panda3d/panda/src/egg2pg/eggLoader.cxx

2634 lines
84 KiB
C++

// Filename: EggLoader.cxx
// Created by: drose (26Feb02)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://www.panda3d.org/license.txt .
//
// To contact the maintainers of this program write to
// panda3d@yahoogroups.com .
//
////////////////////////////////////////////////////////////////////
#include "pandabase.h"
#include "eggLoader.h"
#include "config_egg2pg.h"
#include "nodePath.h"
#include "renderState.h"
#include "transformState.h"
#include "textureAttrib.h"
#include "textureApplyAttrib.h"
#include "texturePool.h"
#include "billboardEffect.h"
#include "cullFaceAttrib.h"
#include "cullBinAttrib.h"
#include "transparencyAttrib.h"
#include "decalEffect.h"
#include "depthTestAttrib.h"
#include "depthWriteAttrib.h"
#include "materialAttrib.h"
#include "texMatrixAttrib.h"
#include "colorAttrib.h"
#include "materialPool.h"
#include "geomNode.h"
#include "sequenceNode.h"
#include "switchNode.h"
#include "lodNode.h"
#include "modelNode.h"
#include "modelRoot.h"
#include "string_utils.h"
#include "eggPrimitive.h"
#include "eggPoint.h"
#include "eggTextureCollection.h"
#include "eggNurbsCurve.h"
#include "eggNurbsSurface.h"
#include "eggGroupNode.h"
#include "eggGroup.h"
#include "eggPolygon.h"
#include "eggBin.h"
#include "eggTable.h"
#include "eggBinner.h"
#include "eggVertexPool.h"
#include "characterMaker.h"
#include "character.h"
#include "animBundleMaker.h"
#include "animBundleNode.h"
#include "selectiveChildNode.h"
#include "collisionNode.h"
#include "collisionSphere.h"
#include "collisionTube.h"
#include "collisionPlane.h"
#include "collisionPolygon.h"
#include "parametricCurve.h"
#include "nurbsCurve.h"
#include "classicNurbsCurve.h"
#include "nurbsCurveInterface.h"
#include "nurbsCurveEvaluator.h"
#include "nurbsSurfaceEvaluator.h"
#include "ropeNode.h"
#include "sheetNode.h"
#include "look_at.h"
#include <ctype.h>
#include <algorithm>
// This class is used in make_node(EggBin *) to sort LOD instances in
// order by switching distance.
class LODInstance {
public:
LODInstance(EggNode *egg_node);
bool operator < (const LODInstance &other) const {
return _d->_switch_in < other._d->_switch_in;
}
EggNode *_egg_node;
const EggSwitchConditionDistance *_d;
};
LODInstance::
LODInstance(EggNode *egg_node) {
nassertv(egg_node != NULL);
_egg_node = egg_node;
// We expect this egg node to be an EggGroup with an LOD
// specification. That's what the EggBinner collected together,
// after all.
EggGroup *egg_group = DCAST(EggGroup, egg_node);
nassertv(egg_group->has_lod());
const EggSwitchCondition &sw = egg_group->get_lod();
// For now, this is the only kind of switch condition there is.
_d = DCAST(EggSwitchConditionDistance, &sw);
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::Constructor
// Access: Public
// Description:
////////////////////////////////////////////////////////////////////
EggLoader::
EggLoader() {
// We need to enforce whatever coordinate system the user asked for.
_data.set_coordinate_system(egg_coordinate_system);
_error = false;
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::Constructor
// Access: Public
// Description:
////////////////////////////////////////////////////////////////////
EggLoader::
EggLoader(const EggData &data) :
_data(data)
{
_error = false;
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::build_graph
// Access: Public
// Description:
////////////////////////////////////////////////////////////////////
void EggLoader::
build_graph() {
_deferred_nodes.clear();
// First, bin up the LOD nodes.
EggBinner binner;
binner.make_bins(&_data);
// Then load up all of the textures.
load_textures();
// Now build up the scene graph.
_root = new ModelRoot(_data.get_egg_filename().get_basename());
make_node(&_data, _root);
_builder.build();
reparent_decals();
apply_deferred_nodes(_root, DeferredNodeProperty());
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::reparent_decals
// Access: Public
// Description: For each node representing a decal base geometry
// (i.e. a node corresponding to an EggGroup with the
// decal flag set), move all of its nested geometry
// directly below the GeomNode representing the group.
////////////////////////////////////////////////////////////////////
void EggLoader::
reparent_decals() {
Decals::const_iterator di;
for (di = _decals.begin(); di != _decals.end(); ++di) {
PandaNode *node = (*di);
nassertv(node != (PandaNode *)NULL);
// The NodePath interface is best for this.
NodePath parent(node);
// First, search for the GeomNode.
NodePath geom_parent;
int num_children = parent.get_num_children();
for (int i = 0; i < num_children; i++) {
NodePath child = parent.get_child(i);
if (child.node()->is_of_type(GeomNode::get_class_type())) {
if (!geom_parent.is_empty()) {
// Oops, too many GeomNodes.
egg2pg_cat.error()
<< "Decal onto " << parent.node()->get_name()
<< " uses base geometry with multiple GeomNodes.\n";
_error = true;
}
geom_parent = child;
}
}
if (geom_parent.is_empty()) {
// No children were GeomNodes.
egg2pg_cat.error()
<< "Ignoring decal onto " << parent.node()->get_name()
<< "; no geometry within group.\n";
_error = true;
} else {
// Now reparent all of the non-GeomNodes to this node. We have
// to be careful so we don't get lost as we self-modify this
// list.
int i = 0;
while (i < num_children) {
NodePath child = parent.get_child(i);
if (child.node()->is_of_type(GeomNode::get_class_type())) {
i++;
} else {
child.reparent_to(geom_parent);
num_children--;
}
}
// Finally, set the DecalEffect on the base geometry.
geom_parent.node()->set_effect(DecalEffect::make());
}
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_nonindexed_primitive
// Access: Public
// Description:
////////////////////////////////////////////////////////////////////
void EggLoader::
make_nonindexed_primitive(EggPrimitive *egg_prim, PandaNode *parent,
const LMatrix4d *transform) {
BuilderBucket bucket;
setup_bucket(bucket, parent, egg_prim);
LMatrix4d mat;
if (transform != NULL) {
mat = (*transform);
} else {
mat = egg_prim->get_vertex_to_node();
}
if (egg_prim->is_of_type(EggNurbsCurve::get_class_type())) {
make_nurbs_curve(DCAST(EggNurbsCurve, egg_prim), parent, mat);
} else if (egg_prim->is_of_type(EggNurbsSurface::get_class_type())) {
make_nurbs_surface(DCAST(EggNurbsSurface, egg_prim), parent, mat);
} else {
// A normal primitive: polygon or point.
BuilderPrim bprim;
bprim.set_type(BPT_poly);
if (egg_prim->is_of_type(EggPoint::get_class_type())) {
bprim.set_type(BPT_point);
}
if (egg_prim->has_normal()) {
Normald norm = egg_prim->get_normal() * mat;
norm.normalize();
bprim.set_normal(LCAST(float, norm));
}
if (egg_prim->has_color() && !egg_false_color) {
bprim.set_color(egg_prim->get_color());
}
bool has_vert_color = true;
EggPrimitive::const_iterator vi;
for (vi = egg_prim->begin(); vi != egg_prim->end(); ++vi) {
EggVertex *egg_vert = *vi;
if (egg_vert->get_num_dimensions() != 3) {
egg2pg_cat.error()
<< "Vertex " << egg_vert->get_pool()->get_name()
<< ":" << egg_vert->get_index() << " has dimension "
<< egg_vert->get_num_dimensions() << "\n";
} else {
BuilderVertex bvert(LCAST(float, egg_vert->get_pos3() * mat));
if (egg_vert->has_normal()) {
Normald norm = egg_vert->get_normal() * mat;
norm.normalize();
bvert.set_normal(LCAST(float, norm));
}
if (egg_vert->has_color() && !egg_false_color) {
bvert.set_color(egg_vert->get_color());
} else {
// If any vertex doesn't have a color, we can't use any of the
// vertex colors.
has_vert_color = false;
}
if (egg_vert->has_uv()) {
TexCoordd uv = egg_vert->get_uv();
if (egg_prim->has_texture() &&
egg_prim->get_texture()->has_transform()) {
// If we have a texture matrix, apply it.
uv = uv * egg_prim->get_texture()->get_transform();
}
bvert.set_texcoord(LCAST(float, uv));
}
bprim.add_vertex(bvert);
}
}
// Finally, if the primitive didn't have a color, and it didn't have
// vertex color, make it white.
if (!egg_prim->has_color() && !has_vert_color && !egg_false_color) {
bprim.set_color(Colorf(1.0, 1.0, 1.0, 1.0));
}
_builder.add_prim(bucket, bprim);
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_indexed_primitive
// Access: Public
// Description:
////////////////////////////////////////////////////////////////////
void EggLoader::
make_indexed_primitive(EggPrimitive *egg_prim, PandaNode *parent,
const LMatrix4d *transform,
ComputedVerticesMaker &_comp_verts_maker) {
BuilderBucket bucket;
setup_bucket(bucket, parent, egg_prim);
bucket.set_coords(_comp_verts_maker._coords);
bucket.set_normals(_comp_verts_maker._norms);
bucket.set_texcoords(_comp_verts_maker._texcoords);
bucket.set_colors(_comp_verts_maker._colors);
LMatrix4d mat;
if (transform != NULL) {
mat = (*transform);
} else {
mat = egg_prim->get_vertex_to_node();
}
BuilderPrimI bprim;
bprim.set_type(BPT_poly);
if (egg_prim->is_of_type(EggPoint::get_class_type())) {
bprim.set_type(BPT_point);
}
if (egg_prim->has_normal()) {
// Define the transform space of the polygon normal. This will be
// the average of all the vertex transform spaces.
