panda3d/panda/src/pgraph/pandaNode.cxx
2003-12-11 22:11:14 +00:00

2085 lines
76 KiB
C++

// Filename: pandaNode.cxx
// Created by: drose (20Feb02)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://www.panda3d.org/license.txt .
//
// To contact the maintainers of this program write to
// panda3d@yahoogroups.com .
//
////////////////////////////////////////////////////////////////////
#include "pandaNode.h"
#include "config_pgraph.h"
#include "nodePathComponent.h"
#include "bamReader.h"
#include "bamWriter.h"
#include "indent.h"
#include "geometricBoundingVolume.h"
#include "sceneGraphReducer.h"
#include "accumulatedAttribs.h"
TypeHandle PandaNode::_type_handle;
//
// There are two different interfaces here for making and breaking
// parent-child connections: the fundamental PandaNode interface, via
// add_child() and remove_child() (and related functions), and the
// NodePath support interface, via attach(), detach(), and reparent().
// They both do essentially the same thing, but with slightly
// different inputs. The PandaNode interfaces try to guess which
// NodePaths should be updated as a result of the scene graph change,
// while the NodePath interfaces already know.
//
// The NodePath support interface functions are strictly called from
// within the NodePath class, and are used to implement
// NodePath::reparent_to() and NodePath::remove_node(), etc. The
// fundamental interface, on the other hand, is intended to be called
// directly by the user.
//
// The fundamental interface has a slightly lower overhead because it
// does not need to create a NodePathComponent chain where one does
// not already exist; however, the NodePath support interface is more
// useful when the NodePath already does exist, because it ensures
// that the particular NodePath calling it is kept appropriately
// up-to-date.
//
////////////////////////////////////////////////////////////////////
// Function: PandaNode::CData::make_copy
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
CycleData *PandaNode::CData::
make_copy() const {
return new CData(*this);
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::CData::write_datagram
// Access: Public, Virtual
// Description: Writes the contents of this object to the datagram
// for shipping out to a Bam file.
////////////////////////////////////////////////////////////////////
void PandaNode::CData::
write_datagram(BamWriter *manager, Datagram &dg) const {
manager->write_pointer(dg, _state);
manager->write_pointer(dg, _effects);
manager->write_pointer(dg, _transform);
dg.add_uint32(_draw_mask.get_word());
write_up_list(_up, manager, dg);
write_down_list(_down, manager, dg);
write_down_list(_stashed, manager, dg);
dg.add_uint32(_tag_data.size());
TagData::const_iterator ti;
for (ti = _tag_data.begin(); ti != _tag_data.end(); ++ti) {
dg.add_string((*ti).first);
dg.add_string((*ti).second);
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::CData::complete_pointers
// Access: Public, Virtual
// Description: Receives an array of pointers, one for each time
// manager->read_pointer() was called in fillin().
// Returns the number of pointers processed.
////////////////////////////////////////////////////////////////////
int PandaNode::CData::
complete_pointers(TypedWritable **p_list, BamReader *manager) {
int pi = CycleData::complete_pointers(p_list, manager);
// Get the state, effects, and transform pointers.
_state = DCAST(RenderState, p_list[pi++]);
_effects = DCAST(RenderEffects, p_list[pi++]);
_transform = DCAST(TransformState, p_list[pi++]);
_prev_transform = _transform;
// Finalize these pointers now to decrement their artificially-held
// reference counts. We do this now, rather than later, in case
// some other object reassigns them a little later on during
// initialization, before they can finalize themselves normally (for
// instance, the character may change the node's transform). If
// that happens, the pointer may discover that no one else holds its
// reference count when it finalizes, which will constitute a memory
// leak (see the comments in TransformState::finalize(), etc.).
manager->finalize_now((RenderState *)_state.p());
manager->finalize_now((RenderEffects *)_effects.p());
manager->finalize_now((TransformState *)_transform.p());
// Get the parent and child pointers.
pi += complete_up_list(_up, p_list + pi, manager);
pi += complete_down_list(_down, p_list + pi, manager);
pi += complete_down_list(_stashed, p_list + pi, manager);
return pi;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::CData::fillin
// Access: Public, Virtual
// Description: This internal function is called by make_from_bam to
// read in all of the relevant data from the BamFile for
// the new PandaNode.
