the net "previous" transform
// to the indicated component node from the root of the
// graph.
////////////////////////////////////////////////////////////////////
CPT(TransformState) NodePath::
r_get_net_prev_transform(NodePathComponent *comp) const {
if (comp == (NodePathComponent *)NULL) {
return TransformState::make_identity();
} else {
CPT(TransformState) transform = comp->get_node()->get_prev_transform();
return r_get_net_prev_transform(comp->get_next())->compose(transform);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_get_partial_prev_transform
// Access: Private
// Description: Recursively determines the net "previous" transform
// to the indicated component node from the nth node
// above it. If n exceeds the length of the path, this
// returns the net previous transform from the root of
// the graph.
////////////////////////////////////////////////////////////////////
CPT(TransformState) NodePath::
r_get_partial_prev_transform(NodePathComponent *comp, int n) const {
if (n == 0 || comp == (NodePathComponent *)NULL) {
return TransformState::make_identity();
} else {
CPT(TransformState) transform = comp->get_node()->get_prev_transform();
return r_get_partial_prev_transform(comp->get_next(), n - 1)->compose(transform);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_matches
// Access: Private
// Description: Finds up to max_matches matches against the given
// path string from this node and deeper. The
// max_matches count indicates the maximum number of
// matches to return, or -1 not to limit the number
// returned.
////////////////////////////////////////////////////////////////////
void NodePath::
find_matches(NodePathCollection &result, const string &path,
int max_matches) const {
if (is_empty()) {
pgraph_cat.warning()
<< "Attempt to extend an empty NodePath by '" << path
<< "'.\n";
return;
}
FindApproxPath approx_path;
if (approx_path.add_string(path)) {
find_matches(result, approx_path, max_matches);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_matches
// Access: Private
// Description: Finds up to max_matches matches against the given
// approx_path from this node and deeper. The
// max_matches count indicates the maximum number of
// matches to return, or -1 not to limit the number
// returned.
////////////////////////////////////////////////////////////////////
void NodePath::
find_matches(NodePathCollection &result, FindApproxPath &approx_path,
int max_matches) const {
if (is_empty()) {
pgraph_cat.warning()
<< "Attempt to extend an empty NodePath by: " << approx_path << ".\n";
return;
}
// We start with just one entry on the level.
FindApproxLevelEntry *level =
new FindApproxLevelEntry(WorkingNodePath(*this), approx_path);
nassertv(level->_node_path.is_valid());
find_matches(result, level, max_matches);
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::find_matches
// Access: Private
// Description: The fundamental implementation of find_matches(),
// given a starting level (a linked list of
// FindApproxLevelEntry objects).
////////////////////////////////////////////////////////////////////
void NodePath::
find_matches(NodePathCollection &result, FindApproxLevelEntry *level,
int max_matches) const {
int num_levels_remaining = _max_search_depth;
FindApproxLevelEntry *deleted_entries = NULL;
while (num_levels_remaining > 0 && level != NULL) {
if (pgraph_cat.is_debug()) {
pgraph_cat.debug()
<< "find_matches pass: " << result << ", "
<< max_matches << ", " << num_levels_remaining << "\n";
level->write_level(pgraph_cat.debug(false), 4);
}
num_levels_remaining--;
FindApproxLevelEntry *next_level = NULL;
// For each node in the current level, build up the set of possible
// matches in the next level.
FindApproxLevelEntry *entry = level;
while (entry != (FindApproxLevelEntry *)NULL) {
if (entry->consider_node(result, next_level, max_matches, 0)) {
// If we found the requisite number of matches, we can stop.