_comp_verts_maker.begin_new_space();
EggPrimitive::const_iterator vi;
for (vi = egg_prim->begin(); vi != egg_prim->end(); ++vi) {
EggVertex *egg_vert = *vi;
_comp_verts_maker.add_vertex_joints(egg_vert, egg_prim);
}
_comp_verts_maker.mark_space();
int nindex =
_comp_verts_maker.add_normal(egg_prim->get_normal(),
egg_prim->_dnormals, mat);
bprim.set_normal(nindex);
}
if (egg_prim->has_color() && !egg_false_color) {
int cindex =
_comp_verts_maker.add_color(egg_prim->get_color(),
egg_prim->_drgbas);
bprim.set_color(cindex);
}
bool has_vert_color = true;
EggPrimitive::const_iterator vi;
for (vi = egg_prim->begin(); vi != egg_prim->end(); ++vi) {
EggVertex *egg_vert = *vi;
if (egg_vert->get_num_dimensions() != 3) {
egg2pg_cat.error()
<< "Vertex " << egg_vert->get_pool()->get_name()
<< ":" << egg_vert->get_index() << " has dimension "
<< egg_vert->get_num_dimensions() << "\n";
} else {
// Set up the ComputedVerticesMaker for the coordinate space of
// the vertex.
_comp_verts_maker.begin_new_space();
_comp_verts_maker.add_vertex_joints(egg_vert, egg_prim);
_comp_verts_maker.mark_space();
int vindex =
_comp_verts_maker.add_vertex(egg_vert->get_pos3(),
egg_vert->_dxyzs, mat);
BuilderVertexI bvert(vindex);
if (egg_vert->has_normal()) {
int nindex =
_comp_verts_maker.add_normal(egg_vert->get_normal(),
egg_vert->_dnormals,
mat);
bvert.set_normal(nindex);
}
if (egg_vert->has_color() && !egg_false_color) {
int cindex =
_comp_verts_maker.add_color(egg_vert->get_color(),
egg_vert->_drgbas);
bvert.set_color(cindex);
} else {
// If any vertex doesn't have a color, we can't use any of the
// vertex colors.
has_vert_color = false;
}
if (egg_vert->has_uv()) {
TexCoordd uv = egg_vert->get_uv();
LMatrix3d mat;
if (egg_prim->has_texture() &&
egg_prim->get_texture()->has_transform()) {
// If we have a texture matrix, apply it.
mat = egg_prim->get_texture()->get_transform();
} else {
mat = LMatrix3d::ident_mat();
}
int tindex =
_comp_verts_maker.add_texcoord(uv, egg_vert->_duvs, mat);
bvert.set_texcoord(tindex);
}
bprim.add_vertex(bvert);
}
}
// Finally, if the primitive didn't have a color, and it didn't have
// vertex color, make it white.
if (!egg_prim->has_color() && !has_vert_color && !egg_false_color) {
int cindex =
_comp_verts_maker.add_color(Colorf(1.0, 1.0, 1.0, 1.0),
EggMorphColorList());
bprim.set_color(cindex);
}
_builder.add_prim(bucket, bprim);
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_nurbs_curve
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
void EggLoader::
make_nurbs_curve(EggNurbsCurve *egg_curve, PandaNode *parent,
const LMatrix4d &mat) {
if (egg_load_old_curves) {
// Make a NurbsCurve instead of a RopeNode (old interface).
make_old_nurbs_curve(egg_curve, parent, mat);
return;
}
assert(parent != NULL);
assert(!parent->is_geom_node());
PT(NurbsCurveEvaluator) nurbs = new NurbsCurveEvaluator;
if (egg_curve->get_order() < 1 || egg_curve->get_order() > 4) {
egg2pg_cat.error()
<< "Invalid NURBSCurve order for " << egg_curve->get_name() << ": "
<< egg_curve->get_order() << "\n";
_error = true;
return;
}
nurbs->set_order(egg_curve->get_order());
nurbs->reset(egg_curve->size());
EggPrimitive::const_iterator pi;
int vi = 0;
for (pi = egg_curve->begin(); pi != egg_curve->end(); ++pi) {
EggVertex *egg_vertex = (*pi);
nurbs->set_vertex(vi, LCAST(float, egg_vertex->get_pos4() * mat));
Colorf color = egg_vertex->get_color();
nurbs->set_extended_vertex(vi, 0, color[0]);
nurbs->set_extended_vertex(vi, 1, color[1]);
nurbs->set_extended_vertex(vi, 2, color[2]);
nurbs->set_extended_vertex(vi, 3, color[3]);
vi++;
}
int num_knots = egg_curve->get_num_knots();
if (num_knots != nurbs->get_num_knots()) {
egg2pg_cat.error()
<< "Invalid NURBSCurve number of knots for "
<< egg_curve->get_name() << ": got " << num_knots
<< " knots, expected " << nurbs->get_num_knots() << "\n";
_error = true;
return;
}
for (int i = 0; i < num_knots; i++) {
nurbs->set_knot(i, egg_curve->get_knot(i));
}
/*
switch (egg_curve->get_curve_type()) {
case EggCurve::CT_xyz:
curve->set_curve_type(PCT_XYZ);
break;
case EggCurve::CT_hpr:
curve->set_curve_type(PCT_HPR);
break;
case EggCurve::CT_t:
curve->set_curve_type(PCT_T);
break;
default:
break;
}
*/
PT(RopeNode) rope = new RopeNode(egg_curve->get_name());
rope->set_curve(nurbs);
// Respect the subdivision values in the egg file, if any.
if (egg_curve->get_subdiv() != 0) {
int subdiv_per_segment =
(int)((egg_curve->get_subdiv() + 0.5) / nurbs->get_num_segments());
rope->set_num_subdiv(subdiv_per_segment);
}
// Now get the attributes to apply to the rope. We create a
// BuilderBucket for this purpose, so we can call setup_bucket(),
// but all we do with this bucket is immediately extract the state
// from it.
BuilderBucket bucket;
setup_bucket(bucket, parent, egg_curve);
rope->set_state(bucket._state);
// If we have a texture matrix, we have to apply that explicitly
// (the UV's are computed on the fly, so we can't precompute the
// texture matrix into them).
if (egg_curve->has_texture()) {
rope->set_uv_mode(RopeNode::UV_parametric);
PT(EggTexture) egg_tex = egg_curve->get_texture();
if (egg_tex->has_transform()) {
// Expand the 2-d matrix to a 3-d matrix.
const LMatrix3d &mat3 = egg_tex->get_transform();
LMatrix4f mat4(mat3(0, 0), mat3(0, 1), 0.0f, mat3(0, 2),
mat3(1, 0), mat3(1, 1), 0.0f, mat3(1, 2),
0.0f, 0.0f, 1.0f, 0.0f,
mat3(2, 0), mat3(2, 1), 0.0f, mat3(2, 2));
rope->set_attrib(TexMatrixAttrib::make(mat4));
}
}
if (egg_curve->has_vertex_color()) {
// If the curve had individual vertex color, enable it.
rope->set_use_vertex_color(true);
} else if (egg_curve->has_color()) {
// Otherwise, if the curve has overall color, apply it.
rope->set_attrib(ColorAttrib::make_flat(egg_curve->get_color()));
}
parent->add_child(rope);
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_old_nurbs_curve
// Access: Private
// Description: This deprecated interface creates a NurbsCurve (or a
// ClassicNurbsCurve) object for the EggNurbsCurve
// entry. It will eventually be removed in favor of the
// above, which creates a RopeNode.
////////////////////////////////////////////////////////////////////
void EggLoader::
make_old_nurbs_curve(EggNurbsCurve *egg_curve, PandaNode *parent,
const LMatrix4d &mat) {
assert(parent != NULL);
assert(!parent->is_geom_node());
PT(ParametricCurve) curve;
if (egg_load_classic_nurbs_curves) {
curve = new ClassicNurbsCurve;
} else {
curve = new NurbsCurve;
}
NurbsCurveInterface *nurbs = curve->get_nurbs_interface();
nassertv(nurbs != (NurbsCurveInterface *)NULL);
if (egg_curve->get_order() < 1 || egg_curve->get_order() > 4) {
egg2pg_cat.error()
<< "Invalid NURBSCurve order for " << egg_curve->get_name() << ": "
<< egg_curve->get_order() << "\n";
_error = true;
return;
}
nurbs->set_order(egg_curve->get_order());
EggPrimitive::const_iterator pi;
for (pi = egg_curve->begin(); pi != egg_curve->end(); ++pi) {
nurbs->append_cv(LCAST(float, (*pi)->get_pos4() * mat));
}
int num_knots = egg_curve->get_num_knots();
if (num_knots != nurbs->get_num_knots()) {
egg2pg_cat.error()
<< "Invalid NURBSCurve number of knots for "
<< egg_curve->get_name() << ": got " << num_knots
<< " knots, expected " << nurbs->get_num_knots() << "\n";
_error = true;
return;
}
for (int i = 0; i < num_knots; i++) {
nurbs->set_knot(i, egg_curve->get_knot(i));
}
switch (egg_curve->get_curve_type()) {
case EggCurve::CT_xyz:
curve->set_curve_type(PCT_XYZ);
break;
case EggCurve::CT_hpr:
curve->set_curve_type(PCT_HPR);
break;
case EggCurve::CT_t:
curve->set_curve_type(PCT_T);
break;
default:
break;
}
curve->set_name(egg_curve->get_name());
if (!curve->recompute()) {
egg2pg_cat.error()
<< "Invalid NURBSCurve " << egg_curve->get_name() << "\n";
_error = true;
return;
}
parent->add_child(curve);
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_nurbs_surface
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
void EggLoader::
make_nurbs_surface(EggNurbsSurface *egg_surface, PandaNode *parent,
const LMatrix4d &mat) {
assert(parent != NULL);
assert(!parent->is_geom_node());
PT(NurbsSurfaceEvaluator) nurbs = new NurbsSurfaceEvaluator;
if (egg_surface->get_u_order() < 1 || egg_surface->get_u_order() > 4) {
egg2pg_cat.error()
<< "Invalid NURBSSurface U order for " << egg_surface->get_name() << ": "
<< egg_surface->get_u_order() << "\n";
_error = true;
return;
}
if (egg_surface->get_v_order() < 1 || egg_surface->get_v_order() > 4) {
egg2pg_cat.error()
<< "Invalid NURBSSurface V order for " << egg_surface->get_name() << ": "
<< egg_surface->get_v_order() << "\n";
_error = true;
return;
}
nurbs->set_u_order(egg_surface->get_u_order());
nurbs->set_v_order(egg_surface->get_v_order());
int num_u_vertices = egg_surface->get_num_u_cvs();
int num_v_vertices = egg_surface->get_num_v_cvs();
nurbs->reset(num_u_vertices, num_v_vertices);
for (int ui = 0; ui < num_u_vertices; ui++) {
for (int vi = 0; vi < num_v_vertices; vi++) {
int i = egg_surface->get_vertex_index(ui, vi);
EggVertex *egg_vertex = egg_surface->get_vertex(i);
nurbs->set_vertex(ui, vi, LCAST(float, egg_vertex->get_pos4() * mat));
Colorf color = egg_vertex->get_color();
nurbs->set_extended_vertex(ui, vi, 0, color[0]);
nurbs->set_extended_vertex(ui, vi, 1, color[1]);
nurbs->set_extended_vertex(ui, vi, 2, color[2]);
nurbs->set_extended_vertex(ui, vi, 3, color[3]);
}
}
int num_u_knots = egg_surface->get_num_u_knots();
if (num_u_knots != nurbs->get_num_u_knots()) {
egg2pg_cat.error()
<< "Invalid NURBSSurface number of U knots for "
<< egg_surface->get_name() << ": got " << num_u_knots
<< " knots, expected " << nurbs->get_num_u_knots() << "\n";
_error = true;
return;
}
int num_v_knots = egg_surface->get_num_v_knots();
if (num_v_knots != nurbs->get_num_v_knots()) {
egg2pg_cat.error()
<< "Invalid NURBSSurface number of U knots for "
<< egg_surface->get_name() << ": got " << num_v_knots
<< " knots, expected " << nurbs->get_num_v_knots() << "\n";
_error = true;
return;
}
int i;
for (i = 0; i < num_u_knots; i++) {
nurbs->set_u_knot(i, egg_surface->get_u_knot(i));
}
for (i = 0; i < num_v_knots; i++) {
nurbs->set_v_knot(i, egg_surface->get_v_knot(i));
}
PT(SheetNode) sheet = new SheetNode(egg_surface->get_name());
sheet->set_surface(nurbs);
// Respect the subdivision values in the egg file, if any.