////////////////////////////////////////////////////////////////////
void PandaNode::CData::
fillin(DatagramIterator &scan, BamReader *manager) {
// Read the state, effects, and transform pointers.
manager->read_pointer(scan);
manager->read_pointer(scan);
manager->read_pointer(scan);
_draw_mask.set_word(scan.get_uint32());
// Read the parent and child pointers.
fillin_up_list(_up, scan, manager);
fillin_down_list(_down, scan, manager);
fillin_down_list(_stashed, scan, manager);
// Read in the tag list.
if (manager->get_file_minor_ver() >= 4) {
int num_tags = scan.get_uint32();
for (int i = 0; i < num_tags; i++) {
string key = scan.get_string();
string value = scan.get_string();
_tag_data[key] = value;
}
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::CData::write_up_list
// Access: Private
// Description: Writes the indicated list of parent node pointers to
// the datagram.
////////////////////////////////////////////////////////////////////
void PandaNode::CData::
write_up_list(const PandaNode::Up &up_list,
BamWriter *manager, Datagram &dg) const {
// When we write a PandaNode, we write out its complete list of
// child node pointers, but we only write out the parent node
// pointers that have already been added to the bam file by a
// previous write operation. This is a bit of trickery that allows
// us to write out just a subgraph (instead of the complete graph)
// when we write out an arbitrary node in the graph, yet also allows
// us to keep nodes completely in sync when we use the bam format
// for streaming scene graph operations over the network.
int num_parents = 0;
Up::const_iterator ui;
for (ui = up_list.begin(); ui != up_list.end(); ++ui) {
PandaNode *parent_node = (*ui).get_parent();
if (manager->has_object(parent_node)) {
num_parents++;
}
}
nassertv(num_parents == (int)(PN_uint16)num_parents);
dg.add_uint16(num_parents);
for (ui = up_list.begin(); ui != up_list.end(); ++ui) {
PandaNode *parent_node = (*ui).get_parent();
if (manager->has_object(parent_node)) {
manager->write_pointer(dg, parent_node);
}
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::CData::write_down_list
// Access: Private
// Description: Writes the indicated list of child node pointers to
// the datagram.
////////////////////////////////////////////////////////////////////
void PandaNode::CData::
write_down_list(const PandaNode::Down &down_list,
BamWriter *manager, Datagram &dg) const {
int num_children = down_list.size();
nassertv(num_children == (int)(PN_uint16)num_children);
dg.add_uint16(num_children);
// Should we smarten up the writing of the sort number? Most of the
// time these will all be zero.
Down::const_iterator di;
for (di = down_list.begin(); di != down_list.end(); ++di) {
PandaNode *child_node = (*di).get_child();
int sort = (*di).get_sort();
manager->write_pointer(dg, child_node);
dg.add_int32(sort);
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::CData::complete_up_list
// Access: Private
// Description: Calls complete_pointers() on the list of parent node
// pointers.
////////////////////////////////////////////////////////////////////
int PandaNode::CData::
complete_up_list(PandaNode::Up &up_list,
TypedWritable **p_list, BamReader *manager) {
int pi = 0;
// Get the parent pointers.
Up::iterator ui;
for (ui = up_list.begin(); ui != up_list.end(); ++ui) {
PandaNode *parent_node = DCAST(PandaNode, p_list[pi++]);
// For some reason, VC++ won't accept UpConnection as an inline
// temporary constructor here ("C2226: unexpected type
// PandaNode::UpConnection"), so we must make this assignment
// using an explicit temporary variable.
UpConnection connection(parent_node);
(*ui) = connection;
}
// Now we should sort the list, since the sorting is based on
// pointer order, which might be different from one session to the
// next.
up_list.sort();
return pi;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::CData::complete_down_list
// Access: Private
// Description: Calls complete_pointers() on the list of child node
// pointers.