// Delete all remaining entries and return immediately.
while (entry != (FindApproxLevelEntry *)NULL) {
FindApproxLevelEntry *next = entry->_next;
delete entry;
entry = next;
}
while (next_level != (FindApproxLevelEntry *)NULL) {
FindApproxLevelEntry *next = next_level->_next;
delete next_level;
next_level = next;
}
while (deleted_entries != (FindApproxLevelEntry *)NULL) {
FindApproxLevelEntry *next = deleted_entries->_next;
delete deleted_entries;
deleted_entries = next;
}
return;
}
// Move the entry to the delete chain so we can delete it before
// we return from this method. (We can't delete it immediately,
// because there might be WorkingNodePaths in the next_level
// that reference the WorkingNodePath object within the entry.)
FindApproxLevelEntry *next = entry->_next;
entry->_next = deleted_entries;
deleted_entries = entry;
entry = next;
}
// Make sure the remaining entries from this level are added to
// the delete chain.
while (entry != (FindApproxLevelEntry *)NULL) {
FindApproxLevelEntry *next = entry->_next;
entry->_next = deleted_entries;
deleted_entries = entry;
entry = next;
}
level = next_level;
}
// Now it's safe to delete all entries on the delete chain.
while (deleted_entries != (FindApproxLevelEntry *)NULL) {
FindApproxLevelEntry *next = deleted_entries->_next;
delete deleted_entries;
deleted_entries = next;
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_adjust_all_priorities
// Access: Private
// Description: The recursive implementation of
// adjust_all_priorities(). This walks through the
// subgraph defined by the indicated node and below.
////////////////////////////////////////////////////////////////////
void NodePath::
r_adjust_all_priorities(PandaNode *node, int adjustment) {
node->set_state(node->get_state()->adjust_all_priorities(adjustment));
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
gnode->set_geom_state(i, gnode->get_geom_state(i)->adjust_all_priorities(adjustment));
}
}
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
r_adjust_all_priorities(cr.get_child(i), adjustment);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_force_recompute_bounds
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
void NodePath::
r_force_recompute_bounds(PandaNode *node) {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
const Geom *geom = gnode->get_geom(i);
// It's ok to cast away the const modifier on this Geom pointer,
// since marking the bounding volume stale doesn't really change
// the Geom in any substantial way.
((Geom *)geom)->mark_bound_stale();
}
}
node->mark_bound_stale();
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
r_force_recompute_bounds(cr.get_child(i));
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_find_texture
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
Texture * NodePath::
r_find_texture(PandaNode *node, const RenderState *state,
const GlobPattern &glob) const {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_R(gnode, node, NULL);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state =
state->compose(gnode->get_geom_state(i));
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
for (int i = 0; i < ta->get_num_on_stages(); i++) {
Texture *texture = ta->get_on_texture(ta->get_on_stage(i));
if (texture != (Texture *)NULL) {
if (glob.matches(texture->get_name())) {
return texture;
}
}
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
CPT(RenderState) next_state = state->compose(child->get_state());
Texture *result = r_find_texture(child, next_state, glob);
if (result != (Texture *)NULL) {
return result;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_find_all_textures
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
void NodePath::
r_find_all_textures(PandaNode *node, const RenderState *state,
NodePath::Textures &textures) const {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state =
state->compose(gnode->get_geom_state(i));
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
for (int i = 0; i < ta->get_num_on_stages(); i++) {
Texture *texture = ta->get_on_texture(ta->get_on_stage(i));
if (texture != (Texture *)NULL) {
textures.insert(texture);
}
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
CPT(RenderState) next_state = state->compose(child->get_state());
r_find_all_textures(child, next_state, textures);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_find_texture
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
Texture * NodePath::
r_find_texture(PandaNode *node, TextureStage *stage) const {
// Look for a TextureAttrib on the node.
const RenderAttrib *attrib =
node->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
if (ta->has_on_stage(stage)) {
return ta->get_on_texture(stage);
}
}
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_R(gnode, node, NULL);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state = gnode->get_geom_state(i);
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
if (ta->has_on_stage(stage)) {
return ta->get_on_texture(stage);
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
Texture *result = r_find_texture(child, stage);
if (result != (Texture *)NULL) {
return result;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_find_all_textures
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
void NodePath::
r_find_all_textures(PandaNode *node, TextureStage *stage,
NodePath::Textures &textures) const {
// Look for a TextureAttrib on the node.