if (egg_surface->get_u_subdiv() != 0) {
int u_subdiv_per_segment =
(int)((egg_surface->get_u_subdiv() + 0.5) / nurbs->get_num_u_segments());
sheet->set_num_u_subdiv(u_subdiv_per_segment);
}
if (egg_surface->get_v_subdiv() != 0) {
int v_subdiv_per_segment =
(int)((egg_surface->get_v_subdiv() + 0.5) / nurbs->get_num_v_segments());
sheet->set_num_v_subdiv(v_subdiv_per_segment);
}
// Now get the attributes to apply to the sheet. We create a
// BuilderBucket for this purpose, so we can call setup_bucket(),
// but all we do with this bucket is immediately extract the state
// from it.
BuilderBucket bucket;
setup_bucket(bucket, parent, egg_surface);
sheet->set_state(bucket._state);
// If we have a texture matrix, we have to apply that explicitly
// (the UV's are computed on the fly, so we can't precompute the
// texture matrix into them).
if (egg_surface->has_texture()) {
PT(EggTexture) egg_tex = egg_surface->get_texture();
if (egg_tex->has_transform()) {
// Expand the 2-d matrix to a 3-d matrix.
const LMatrix3d &mat3 = egg_tex->get_transform();
LMatrix4f mat4(mat3(0, 0), mat3(0, 1), 0.0f, mat3(0, 2),
mat3(1, 0), mat3(1, 1), 0.0f, mat3(1, 2),
0.0f, 0.0f, 1.0f, 0.0f,
mat3(2, 0), mat3(2, 1), 0.0f, mat3(2, 2));
sheet->set_attrib(TexMatrixAttrib::make(mat4));
}
}
if (egg_surface->has_vertex_color()) {
// If the surface had individual vertex color, enable it.
sheet->set_use_vertex_color(true);
} else if (egg_surface->has_color()) {
// Otherwise, if the surface has overall color, apply it.
sheet->set_attrib(ColorAttrib::make_flat(egg_surface->get_color()));
}
parent->add_child(sheet);
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::load_textures
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
void EggLoader::
load_textures() {
// First, collect all the textures that are referenced.
EggTextureCollection tc;
tc.find_used_textures(&_data);
// Collapse the textures down by filename only. Should we also
// differentiate by attributes? Maybe.
EggTextureCollection::TextureReplacement replace;
tc.collapse_equivalent_textures(EggTexture::E_complete_filename,
replace);
EggTextureCollection::iterator ti;
for (ti = tc.begin(); ti != tc.end(); ++ti) {
PT(EggTexture) egg_tex = (*ti);
TextureDef def;
if (load_texture(def, egg_tex)) {
// Now associate the pointers, so we'll be able to look up the
// Texture pointer given an EggTexture pointer, later.
_textures[egg_tex] = def;
}
}
// Finally, associate all of the removed texture references back to
// the same pointers as the others.
EggTextureCollection::TextureReplacement::const_iterator ri;
for (ri = replace.begin(); ri != replace.end(); ++ri) {
PT(EggTexture) orig = (*ri).first;
PT(EggTexture) repl = (*ri).second;
_textures[orig] = _textures[repl];
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::load_texture
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
bool EggLoader::
load_texture(TextureDef &def, const EggTexture *egg_tex) {
// Check to see if we should reduce the number of channels in
// the texture.
int wanted_channels = 0;
bool wanted_alpha = false;
switch (egg_tex->get_format()) {
case EggTexture::F_red:
case EggTexture::F_green:
case EggTexture::F_blue:
case EggTexture::F_alpha:
case EggTexture::F_luminance:
wanted_channels = 1;
wanted_alpha = false;
break;
case EggTexture::F_luminance_alpha:
case EggTexture::F_luminance_alphamask:
wanted_channels = 2;
wanted_alpha = true;
break;
case EggTexture::F_rgb:
case EggTexture::F_rgb12:
case EggTexture::F_rgb8:
case EggTexture::F_rgb5:
case EggTexture::F_rgb332:
wanted_channels = 3;
wanted_alpha = false;
break;
case EggTexture::F_rgba:
case EggTexture::F_rgbm:
case EggTexture::F_rgba12:
case EggTexture::F_rgba8:
case EggTexture::F_rgba4:
case EggTexture::F_rgba5:
wanted_channels = 4;
wanted_alpha = true;
break;
case EggTexture::F_unspecified:
break;
}
Texture *tex;
if (egg_tex->has_alpha_filename() && wanted_alpha) {
tex = TexturePool::load_texture(egg_tex->get_fullpath(),
egg_tex->get_alpha_fullpath(),
wanted_channels,
egg_tex->get_alpha_file_channel());
} else {
tex = TexturePool::load_texture(egg_tex->get_fullpath(),
wanted_channels);
}
if (tex == (Texture *)NULL) {
return false;
}
// Record the original filenames in the textures (as loaded from the
// egg file). These filenames will be written back to the bam file
// if the bam file is written out.
tex->set_filename(egg_tex->get_filename());
if (egg_tex->has_alpha_filename() && wanted_alpha) {
tex->set_alpha_filename(egg_tex->get_alpha_filename());
}
apply_texture_attributes(tex, egg_tex);
CPT(RenderAttrib) apply = get_texture_apply_attributes(egg_tex);
def._texture = TextureAttrib::make(tex);
def._apply = apply;
return true;
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::apply_texture_attributes
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
void EggLoader::
apply_texture_attributes(Texture *tex, const EggTexture *egg_tex) {
switch (egg_tex->determine_wrap_u()) {
case EggTexture::WM_repeat:
tex->set_wrapu(Texture::WM_repeat);
break;
case EggTexture::WM_clamp:
if (egg_ignore_clamp) {
egg2pg_cat.warning()
<< "Ignoring clamp request\n";
tex->set_wrapu(Texture::WM_repeat);
} else {
tex->set_wrapu(Texture::WM_clamp);
}
break;
case EggTexture::WM_unspecified:
break;
default:
egg2pg_cat.warning()
<< "Unexpected texture wrap flag: "
<< (int)egg_tex->determine_wrap_u() << "\n";
}
switch (egg_tex->determine_wrap_v()) {
case EggTexture::WM_repeat:
tex->set_wrapv(Texture::WM_repeat);
break;
case EggTexture::WM_clamp:
if (egg_ignore_clamp) {
egg2pg_cat.warning()
<< "Ignoring clamp request\n";
tex->set_wrapv(Texture::WM_repeat);
} else {
tex->set_wrapv(Texture::WM_clamp);
}
break;
case EggTexture::WM_unspecified:
break;
default:
egg2pg_cat.warning()
<< "Unexpected texture wrap flag: "
<< (int)egg_tex->determine_wrap_v() << "\n";
}
switch (egg_tex->get_minfilter()) {
case EggTexture::FT_nearest:
tex->set_minfilter(Texture::FT_nearest);
break;
case EggTexture::FT_linear:
if (egg_ignore_filters) {
egg2pg_cat.warning()
<< "Ignoring minfilter request\n";
tex->set_minfilter(Texture::FT_nearest);
} else {
tex->set_minfilter(Texture::FT_linear);
}
break;
case EggTexture::FT_nearest_mipmap_nearest:
if (egg_ignore_filters) {
egg2pg_cat.warning()
<< "Ignoring minfilter request\n";
tex->set_minfilter(Texture::FT_nearest);
} else if (egg_ignore_mipmaps) {
egg2pg_cat.warning()
<< "Ignoring mipmap request\n";
tex->set_minfilter(Texture::FT_nearest);
} else {
tex->set_minfilter(Texture::FT_nearest_mipmap_nearest);
}
break;
case EggTexture::FT_linear_mipmap_nearest:
if (egg_ignore_filters) {
egg2pg_cat.warning()
<< "Ignoring minfilter request\n";
tex->set_minfilter(Texture::FT_nearest);
} else if (egg_ignore_mipmaps) {
egg2pg_cat.warning()
<< "Ignoring mipmap request\n";
tex->set_minfilter(Texture::FT_linear);
} else {
tex->set_minfilter(Texture::FT_linear_mipmap_nearest);
}
break;
case EggTexture::FT_nearest_mipmap_linear:
if (egg_ignore_filters) {
egg2pg_cat.warning()
<< "Ignoring minfilter request\n";
tex->set_minfilter(Texture::FT_nearest);
} else if (egg_ignore_mipmaps) {
egg2pg_cat.warning()
<< "Ignoring mipmap request\n";
tex->set_minfilter(Texture::FT_nearest);
} else {
tex->set_minfilter(Texture::FT_nearest_mipmap_linear);
}
break;
case EggTexture::FT_linear_mipmap_linear:
if (egg_ignore_filters) {
egg2pg_cat.warning()
<< "Ignoring minfilter request\n";
tex->set_minfilter(Texture::FT_nearest);
} else if (egg_ignore_mipmaps) {
egg2pg_cat.warning()
<< "Ignoring mipmap request\n";
tex->set_minfilter(Texture::FT_linear);
} else {
tex->set_minfilter(Texture::FT_linear_mipmap_linear);
}
break;
case EggTexture::FT_unspecified:
// Default is bilinear, unless egg_ignore_filters is specified.