////////////////////////////////////////////////////////////////////
int PandaNode::CData::
complete_down_list(PandaNode::Down &down_list,
TypedWritable **p_list, BamReader *manager) {
int pi = 0;
Down::iterator di;
for (di = down_list.begin(); di != down_list.end(); ++di) {
int sort = (*di).get_sort();
PT(PandaNode) child_node = DCAST(PandaNode, p_list[pi++]);
(*di) = DownConnection(child_node, sort);
}
// Unlike the up list, we should *not* sort the down list. The down
// list is stored in a specific order, not related to pointer order;
// and this order should be preserved from one session to the next.
return pi;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::CData::fillin_up_list
// Access: Private
// Description: Reads the indicated list parent node pointers from
// the datagram (or at least calls read_pointer() for
// each one).
////////////////////////////////////////////////////////////////////
void PandaNode::CData::
fillin_up_list(PandaNode::Up &up_list,
DatagramIterator &scan, BamReader *manager) {
int num_parents = scan.get_uint16();
// Read the list of parent nodes. Push back a NULL for each one.
_up.reserve(num_parents);
for (int i = 0; i < num_parents; i++) {
manager->read_pointer(scan);
_up.push_back(UpConnection(NULL));
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::CData::fillin_down_list
// Access: Private
// Description: Reads the indicated list child node pointers from
// the datagram (or at least calls read_pointer() for
// each one).
////////////////////////////////////////////////////////////////////
void PandaNode::CData::
fillin_down_list(PandaNode::Down &down_list,
DatagramIterator &scan, BamReader *manager) {
int num_children = scan.get_uint16();
// Read the list of child nodes. Push back a NULL for each one.
down_list.reserve(num_children);
for (int i = 0; i < num_children; i++) {
manager->read_pointer(scan);
int sort = scan.get_int32();
down_list.push_back(DownConnection(NULL, sort));
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::ChildrenCopy::Constructor
// Access: Public
// Description:
////////////////////////////////////////////////////////////////////
PandaNode::ChildrenCopy::
ChildrenCopy(const PandaNode::CDReader &cdata) {
Children cr(cdata);
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
_list.push_back(cr.get_child(i));
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::Constructor
// Access: Published
// Description:
////////////////////////////////////////////////////////////////////
PandaNode::
PandaNode(const string &name) :
Namable(name)
{
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::Destructor
// Access: Published, Virtual
// Description:
////////////////////////////////////////////////////////////////////
PandaNode::
~PandaNode() {
// We shouldn't have any parents left by the time we destruct, or
// there's a refcount fault somewhere.
#ifndef NDEBUG
{
CDReader cdata(_cycler);
nassertv(cdata->_up.empty());
}
#endif // NDEBUG
remove_all_children();
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::Copy Constructor
// Access: Protected
// Description: Do not call the copy constructor directly; instead,
// use make_copy() or copy_subgraph() to make a copy of
// a node.
////////////////////////////////////////////////////////////////////
PandaNode::
PandaNode(const PandaNode &copy) :
TypedWritable(copy),
Namable(copy),
ReferenceCount(copy)
{
// Copying a node does not copy its children.
// Copy the other node's state.
CDReader copy_cdata(copy._cycler);
CDWriter cdata(_cycler);
cdata->_state = copy_cdata->_state;
cdata->_effects = copy_cdata->_effects;
cdata->_transform = copy_cdata->_transform;
cdata->_prev_transform = copy_cdata->_prev_transform;
cdata->_tag_data = copy_cdata->_tag_data;
cdata->_draw_mask = copy_cdata->_draw_mask;
cdata->_fixed_internal_bound = copy_cdata->_fixed_internal_bound;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::Copy Assignment Operator
// Access: Private
// Description: Do not call the copy assignment operator at all. Use
// make_copy() or copy_subgraph() to make a copy of a
// node.
////////////////////////////////////////////////////////////////////
void PandaNode::
operator = (const PandaNode &copy) {
nassertv(false);
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::make_copy
// Access: Public, Virtual
// Description: Returns a newly-allocated PandaNode that is a shallow
// copy of this one. It will be a different pointer,
// but its internal data may or may not be shared with
// that of the original PandaNode. No children will be
// copied.
////////////////////////////////////////////////////////////////////
PandaNode *PandaNode::
make_copy() const {
return new PandaNode(*this);
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::safe_to_flatten
// Access: Public, Virtual
// Description: Returns true if it is generally safe to flatten out
// this particular kind of PandaNode by duplicating
// instances, false otherwise (for instance, a Camera
// cannot be safely flattened, because the Camera
// pointer itself is meaningful).