const RenderAttrib *attrib =
node->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
if (ta->has_on_stage(stage)) {
textures.insert(ta->get_on_texture(stage));
}
}
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state = gnode->get_geom_state(i);
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
if (ta->has_on_stage(stage)) {
textures.insert(ta->get_on_texture(stage));
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
r_find_all_textures(child, stage, textures);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_find_texture_stage
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
TextureStage * NodePath::
r_find_texture_stage(PandaNode *node, const RenderState *state,
const GlobPattern &glob) const {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_R(gnode, node, NULL);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state =
state->compose(gnode->get_geom_state(i));
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
for (int i = 0; i < ta->get_num_on_stages(); i++) {
TextureStage *texture_stage = ta->get_on_stage(i);
if (texture_stage != (TextureStage *)NULL) {
if (glob.matches(texture_stage->get_name())) {
return texture_stage;
}
}
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
CPT(RenderState) next_state = state->compose(child->get_state());
TextureStage *result = r_find_texture_stage(child, next_state, glob);
if (result != (TextureStage *)NULL) {
return result;
}
}
return NULL;
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_find_all_texture_stages
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
void NodePath::
r_find_all_texture_stages(PandaNode *node, const RenderState *state,
NodePath::TextureStages &texture_stages) const {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state =
state->compose(gnode->get_geom_state(i));
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
geom_state->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
for (int i = 0; i < ta->get_num_on_stages(); i++) {
TextureStage *texture_stage = ta->get_on_stage(i);
if (texture_stage != (TextureStage *)NULL) {
texture_stages.insert(texture_stage);
}
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
CPT(RenderState) next_state = state->compose(child->get_state());
r_find_all_texture_stages(child, next_state, texture_stages);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_unify_texture_stages
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
void NodePath::
r_unify_texture_stages(PandaNode *node, TextureStage *stage) {
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
node->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
CPT(RenderAttrib) new_attrib = ta->unify_texture_stages(stage);
if (new_attrib != ta) {
node->set_attrib(new_attrib);
}
}
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) state = gnode->get_geom_state(i);
// Look for a TextureAttrib on the state.
const RenderAttrib *attrib =
state->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta = DCAST(TextureAttrib, attrib);
CPT(RenderAttrib) new_attrib = ta->unify_texture_stages(stage);
if (new_attrib != ta) {
CPT(RenderState) new_state = state->add_attrib(new_attrib);
gnode->set_geom_state(i, new_state);
}
}
}
}
// Now consider children.
PandaNode::Children cr = node->get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = cr.get_child(i);
r_unify_texture_stages(child, stage);
}
}
////////////////////////////////////////////////////////////////////
// Function: NodePath::r_prepare_scene
// Access: Private
// Description: The recursive implementation of prepare_scene.
////////////////////////////////////////////////////////////////////
void NodePath::
r_prepare_scene(PandaNode *node, const RenderState *state,
PreparedGraphicsObjects *prepared_objects) {
if (node->is_geom_node()) {
GeomNode *gnode;
DCAST_INTO_V(gnode, node);
/*
Not implemented yet in pgraph. Maybe we don't need this anyway.
if (retained_mode) {
gnode->prepare(gsg);
}
*/
int num_geoms = gnode->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
CPT(RenderState) geom_state = state->compose(gnode->get_geom_state(i));
const RenderAttrib *attrib =
geom_state->get_attrib(TextureAttrib::get_class_type());
if (attrib != (const RenderAttrib *)NULL) {
const TextureAttrib *ta;
DCAST_INTO_V(ta, attrib);
Texture *texture = ta->get_texture();
if (texture != (Texture *)NULL) {
texture->prepare(prepared_objects);
}
}
}
}
int num_children = node->get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = node->get_child(i);
CPT(RenderState) child_state = state->compose(child->get_state());
r_prepare_scene(child, child_state, prepared_objects);
}
}