if (egg_ignore_filters) {
tex->set_minfilter(Texture::FT_nearest);
} else {
tex->set_minfilter(Texture::FT_linear);
}
}
switch (egg_tex->get_magfilter()) {
case EggTexture::FT_nearest:
case EggTexture::FT_nearest_mipmap_nearest:
case EggTexture::FT_nearest_mipmap_linear:
tex->set_magfilter(Texture::FT_nearest);
break;
case EggTexture::FT_linear:
case EggTexture::FT_linear_mipmap_nearest:
case EggTexture::FT_linear_mipmap_linear:
if (egg_ignore_filters) {
egg2pg_cat.warning()
<< "Ignoring magfilter request\n";
tex->set_magfilter(Texture::FT_nearest);
} else {
tex->set_magfilter(Texture::FT_linear);
}
break;
case EggTexture::FT_unspecified:
// Default is bilinear, unless egg_ignore_filters is specified.
if (egg_ignore_filters) {
tex->set_magfilter(Texture::FT_nearest);
} else {
tex->set_magfilter(Texture::FT_linear);
}
}
if (egg_tex->has_anisotropic_degree()) {
tex->set_anisotropic_degree(egg_tex->get_anisotropic_degree());
}
if (tex->_pbuffer->get_num_components() == 1) {
switch (egg_tex->get_format()) {
case EggTexture::F_red:
tex->_pbuffer->set_format(PixelBuffer::F_red);
break;
case EggTexture::F_green:
tex->_pbuffer->set_format(PixelBuffer::F_green);
break;
case EggTexture::F_blue:
tex->_pbuffer->set_format(PixelBuffer::F_blue);
break;
case EggTexture::F_alpha:
tex->_pbuffer->set_format(PixelBuffer::F_alpha);
break;
case EggTexture::F_luminance:
tex->_pbuffer->set_format(PixelBuffer::F_luminance);
break;
case EggTexture::F_unspecified:
break;
default:
egg2pg_cat.warning()
<< "Ignoring inappropriate format " << egg_tex->get_format()
<< " for 1-component texture " << egg_tex->get_name() << "\n";
}
} else if (tex->_pbuffer->get_num_components() == 2) {
switch (egg_tex->get_format()) {
case EggTexture::F_luminance_alpha:
tex->_pbuffer->set_format(PixelBuffer::F_luminance_alpha);
break;
case EggTexture::F_luminance_alphamask:
tex->_pbuffer->set_format(PixelBuffer::F_luminance_alphamask);
break;
case EggTexture::F_unspecified:
break;
default:
egg2pg_cat.warning()
<< "Ignoring inappropriate format " << egg_tex->get_format()
<< " for 2-component texture " << egg_tex->get_name() << "\n";
}
} else if (tex->_pbuffer->get_num_components() == 3) {
switch (egg_tex->get_format()) {
case EggTexture::F_rgb:
tex->_pbuffer->set_format(PixelBuffer::F_rgb);
break;
case EggTexture::F_rgb12:
if (tex->_pbuffer->get_component_width() >= 2) {
// Only do this if the component width supports it.
tex->_pbuffer->set_format(PixelBuffer::F_rgb12);
} else {
egg2pg_cat.warning()
<< "Ignoring inappropriate format " << egg_tex->get_format()
<< " for 8-bit texture " << egg_tex->get_name() << "\n";
}
break;
case EggTexture::F_rgb8:
case EggTexture::F_rgba8:
// We'll quietly accept RGBA8 for a 3-component texture, since
// flt2egg generates these for 3-component as well as for
// 4-component textures.
tex->_pbuffer->set_format(PixelBuffer::F_rgb8);
break;
case EggTexture::F_rgb5:
tex->_pbuffer->set_format(PixelBuffer::F_rgb5);
break;
case EggTexture::F_rgb332:
tex->_pbuffer->set_format(PixelBuffer::F_rgb332);
break;
case EggTexture::F_unspecified:
break;
default:
egg2pg_cat.warning()
<< "Ignoring inappropriate format " << egg_tex->get_format()
<< " for 3-component texture " << egg_tex->get_name() << "\n";
}
} else if (tex->_pbuffer->get_num_components() == 4) {
switch (egg_tex->get_format()) {
case EggTexture::F_rgba:
tex->_pbuffer->set_format(PixelBuffer::F_rgba);
break;
case EggTexture::F_rgbm:
tex->_pbuffer->set_format(PixelBuffer::F_rgbm);
break;
case EggTexture::F_rgba12:
if (tex->_pbuffer->get_component_width() >= 2) {
// Only do this if the component width supports it.
tex->_pbuffer->set_format(PixelBuffer::F_rgba12);
} else {
egg2pg_cat.warning()
<< "Ignoring inappropriate format " << egg_tex->get_format()
<< " for 8-bit texture " << egg_tex->get_name() << "\n";
}
break;
case EggTexture::F_rgba8:
tex->_pbuffer->set_format(PixelBuffer::F_rgba8);
break;
case EggTexture::F_rgba4:
tex->_pbuffer->set_format(PixelBuffer::F_rgba4);
break;
case EggTexture::F_rgba5:
tex->_pbuffer->set_format(PixelBuffer::F_rgba5);
break;
case EggTexture::F_unspecified:
break;
default:
egg2pg_cat.warning()
<< "Ignoring inappropriate format " << egg_tex->get_format()
<< " for 4-component texture " << egg_tex->get_name() << "\n";
}
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::apply_texture_apply_attributes
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
CPT(RenderAttrib) EggLoader::
get_texture_apply_attributes(const EggTexture *egg_tex) {
CPT(RenderAttrib) result = TextureApplyAttrib::make(TextureApplyAttrib::M_modulate);
if (egg_always_decal_textures) {
result = TextureApplyAttrib::make(TextureApplyAttrib::M_decal);
} else {
switch (egg_tex->get_env_type()) {
case EggTexture::ET_modulate:
result = TextureApplyAttrib::make(TextureApplyAttrib::M_modulate);
break;
case EggTexture::ET_decal:
result = TextureApplyAttrib::make(TextureApplyAttrib::M_decal);
break;
case EggTexture::ET_unspecified:
break;
default:
egg2pg_cat.warning()
<< "Invalid texture environment "
<< (int)egg_tex->get_env_type() << "\n";
}
}
return result;
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::get_material_attrib
// Access: Private
// Description: Returns a RenderAttrib suitable for enabling the
// material indicated by the given EggMaterial, and with
// the indicated backface flag.
////////////////////////////////////////////////////////////////////
CPT(RenderAttrib) EggLoader::
get_material_attrib(const EggMaterial *egg_mat, bool bface) {
Materials &materials = bface ? _materials_bface : _materials;
// First, check whether we've seen this material before.
Materials::const_iterator mi;
mi = materials.find(egg_mat);
if (mi != materials.end()) {
return (*mi).second;
}
// Ok, this is the first time we've seen this particular
// EggMaterial. Create a new Material that matches it.
PT(Material) mat = new Material;
if (egg_mat->has_diff()) {
mat->set_diffuse(egg_mat->get_diff());
// By default, ambient is the same as diffuse, if diffuse is
// specified but ambient is not.
mat->set_ambient(egg_mat->get_diff());
}
if (egg_mat->has_amb()) {
mat->set_ambient(egg_mat->get_amb());
}
if (egg_mat->has_emit()) {
mat->set_emission(egg_mat->get_emit());
}
if (egg_mat->has_spec()) {
mat->set_specular(egg_mat->get_spec());
}
if (egg_mat->has_shininess()) {
mat->set_shininess(egg_mat->get_shininess());
}
if (egg_mat->has_local()) {
mat->set_local(egg_mat->get_local());
}
mat->set_twoside(bface);
// Now get a global Material pointer, shared with other models.
const Material *shared_mat = MaterialPool::get_material(mat);
// And create a MaterialAttrib for this Material.
CPT(RenderAttrib) mt = MaterialAttrib::make(shared_mat);
materials.insert(Materials::value_type(egg_mat, mt));
return mt;
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::setup_bucket
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
void EggLoader::
setup_bucket(BuilderBucket &bucket, PandaNode *parent,
EggPrimitive *egg_prim) {
bucket._node = parent;
bucket._mesh = egg_mesh;
bucket._retesselate_coplanar = egg_retesselate_coplanar;
bucket._unroll_fans = egg_unroll_fans;
bucket._show_tstrips = egg_show_tstrips;
bucket._show_qsheets = egg_show_qsheets;
bucket._show_quads = egg_show_quads;
bucket._show_normals = egg_show_normals;
bucket._normal_scale = egg_normal_scale;
bucket._subdivide_polys = egg_subdivide_polys;
bucket._consider_fans = egg_consider_fans;
bucket._max_tfan_angle = egg_max_tfan_angle;
bucket._min_tfan_tris = egg_min_tfan_tris;
bucket._coplanar_threshold = egg_coplanar_threshold;
// If a primitive has a name that does not begin with a digit, it
// should be used to group primitives together--i.e. each primitive
// with the same name gets placed into the same GeomNode. However,
// if a prim's name begins with a digit, just ignore it.
if (egg_prim->has_name() && !isdigit(egg_prim->get_name()[0])) {
bucket.set_name(egg_prim->get_name());
}
// Assign the appropriate properties to the bucket.