////////////////////////////////////////////////////////////////////
bool PandaNode::
safe_to_flatten() const {
return true;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::safe_to_transform
// Access: Public, Virtual
// Description: Returns true if it is generally safe to transform
// this particular kind of PandaNode by calling the
// xform() method, false otherwise. For instance, it's
// usually a bad idea to attempt to xform a Character.
////////////////////////////////////////////////////////////////////
bool PandaNode::
safe_to_transform() const {
return true;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::safe_to_modify_transform
// Access: Public, Virtual
// Description: Returns true if it is safe to automatically adjust
// the transform on this kind of node. Usually, this is
// only a bad idea if the user expects to find a
// particular transform on the node.
//
// ModelNodes with the preserve_transform flag set are
// presently the only kinds of nodes that should not
// have their transform even adjusted.
////////////////////////////////////////////////////////////////////
bool PandaNode::
safe_to_modify_transform() const {
return true;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::safe_to_combine
// Access: Public, Virtual
// Description: Returns true if it is generally safe to combine this
// particular kind of PandaNode with other kinds of
// PandaNodes, adding children or whatever. For
// instance, an LODNode should not be combined with any
// other PandaNode, because its set of children is
// meaningful.
////////////////////////////////////////////////////////////////////
bool PandaNode::
safe_to_combine() const {
return true;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::safe_to_flatten_below
// Access: Public, Virtual
// Description: Returns true if a flatten operation may safely
// continue past this node, or false if it should drop
// all attributes here and stop.
////////////////////////////////////////////////////////////////////
bool PandaNode::
safe_to_flatten_below() const {
return true;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::preserve_name
// Access: Public, Virtual
// Description: Returns true if the node's name has extrinsic meaning
// and must be preserved across a flatten operation,
// false otherwise.
////////////////////////////////////////////////////////////////////
bool PandaNode::
preserve_name() const {
return false;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::get_unsafe_to_apply_attribs
// Access: Public, Virtual
// Description: Returns the union of all attributes from
// SceneGraphReducer::AttribTypes that may not safely be
// applied to the vertices of this node. If this is
// nonzero, these attributes must be dropped at this
// node as a state change.
//
// This is a generalization of safe_to_transform().
////////////////////////////////////////////////////////////////////
int PandaNode::
get_unsafe_to_apply_attribs() const {
return 0;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::apply_attribs_to_vertices
// Access: Public, Virtual
// Description: Applies whatever attributes are specified in the
// AccumulatedAttribs object (and by the attrib_types
// bitmask) to the vertices on this node, if
// appropriate. If this node uses geom arrays like a
// GeomNode, the supplied GeomTransformer may be used to
// unify shared arrays across multiple different nodes.
//
// This is a generalization of xform().
////////////////////////////////////////////////////////////////////
void PandaNode::
apply_attribs_to_vertices(const AccumulatedAttribs &attribs, int attrib_types,
GeomTransformer &transformer) {
if ((attrib_types & SceneGraphReducer::TT_transform) != 0) {
xform(attribs._transform->get_mat());
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::xform
// Access: Public, Virtual
// Description: Transforms the contents of this PandaNode by the
// indicated matrix, if it means anything to do so. For
// most kinds of PandaNodes, this does nothing.
////////////////////////////////////////////////////////////////////
void PandaNode::
xform(const LMatrix4f &) {
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::combine_with
// Access: Public, Virtual
// Description: Collapses this PandaNode with the other PandaNode, if
// possible, and returns a pointer to the combined
// PandaNode, or NULL if the two PandaNodes cannot
// safely be combined.
//
// The return value may be this, other, or a new
// PandaNode altogether.
//
// This function is called from GraphReducer::flatten(),
// and need not deal with children; its job is just to
// decide whether to collapse the two PandaNodes and
// what the collapsed PandaNode should look like.
////////////////////////////////////////////////////////////////////
PandaNode *PandaNode::
combine_with(PandaNode *other) {
// This is a little bit broken right now w.r.t. NodePaths, since any
// NodePaths attached to the lost node will simply be disconnected.