// The various EggRenderMode properties can be defined directly at
// the primitive, at a group above the primitive, or an a texture
// applied to the primitive. The EggNode::determine_*() functions
// can find the right pointer to the level at which this is actually
// defined for a given primitive.
EggRenderMode::AlphaMode am = EggRenderMode::AM_unspecified;
EggRenderMode::DepthWriteMode dwm = EggRenderMode::DWM_unspecified;
EggRenderMode::DepthTestMode dtm = EggRenderMode::DTM_unspecified;
bool implicit_alpha = false;
bool has_draw_order = false;
int draw_order = 0;
bool has_bin = false;
string bin;
EggRenderMode *render_mode;
render_mode = egg_prim->determine_alpha_mode();
if (render_mode != (EggRenderMode *)NULL) {
am = render_mode->get_alpha_mode();
}
render_mode = egg_prim->determine_depth_write_mode();
if (render_mode != (EggRenderMode *)NULL) {
dwm = render_mode->get_depth_write_mode();
}
render_mode = egg_prim->determine_depth_test_mode();
if (render_mode != (EggRenderMode *)NULL) {
dtm = render_mode->get_depth_test_mode();
}
render_mode = egg_prim->determine_draw_order();
if (render_mode != (EggRenderMode *)NULL) {
has_draw_order = true;
draw_order = render_mode->get_draw_order();
}
render_mode = egg_prim->determine_bin();
if (render_mode != (EggRenderMode *)NULL) {
has_bin = true;
bin = render_mode->get_bin();
}
bucket.add_attrib(TextureAttrib::make_off());
if (egg_prim->has_texture()) {
PT(EggTexture) egg_tex = egg_prim->get_texture();
const TextureDef &def = _textures[egg_tex];
if (def._texture != (const RenderAttrib *)NULL) {
bucket.add_attrib(def._texture);
bucket.add_attrib(def._apply);
// If neither the primitive nor the texture specified an alpha
// mode, assume it should be alpha'ed if the texture has an
// alpha channel.
if (am == EggRenderMode::AM_unspecified) {
const TextureAttrib *tex_attrib = DCAST(TextureAttrib, def._texture);
Texture *tex = tex_attrib->get_texture();
nassertv(tex != (Texture *)NULL);
int num_components = tex->_pbuffer->get_num_components();
if (egg_tex->has_alpha_channel(num_components)) {
implicit_alpha = true;
}
}
}
}
if (egg_prim->has_material()) {
CPT(RenderAttrib) mt =
get_material_attrib(egg_prim->get_material(),
egg_prim->get_bface_flag());
bucket.add_attrib(mt);
}
// Also check the color of the primitive to see if we should assume
// alpha based on the alpha values specified in the egg file.
if (am == EggRenderMode::AM_unspecified) {
if (egg_prim->has_color()) {
if (egg_prim->get_color()[3] != 1.0) {
implicit_alpha = true;
}
}
EggPrimitive::const_iterator vi;
for (vi = egg_prim->begin();
!implicit_alpha && vi != egg_prim->end();
++vi) {
if ((*vi)->has_color()) {
if ((*vi)->get_color()[3] != 1.0) {
implicit_alpha = true;
}
}
}
if (implicit_alpha) {
am = EggRenderMode::AM_on;
}
}
if (am == EggRenderMode::AM_on) {
// Alpha type "on" means to get the default transparency type.
am = egg_alpha_mode;
}
switch (am) {
case EggRenderMode::AM_on:
case EggRenderMode::AM_blend:
bucket.add_attrib(TransparencyAttrib::make(TransparencyAttrib::M_alpha));
break;
case EggRenderMode::AM_blend_no_occlude:
bucket.add_attrib(TransparencyAttrib::make(TransparencyAttrib::M_alpha));
bucket.add_attrib(DepthWriteAttrib::make(DepthWriteAttrib::M_off));
break;
case EggRenderMode::AM_ms:
bucket.add_attrib(TransparencyAttrib::make(TransparencyAttrib::M_multisample));
break;
case EggRenderMode::AM_ms_mask:
bucket.add_attrib(TransparencyAttrib::make(TransparencyAttrib::M_multisample_mask));
break;
case EggRenderMode::AM_binary:
bucket.add_attrib(TransparencyAttrib::make(TransparencyAttrib::M_binary));
break;
case EggRenderMode::AM_dual:
bucket.add_attrib(TransparencyAttrib::make(TransparencyAttrib::M_dual));
break;
default:
break;
}
switch (dwm) {
case EggRenderMode::DWM_on:
bucket.add_attrib(DepthWriteAttrib::make(DepthWriteAttrib::M_on));
break;
case EggRenderMode::DWM_off:
bucket.add_attrib(DepthWriteAttrib::make(DepthWriteAttrib::M_off));
break;
default:
break;
}
switch (dtm) {
case EggRenderMode::DTM_on:
bucket.add_attrib(DepthTestAttrib::make(DepthTestAttrib::M_less));
break;
case EggRenderMode::DTM_off:
bucket.add_attrib(DepthTestAttrib::make(DepthTestAttrib::M_none));
break;
default:
break;
}
if (has_bin) {
bucket.add_attrib(CullBinAttrib::make(bin, draw_order));
} else if (has_draw_order) {
bucket.add_attrib(CullBinAttrib::make("fixed", draw_order));
}
if (egg_prim->get_bface_flag()) {
// The primitive is marked with backface culling disabled--we want
// to see both sides.
bucket.add_attrib(CullFaceAttrib::make(CullFaceAttrib::M_cull_none));
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_node
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
PandaNode *EggLoader::
make_node(EggNode *egg_node, PandaNode *parent) {
if (egg_node->is_of_type(EggPrimitive::get_class_type())) {
return make_node(DCAST(EggPrimitive, egg_node), parent);
} else if (egg_node->is_of_type(EggBin::get_class_type())) {
return make_node(DCAST(EggBin, egg_node), parent);
} else if (egg_node->is_of_type(EggGroup::get_class_type())) {
return make_node(DCAST(EggGroup, egg_node), parent);
} else if (egg_node->is_of_type(EggTable::get_class_type())) {
return make_node(DCAST(EggTable, egg_node), parent);
} else if (egg_node->is_of_type(EggGroupNode::get_class_type())) {
return make_node(DCAST(EggGroupNode, egg_node), parent);
}
return (PandaNode *)NULL;
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_node (EggPrimitive)
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
PandaNode *EggLoader::
make_node(EggPrimitive *egg_prim, PandaNode *parent) {
assert(parent != NULL);
assert(!parent->is_of_type(GeomNode::get_class_type()));
if (egg_prim->cleanup()) {
if (parent->is_of_type(SelectiveChildNode::get_class_type())) {
// If we're putting a primitive under a SelectiveChildNode of
// some kind, its exact position within the group is relevant,
// so we need to create a placeholder now.
PandaNode *group = new PandaNode(egg_prim->get_name());
parent->add_child(group);
make_nonindexed_primitive(egg_prim, group);
return group;
}
// Otherwise, we don't really care what the position of this
// primitive is within its parent's list of children, and in fact
// we want to allow it to be combined with other polygons added to
// the same parent.
make_nonindexed_primitive(egg_prim, parent);
}
return (PandaNode *)NULL;
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_node (EggBin)
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
PandaNode *EggLoader::
make_node(EggBin *egg_bin, PandaNode *parent) {
// Presently, an EggBin can only mean an LOD node (i.e. a parent of
// one or more EggGroups with LOD specifications). Later it might
// mean other things as well.
nassertr((EggBinner::BinNumber)egg_bin->get_bin_number() == EggBinner::BN_lod, NULL);
LODNode *lod_node = new LODNode(egg_bin->get_name());
pvector<LODInstance> instances;
EggGroup::const_iterator ci;
for (ci = egg_bin->begin(); ci != egg_bin->end(); ++ci) {
LODInstance instance(*ci);
instances.push_back(instance);
}
// Now that we've created all of our children, put them in the
// proper order and tell the LOD node about them.
sort(instances.begin(), instances.end());
if (!instances.empty()) {
// Set up the LOD node's center. All of the children should have
// the same center, because that's how we binned them.
lod_node->set_center(LCAST(float, instances[0]._d->_center));
}
for (size_t i = 0; i < instances.size(); i++) {
// Create the children in the proper order within the scene graph.
const LODInstance &instance = instances[i];
make_node(instance._egg_node, lod_node);
// All of the children should have the same center, because that's
// how we binned them.
nassertr(lod_node->get_center().almost_equal
(LCAST(float, instance._d->_center), 0.01), NULL);
// Tell the LOD node about this child's switching distances.
lod_node->add_switch(instance._d->_switch_in, instance._d->_switch_out);
}
return create_group_arc(egg_bin, parent, lod_node);
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_node (EggGroup)
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
PandaNode *EggLoader::
make_node(EggGroup *egg_group, PandaNode *parent) {
PT(PandaNode) node = NULL;
if (egg_group->get_num_object_types() != 0) {
pset<string> expanded;
pvector<string> expanded_history;
if (!expand_object_types(egg_group, expanded, expanded_history)) {
return NULL;
}
}
if (egg_group->get_dart_type() != EggGroup::DT_none) {
// A group with the <Dart> flag set means to create a character.
CharacterMaker char_maker(egg_group, *this);
node = char_maker.make_node();
} else if (egg_group->get_cs_type() != EggGroup::CST_none &&
egg_group->get_cs_type() != EggGroup::CST_geode) {
// A collision group: create collision geometry.
node = new CollisionNode(egg_group->get_name());
make_collision_solids(egg_group, egg_group, (CollisionNode *)node.p());
if ((egg_group->get_collide_flags() & EggGroup::CF_keep) != 0) {
// If we also specified to keep the geometry, continue the
// traversal.
EggGroup::const_iterator ci;
for (ci = egg_group->begin(); ci != egg_group->end(); ++ci) {
make_node(*ci, parent);
}
}
node = create_group_arc(egg_group, parent, node);
if (!egg_show_collision_solids) {
node->set_draw_mask(DrawMask::all_off());
}
return node;
} else if (egg_group->get_switch_flag()) {
if (egg_group->get_switch_fps() != 0.0) {
// Create a sequence node.
node = new SequenceNode(egg_group->get_switch_fps(),
egg_group->get_name());
} else {
// Create a switch node.
node = new SwitchNode(egg_group->get_name());
}
EggGroup::const_iterator ci;
for (ci = egg_group->begin(); ci != egg_group->end(); ++ci) {
make_node(*ci, node);
}
} else if (egg_group->get_model_flag() ||
egg_group->get_dcs_type() != EggGroup::DC_none) {
// A model or DCS flag; create a model node.
node = new ModelNode(egg_group->get_name());
switch (egg_group->get_dcs_type()) {
case EggGroup::DC_net:
DCAST(ModelNode, node)->set_preserve_transform(ModelNode::PT_net);
break;
case EggGroup::DC_local:
case EggGroup::DC_default:
DCAST(ModelNode, node)->set_preserve_transform(ModelNode::PT_local);
break;
case EggGroup::DC_none:
break;
}
EggGroup::const_iterator ci;
for (ci = egg_group->begin(); ci != egg_group->end(); ++ci) {
make_node(*ci, node);
}
} else {
// A normal group; just create a normal node, and traverse.
node = new PandaNode(egg_group->get_name());
EggGroup::const_iterator ci;
for (ci = egg_group->begin(); ci != egg_group->end(); ++ci) {
make_node(*ci, node);
}
}
if (node == (PandaNode *)NULL) {
return NULL;
}
return create_group_arc(egg_group, parent, node);
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::create_group_arc
// Access: Private
// Description: Creates the arc parenting a new group to the scene
// graph, and applies any relevant attribs to the
// arc according to the EggGroup node that inspired the
// group.
////////////////////////////////////////////////////////////////////
PandaNode *EggLoader::
create_group_arc(EggGroup *egg_group, PandaNode *parent, PandaNode *node) {
parent->add_child(node);
// If the group had a transform, apply it to the arc.
if (egg_group->has_transform()) {
node->set_transform(make_transform(egg_group));
}
// If the group has a billboard flag, apply that.
switch (egg_group->get_billboard_type()) {
case EggGroup::BT_point_camera_relative:
node->set_effect(BillboardEffect::make_point_eye());
break;
case EggGroup::BT_point_world_relative:
node->set_effect(BillboardEffect::make_point_world());
break;
case EggGroup::BT_axis:
node->set_effect(BillboardEffect::make_axis());
break;
case EggGroup::BT_none:
break;
}
if (egg_group->get_decal_flag()) {
if (egg_ignore_decals) {
egg2pg_cat.error()
<< "Ignoring decal flag on " << egg_group->get_name() << "\n";
_error = true;
}
// If the group has the "decal" flag set, it means that all of the
// descendant groups will be decaled onto the geometry within
// this group. This means we'll need to reparent things a bit
// afterward.
_decals.insert(node);
}
// Copy all the tags from the group onto the node.
EggGroup::TagData::const_iterator ti;
for (ti = egg_group->tag_begin(); ti != egg_group->tag_end(); ++ti) {
node->set_tag((*ti).first, (*ti).second);
}
// If the group specified some property that should propagate down
// to the leaves, we have to remember this node and apply the
// property later, after we've created the actual geometry.
DeferredNodeProperty def;
if (egg_group->has_collide_mask()) {
def._from_collide_mask = egg_group->get_collide_mask();
def._into_collide_mask = egg_group->get_collide_mask();
def._flags |=
DeferredNodeProperty::F_has_from_collide_mask |
DeferredNodeProperty::F_has_into_collide_mask;
}
if (egg_group->has_from_collide_mask()) {
def._from_collide_mask = egg_group->get_from_collide_mask();
def._flags |= DeferredNodeProperty::F_has_from_collide_mask;
}
if (egg_group->has_into_collide_mask()) {
def._into_collide_mask = egg_group->get_into_collide_mask();
def._flags |= DeferredNodeProperty::F_has_into_collide_mask;
}
if (def._flags != 0) {
_deferred_nodes[node] = def;
}
return node;
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_node (EggTable)
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
PandaNode *EggLoader::
make_node(EggTable *egg_table, PandaNode *parent) {
if (egg_table->get_table_type() != EggTable::TT_bundle) {
// We only do anything with bundles. Isolated tables are treated
// as ordinary groups.
return make_node(DCAST(EggGroupNode, egg_table), parent);
}
// It's an actual bundle, so make an AnimBundle from it and its
// descendants.
AnimBundleMaker bundle_maker(egg_table);
AnimBundleNode *node = bundle_maker.make_node();
parent->add_child(node);
return node;
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_node (EggGroupNode)
// Access: Private
// Description:
////////////////////////////////////////////////////////////////////
PandaNode *EggLoader::
make_node(EggGroupNode *egg_group, PandaNode *parent) {
PandaNode *node = new PandaNode(egg_group->get_name());
EggGroupNode::const_iterator ci;
for (ci = egg_group->begin(); ci != egg_group->end(); ++ci) {
make_node(*ci, node);
}
parent->add_child(node);
return node;
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_collision_solids
// Access: Private
// Description: Creates CollisionSolids corresponding to the
// collision geometry indicated at the given node and
// below.
////////////////////////////////////////////////////////////////////
void EggLoader::
make_collision_solids(EggGroup *start_group, EggGroup *egg_group,
CollisionNode *cnode) {
if (egg_group->get_cs_type() != EggGroup::CST_none) {
start_group = egg_group;
}
switch (start_group->get_cs_type()) {
case EggGroup::CST_none:
case EggGroup::CST_geode:
// No collision flags; do nothing. Don't even traverse further.
return;
case EggGroup::CST_inverse_sphere:
// These aren't presently supported.
egg2pg_cat.error()
<< "Not presently supported: <Collide> { "
<< egg_group->get_cs_type() << " }\n";
_error = true;
break;
case EggGroup::CST_plane:
make_collision_plane(egg_group, cnode, start_group->get_collide_flags());
break;
case EggGroup::CST_polygon:
make_collision_polygon(egg_group, cnode, start_group->get_collide_flags());
break;
case EggGroup::CST_polyset:
make_collision_polyset(egg_group, cnode, start_group->get_collide_flags());
break;
case EggGroup::CST_sphere:
make_collision_sphere(egg_group, cnode, start_group->get_collide_flags());
break;
case EggGroup::CST_tube:
make_collision_tube(egg_group, cnode, start_group->get_collide_flags());
break;
}
if ((start_group->get_collide_flags() & EggGroup::CF_descend) != 0) {
// Now pick up everything below.
EggGroup::const_iterator ci;
for (ci = egg_group->begin(); ci != egg_group->end(); ++ci) {
if ((*ci)->is_of_type(EggGroup::get_class_type())) {
make_collision_solids(start_group, DCAST(EggGroup, *ci), cnode);
}
}
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_collision_plane
// Access: Private
// Description: Creates a single CollisionPlane corresponding
// to the first polygon associated with this group.
////////////////////////////////////////////////////////////////////
void EggLoader::
make_collision_plane(EggGroup *egg_group, CollisionNode *cnode,
EggGroup::CollideFlags flags) {
EggGroup *geom_group = find_collision_geometry(egg_group);
if (geom_group != (EggGroup *)NULL) {
EggGroup::const_iterator ci;
for (ci = geom_group->begin(); ci != geom_group->end(); ++ci) {
if ((*ci)->is_of_type(EggPolygon::get_class_type())) {
CollisionPlane *csplane =
create_collision_plane(DCAST(EggPolygon, *ci), egg_group);
if (csplane != (CollisionPlane *)NULL) {
apply_collision_flags(csplane, flags);
cnode->add_solid(csplane);
return;
}
}
}
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_collision_polygon
// Access: Private
// Description: Creates a single CollisionPolygon corresponding
// to the first polygon associated with this group.
////////////////////////////////////////////////////////////////////
void EggLoader::
make_collision_polygon(EggGroup *egg_group, CollisionNode *cnode,
EggGroup::CollideFlags flags) {
EggGroup *geom_group = find_collision_geometry(egg_group);
if (geom_group != (EggGroup *)NULL) {
EggGroup::const_iterator ci;
for (ci = geom_group->begin(); ci != geom_group->end(); ++ci) {
if ((*ci)->is_of_type(EggPolygon::get_class_type())) {
create_collision_polygons(cnode, DCAST(EggPolygon, *ci),
egg_group, flags);
}
}
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_collision_polyset
// Access: Private
// Description: Creates a series of CollisionPolygons corresponding
// to the polygons associated with this group.
////////////////////////////////////////////////////////////////////
void EggLoader::
make_collision_polyset(EggGroup *egg_group, CollisionNode *cnode,
EggGroup::CollideFlags flags) {
EggGroup *geom_group = find_collision_geometry(egg_group);
if (geom_group != (EggGroup *)NULL) {
EggGroup::const_iterator ci;
for (ci = geom_group->begin(); ci != geom_group->end(); ++ci) {
if ((*ci)->is_of_type(EggPolygon::get_class_type())) {
create_collision_polygons(cnode, DCAST(EggPolygon, *ci),
egg_group, flags);
}
}
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_collision_sphere
// Access: Private
// Description: Creates a single CollisionSphere corresponding
// to the polygons associated with this group.
////////////////////////////////////////////////////////////////////
void EggLoader::
make_collision_sphere(EggGroup *egg_group, CollisionNode *cnode,
EggGroup::CollideFlags flags) {
EggGroup *geom_group = find_collision_geometry(egg_group);
if (geom_group != (EggGroup *)NULL) {
// Collect all of the vertices.
pset<EggVertex *> vertices;
EggGroup::const_iterator ci;
for (ci = geom_group->begin(); ci != geom_group->end(); ++ci) {
if ((*ci)->is_of_type(EggPrimitive::get_class_type())) {
EggPrimitive *prim = DCAST(EggPrimitive, *ci);
EggPrimitive::const_iterator pi;
for (pi = prim->begin(); pi != prim->end(); ++pi) {
vertices.insert(*pi);
}
}
}
// Now average together all of the vertices to get a center.
int num_vertices = 0;
LPoint3d center(0.0, 0.0, 0.0);
pset<EggVertex *>::const_iterator vi;
for (vi = vertices.begin(); vi != vertices.end(); ++vi) {
EggVertex *vtx = (*vi);
center += vtx->get_pos3();
num_vertices++;
}
if (num_vertices > 0) {
center /= (double)num_vertices;
LMatrix4d mat = egg_group->get_vertex_to_node();
center = center * mat;
// And the furthest vertex determines the radius.
double radius2 = 0.0;
for (vi = vertices.begin(); vi != vertices.end(); ++vi) {
EggVertex *vtx = (*vi);
LPoint3d p3 = vtx->get_pos3();
LVector3d v = p3 * mat - center;
radius2 = max(radius2, v.length_squared());
}
float radius = sqrtf(radius2);
CollisionSphere *cssphere =
new CollisionSphere(LCAST(float, center), radius);
apply_collision_flags(cssphere, flags);
cnode->add_solid(cssphere);
}
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_collision_tube
// Access: Private
// Description: Creates a single CollisionTube corresponding
// to the polygons associated with this group.
////////////////////////////////////////////////////////////////////
void EggLoader::
make_collision_tube(EggGroup *egg_group, CollisionNode *cnode,
EggGroup::CollideFlags flags) {
EggGroup *geom_group = find_collision_geometry(egg_group);
if (geom_group != (EggGroup *)NULL) {
// Collect all of the vertices.
pset<EggVertex *> vertices;
EggGroup::const_iterator ci;
for (ci = geom_group->begin(); ci != geom_group->end(); ++ci) {
if ((*ci)->is_of_type(EggPrimitive::get_class_type())) {
EggPrimitive *prim = DCAST(EggPrimitive, *ci);
EggPrimitive::const_iterator pi;
for (pi = prim->begin(); pi != prim->end(); ++pi) {
vertices.insert(*pi);
}
}
}
// Now store the 3-d values in a vector for convenient access (and
// also determine the centroid). We compute this in node space.
size_t num_vertices = vertices.size();
if (num_vertices != 0) {
LMatrix4d mat = egg_group->get_vertex_to_node();
pvector<LPoint3d> vpos;
vpos.reserve(num_vertices);
LPoint3d center(0.0, 0.0, 0.0);
pset<EggVertex *>::const_iterator vi;
for (vi = vertices.begin(); vi != vertices.end(); ++vi) {
EggVertex *vtx = (*vi);
LPoint3d pos = vtx->get_pos3() * mat;
vpos.push_back(pos);
center += vtx->get_pos3();
}
center /= (double)num_vertices;
// Now that we have the centroid, we have to try to figure out
// the cylinder's major axis. Start by finding a point farthest
// from the centroid.
size_t i;
double radius2 = 0.0;
LPoint3d far_a = center;
for (i = 0; i < num_vertices; i++) {
double dist2 = (vpos[i] - center).length_squared();
if (dist2 > radius2) {
radius2 = dist2;
far_a = vpos[i];
}
}
// The point we have found above, far_a, must be one one of the
// endcaps. Now find another point, far_b, that is the farthest
// from far_a. This will be a point on the other endcap.
radius2 = 0.0;
LPoint3d far_b = center;
for (i = 0; i < num_vertices; i++) {
double dist2 = (vpos[i] - far_a).length_squared();
if (dist2 > radius2) {
radius2 = dist2;
far_b = vpos[i];
}
}
// Now we have far_a and far_b, one point on each endcap.
// However, these points are not necessarily centered on the
// endcaps, so we haven't figured out the cylinder's axis yet
// (the line between far_a and far_b will probably pass through
// the cylinder at an angle).
// So we still need to determine the full set of points in each
// endcap. To do this, we pass back through the set of points,
// categorizing each point into either "endcap a" or "endcap b".
// We also leave a hefty chunk of points in the middle
// uncategorized; this helps prevent us from getting a little
// bit lopsided with points near the middle that may appear to
// be closer to the wrong endcap.
LPoint3d cap_a_center(0.0, 0.0, 0.0);
LPoint3d cap_b_center(0.0, 0.0, 0.0);
int num_a = 0;
int num_b = 0;
// This is the threshold length; points farther away from the
// center than this are deemed to be in one endcap or the other.
double center_length = (far_a - far_b).length() / 4.0;
double center_length2 = center_length * center_length;
for (i = 0; i < num_vertices; i++) {
double dist2 = (vpos[i] - center).length_squared();
if (dist2 > center_length2) {
// This point is farther away from the center than
// center_length; therefore it belongs in an endcap.
double dist_a2 = (vpos[i] - far_a).length_squared();
double dist_b2 = (vpos[i] - far_b).length_squared();
if (dist_a2 < dist_b2) {
// It's in endcap a.
cap_a_center += vpos[i];
num_a++;
} else {
// It's in endcap b.
cap_b_center += vpos[i];
num_b++;
}
}
}
if (num_a > 0 && num_b > 0) {
cap_a_center /= (double)num_a;
cap_b_center /= (double)num_b;
// Now we finally have the major axis of the cylinder.
LVector3d axis = cap_b_center - cap_a_center;
axis.normalize();
// If the axis is *almost* parallel with a major axis, assume
// it is meant to be exactly parallel.
if (IS_THRESHOLD_ZERO(axis[0], 0.01)) {
axis[0] = 0.0;
}
if (IS_THRESHOLD_ZERO(axis[1], 0.01)) {
axis[1] = 0.0;
}
if (IS_THRESHOLD_ZERO(axis[2], 0.01)) {
axis[2] = 0.0;
}
axis.normalize();
// Transform all of the points so that the major axis is along
// the Y axis, and the origin is the center. This is very
// similar to the CollisionTube's idea of its canonical
// orientation (although not exactly the same, since it is
// centered on the origin instead of having point_a on the
// origin). It makes it easier to determine the length and
// radius of the cylinder.
LMatrix4d mat;
look_at(mat, axis, LVector3d(0.0, 0.0, 1.0), CS_zup_right);
mat.set_row(3, center);
LMatrix4d inv_mat;
inv_mat.invert_from(mat);
for (i = 0; i < num_vertices; i++) {
vpos[i] = vpos[i] * inv_mat;
}
double max_radius2 = 0.0;
// Now determine the radius.
for (i = 0; i < num_vertices; i++) {
LVector2d v(vpos[i][0], vpos[i][2]);
double radius2 = v.length_squared();
if (radius2 > max_radius2) {
max_radius2 = radius2;
}
}
// And with the radius, we can determine the length. We need
// to know the radius first because we want the round endcaps
// to enclose all points.
double min_y = 0.0;
double max_y = 0.0;
for (i = 0; i < num_vertices; i++) {
LVector2d v(vpos[i][0], vpos[i][2]);
double radius2 = v.length_squared();
if (vpos[i][1] < min_y) {
// Adjust the Y pos to account for the point's distance
// from the axis.
double factor = sqrt(max_radius2 - radius2);
min_y = min(min_y, vpos[i][1] + factor);
} else if (vpos[i][1] > max_y) {
double factor = sqrt(max_radius2 - radius2);
max_y = max(max_y, vpos[i][1] - factor);
}
}
double length = max_y - min_y;
double radius = sqrt(max_radius2);
// Finally, we have everything we need to define the cylinder.
LVector3d half = axis * (length / 2.0);
LPoint3d point_a = center - half;
LPoint3d point_b = center + half;
CollisionTube *cstube =
new CollisionTube(LCAST(float, point_a), LCAST(float, point_b),
radius);
apply_collision_flags(cstube, flags);
cnode->add_solid(cstube);
}
}
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::apply_collision_flags
// Access: Private
// Description: Does funny stuff to the CollisionSolid as
// appropriate, based on the settings of the given
// CollideFlags.
////////////////////////////////////////////////////////////////////
void EggLoader::
apply_collision_flags(CollisionSolid *solid,
EggGroup::CollideFlags flags) {
if ((flags & EggGroup::CF_intangible) != 0) {
solid->set_tangible(false);
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::find_collision_geometry
// Access: Private
// Description: Looks for the node, at or below the indicated node,
// that contains the associated collision geometry.
////////////////////////////////////////////////////////////////////
EggGroup *EggLoader::
find_collision_geometry(EggGroup *egg_group) {
if ((egg_group->get_collide_flags() & EggGroup::CF_descend) != 0) {
// If we have the "descend" instruction, we'll get to it when we
// get to it. Don't worry about it now.
return egg_group;
}
// Does this group have any polygons?
EggGroup::const_iterator ci;
for (ci = egg_group->begin(); ci != egg_group->end(); ++ci) {
if ((*ci)->is_of_type(EggPolygon::get_class_type())) {
// Yes! Use this group.
return egg_group;
}
}
// Well, the group had no polygons; look for a child group that has
// the same collision type.
for (ci = egg_group->begin(); ci != egg_group->end(); ++ci) {
if ((*ci)->is_of_type(EggGroup::get_class_type())) {
EggGroup *child_group = DCAST(EggGroup, *ci);
if (child_group->get_cs_type() == egg_group->get_cs_type()) {
return child_group;
}
}
}
// We got nothing.
return NULL;
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::create_collision_plane
// Access: Private
// Description: Creates a single CollisionPlane from the indicated
// EggPolygon.
////////////////////////////////////////////////////////////////////
CollisionPlane *EggLoader::
create_collision_plane(EggPolygon *egg_poly, EggGroup *parent_group) {
if (!egg_poly->cleanup()) {
egg2pg_cat.error()
<< "Degenerate collision plane in " << parent_group->get_name()
<< "\n";
_error = true;
return NULL;
}
LMatrix4d mat = egg_poly->get_vertex_to_node();
pvector<Vertexf> vertices;
if (!egg_poly->empty()) {
EggPolygon::const_iterator vi;
vi = egg_poly->begin();
Vertexd vert = (*vi)->get_pos3() * mat;
vertices.push_back(LCAST(float, vert));
Vertexd last_vert = vert;
++vi;
while (vi != egg_poly->end()) {
vert = (*vi)->get_pos3() * mat;
if (!vert.almost_equal(last_vert)) {
vertices.push_back(LCAST(float, vert));
}
last_vert = vert;
++vi;
}
}
if (vertices.size() < 3) {
return NULL;
}
Planef plane(vertices[0], vertices[1], vertices[2]);
return new CollisionPlane(plane);
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::create_collision_polygons
// Access: Private
// Description: Creates one or more CollisionPolygons from the
// indicated EggPolygon, and adds them to the indicated
// CollisionNode.
////////////////////////////////////////////////////////////////////
void EggLoader::
create_collision_polygons(CollisionNode *cnode, EggPolygon *egg_poly,
EggGroup *parent_group,
EggGroup::CollideFlags flags) {
LMatrix4d mat = egg_poly->get_vertex_to_node();
PT(EggGroup) group = new EggGroup;
if (!egg_poly->triangulate_into(group, false)) {
egg2pg_cat.error()
<< "Degenerate collision polygon in " << parent_group->get_name()
<< "\n";
_error = true;
return;
}
if (group->size() != 1) {
egg2pg_cat.error()
<< "Concave collision polygon in " << parent_group->get_name()
<< "\n";
_error = true;
}
EggGroup::iterator ci;
for (ci = group->begin(); ci != group->end(); ++ci) {
EggPolygon *poly = DCAST(EggPolygon, *ci);
pvector<Vertexf> vertices;
if (!poly->empty()) {
EggPolygon::const_iterator vi;
vi = poly->begin();
Vertexd vert = (*vi)->get_pos3() * mat;
vertices.push_back(LCAST(float, vert));
Vertexd last_vert = vert;
++vi;
while (vi != poly->end()) {
vert = (*vi)->get_pos3() * mat;
if (!vert.almost_equal(last_vert)) {
vertices.push_back(LCAST(float, vert));
}
last_vert = vert;
++vi;
}
}
if (vertices.size() >= 3) {
const Vertexf *vertices_begin = &vertices[0];
const Vertexf *vertices_end = vertices_begin + vertices.size();
CollisionPolygon *cspoly =
new CollisionPolygon(vertices_begin, vertices_end);
apply_collision_flags(cspoly, flags);
cnode->add_solid(cspoly);
}
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::apply_deferred_nodes
// Access: Private
// Description: Walks back over the tree and applies the
// DeferredNodeProperties that were saved up along the
// way.
////////////////////////////////////////////////////////////////////
void EggLoader::
apply_deferred_nodes(PandaNode *node, const DeferredNodeProperty &prop) {
DeferredNodeProperty next_prop(prop);
// Do we have a DeferredNodeProperty associated with this node?
DeferredNodes::const_iterator dni;
dni = _deferred_nodes.find(node);
if (dni != _deferred_nodes.end()) {
const DeferredNodeProperty &def = (*dni).second;
next_prop.compose(def);
}
// Now apply the accumulated state to the node.
next_prop.apply_to_node(node);
int num_children = node->get_num_children();
for (int i = 0; i < num_children; i++) {
apply_deferred_nodes(node->get_child(i), next_prop);
}
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::expand_object_types
// Access: Private
// Description: Recursively expands the group's ObjectType string(s).
// It's recursive because an ObjectType string might
// itself expand to another ObjectType string, which is
// allowed; but we don't want to get caught in a cycle.
//
// The return value is true if the object type is
// expanded and the node is valid, or false if the node
// should be ignored (e.g. ObjectType "backstage").
////////////////////////////////////////////////////////////////////
bool EggLoader::
expand_object_types(EggGroup *egg_group, const pset<string> &expanded,
const pvector<string> &expanded_history) {
int num_object_types = egg_group->get_num_object_types();
// First, copy out the object types so we can recursively modify the
// list.
vector_string object_types;
int i;
for (i = 0; i < num_object_types; i++) {
object_types.push_back(egg_group->get_object_type(i));
}
egg_group->clear_object_types();
for (i = 0; i < num_object_types; i++) {
string object_type = object_types[i];
pset<string> new_expanded(expanded);
// Check for a cycle.
if (!new_expanded.insert(object_type).second) {
egg2pg_cat.error()
<< "Cycle in ObjectType expansions:\n";
pvector<string>::const_iterator pi;
for (pi = expanded_history.begin();
pi != expanded_history.end();
++pi) {
egg2pg_cat.error(false)
<< (*pi) << " -> ";
}
egg2pg_cat.error(false) << object_type << "\n";
_error = true;
} else {
// No cycle; continue.
pvector<string> new_expanded_history(expanded_history);
new_expanded_history.push_back(object_type);
if (!do_expand_object_type(egg_group, new_expanded,
new_expanded_history, object_type)) {
// Ignorable group; stop here.
return false;
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::expand_object_type
// Access: Private
// Description: Further implementation of expand_object_types().
////////////////////////////////////////////////////////////////////
bool EggLoader::
do_expand_object_type(EggGroup *egg_group, const pset<string> &expanded,
const pvector<string> &expanded_history,
const string &object_type) {
// Try to find the egg syntax that the given objecttype is
// shorthand for. First, look in the config file.
string egg_syntax =
config_egg2pg.GetString("egg-object-type-" + downcase(object_type), "none");
if (egg_syntax == "none") {
// It wasn't defined in a config file. Maybe it's built in?
if (cmp_nocase_uh(object_type, "barrier") == 0) {
egg_syntax = "<Collide> { Polyset descend }";
} else if (cmp_nocase_uh(object_type, "solidpoly") == 0) {
egg_syntax = "<Collide> { Polyset descend solid }";
} else if (cmp_nocase_uh(object_type, "turnstile") == 0) {
egg_syntax = "<Collide> { Polyset descend turnstile }";
} else if (cmp_nocase_uh(object_type, "sphere") == 0) {
egg_syntax = "<Collide> { Sphere descend }";
} else if (cmp_nocase_uh(object_type, "tube") == 0) {
egg_syntax = "<Collide> { Tube descend }";
} else if (cmp_nocase_uh(object_type, "trigger") == 0) {
egg_syntax = "<Collide> { Polyset descend intangible }";
} else if (cmp_nocase_uh(object_type, "trigger_sphere") == 0) {
egg_syntax = "<Collide> { Sphere descend intangible }";
} else if (cmp_nocase_uh(object_type, "eye_trigger") == 0) {
egg_syntax = "<Collide> { Polyset descend intangible center }";
} else if (cmp_nocase_uh(object_type, "bubble") == 0) {
egg_syntax = "<Collide> { Sphere keep descend }";
} else if (cmp_nocase_uh(object_type, "ghost") == 0) {
egg_syntax = "<Scalar> collide-mask { 0 }";
} else if (cmp_nocase_uh(object_type, "dcs") == 0) {
egg_syntax = "<DCS> { 1 }";
} else if (cmp_nocase_uh(object_type, "model") == 0) {
egg_syntax = "<Model> { 1 }";
} else if (cmp_nocase_uh(object_type, "none") == 0) {
// ObjectType "none" is a special case, meaning nothing in particular.
return true;
} else if (cmp_nocase_uh(object_type, "backstage") == 0) {
// Ignore "backstage" geometry.
return false;
} else {
egg2pg_cat.error()
<< "Unknown ObjectType " << object_type << "\n";
_error = true;
return true;
}
}
if (!egg_syntax.empty()) {
if (!egg_group->parse_egg(egg_syntax)) {
egg2pg_cat.error()
<< "Error while parsing definition for ObjectType "
<< object_type << "\n";
_error = true;
} else {
// Now we've parsed the object type syntax, which might have
// added more object types. Recurse if necessary.
if (egg_group->get_num_object_types() != 0) {
if (!expand_object_types(egg_group, expanded, expanded_history)) {
return false;
}
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////
// Function: EggLoader::make_transform
// Access: Private
// Description: Walks back over the tree and applies the
// DeferredNodeProperties that were saved up along the
// way.
////////////////////////////////////////////////////////////////////
CPT(TransformState) EggLoader::
make_transform(const EggTransform3d *egg_transform) {
// We'll build up the transform componentwise, so we preserve any
// componentwise properties of the egg transform.
CPT(TransformState) ts = TransformState::make_identity();
int num_components = egg_transform->get_num_components();
for (int i = 0; i < num_components; i++) {
switch (egg_transform->get_component_type(i)) {
case EggTransform3d::CT_translate:
{
LVector3f trans(LCAST(float, egg_transform->get_component_vector(i)));
ts = TransformState::make_pos(trans)->compose(ts);
}
break;
case EggTransform3d::CT_rotx:
{
LRotationf rot(LVector3f(1.0f, 0.0f, 0.0f),
(float)egg_transform->get_component_number(i));
ts = TransformState::make_quat(rot)->compose(ts);
}
break;
case EggTransform3d::CT_roty:
{
LRotationf rot(LVector3f(0.0f, 1.0f, 0.0f),
(float)egg_transform->get_component_number(i));
ts = TransformState::make_quat(rot)->compose(ts);
}
break;
case EggTransform3d::CT_rotz:
{
LRotationf rot(LVector3f(0.0f, 0.0f, 1.0f),
(float)egg_transform->get_component_number(i));
ts = TransformState::make_quat(rot)->compose(ts);
}
break;
case EggTransform3d::CT_rotate:
{
LRotationf rot(LCAST(float, egg_transform->get_component_vector(i)),
(float)egg_transform->get_component_number(i));
ts = TransformState::make_quat(rot)->compose(ts);
}
break;
case EggTransform3d::CT_scale:
{
LVecBase3f scale(LCAST(float, egg_transform->get_component_vector(i)));
ts = TransformState::make_scale(scale)->compose(ts);
}
break;
case EggTransform3d::CT_uniform_scale:
{
float scale = (float)egg_transform->get_component_number(i);
ts = TransformState::make_scale(scale)->compose(ts);
}
break;
case EggTransform3d::CT_matrix:
{
LMatrix4f mat(LCAST(float, egg_transform->get_component_matrix(i)));
ts = TransformState::make_mat(mat)->compose(ts);
}
break;
case EggTransform3d::CT_invalid:
nassertr(false, ts);
break;
}
}
return ts;
}