// This isn't the right thing to do; we should collapse those
// NodePaths with these NodePaths instead. To do this properly, we
// will need to combine this functionality with that of stealing the
// other node's children into one method. Not too difficult, but
// there are more pressing problems to work on right now.
// An unadorned PandaNode always combines with any other PandaNodes by
// yielding completely. However, if we are actually some fancy PandaNode
// type that derives from PandaNode but didn't redefine this function, we
// should refuse to combine.
if (is_exact_type(get_class_type())) {
// No, we're an ordinary PandaNode.
return other;
} else if (other->is_exact_type(get_class_type())) {
// We're not an ordinary PandaNode, but the other one is.
return this;
}
// We're something other than an ordinary PandaNode. Don't combine.
return (PandaNode *)NULL;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::calc_tight_bounds
// Access: Public, Virtual
// Description: This is used to support
// NodePath::calc_tight_bounds(). It is not intended to
// be called directly, and it has nothing to do with the
// normal Panda bounding-volume computation.
//
// If the node contains any geometry, this updates
// min_point and max_point to enclose its bounding box.
// found_any is to be set true if the node has any
// geometry at all, or left alone if it has none. This
// method may be called over several nodes, so it may
// enter with min_point, max_point, and found_any
// already set.
//
// This function is recursive, and the return value is
// the transform after it has been modified by this
// node's transform.
////////////////////////////////////////////////////////////////////
CPT(TransformState) PandaNode::
calc_tight_bounds(LPoint3f &min_point, LPoint3f &max_point, bool &found_any,
const TransformState *transform) const {
CPT(TransformState) next_transform = transform->compose(get_transform());
Children cr = get_children();
int num_children = cr.get_num_children();
for (int i = 0; i < num_children; i++) {
cr.get_child(i)->calc_tight_bounds(min_point, max_point,
found_any, next_transform);
}
return next_transform;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::has_cull_callback
// Access: Public, Virtual
// Description: Should be overridden by derived classes to return
// true if cull_callback() has been defined. Otherwise,
// returns false to indicate cull_callback() does not
// need to be called for this node during the cull
// traversal.
////////////////////////////////////////////////////////////////////
bool PandaNode::
has_cull_callback() const {
return false;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::cull_callback
// Access: Public, Virtual
// Description: If has_cull_callback() returns true, this function
// will be called during the cull traversal to perform
// any additional operations that should be performed at
// cull time. This may include additional manipulation
// of render state or additional visible/invisible
// decisions, or any other arbitrary operation.
//
// By the time this function is called, the node has
// already passed the bounding-volume test for the
// viewing frustum, and the node's transform and state
// have already been applied to the indicated
// CullTraverserData object.
//
// The return value is true if this node should be
// visible, or false if it should be culled.
////////////////////////////////////////////////////////////////////
bool PandaNode::
cull_callback(CullTraverser *, CullTraverserData &) {
return true;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::has_selective_visibility
// Access: Public, Virtual
// Description: Should be overridden by derived classes to return
// true if this kind of node has some restrictions on
// the set of children that should be rendered. Node
// with this property include LODNodes, SwitchNodes, and
// SequenceNodes.
//
// If this function returns true,
// get_first_visible_child() and
// get_next_visible_child() will be called to walk
// through the list of children during cull, instead of
// iterating through the entire list. This method is
// called after cull_callback(), so cull_callback() may
// be responsible for the decisions as to which children
// are visible at the moment.
////////////////////////////////////////////////////////////////////
bool PandaNode::
has_selective_visibility() const {
return false;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::get_first_visible_child
// Access: Public, Virtual
// Description: Returns the index number of the first visible child
// of this node, or a number >= get_num_children() if
// there are no visible children of this node. This is
// called during the cull traversal, but only if
// has_selective_visibility() has already returned true.
// See has_selective_visibility().
////////////////////////////////////////////////////////////////////
int PandaNode::
get_first_visible_child() const {
return 0;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::get_next_visible_child
// Access: Public, Virtual
// Description: Returns the index number of the next visible child
// of this node following the indicated child, or a
// number >= get_num_children() if there are no more
// visible children of this node. See
// has_selective_visibility() and
// get_first_visible_child().
////////////////////////////////////////////////////////////////////
int PandaNode::
get_next_visible_child(int n) const {
return n + 1;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::has_single_child_visibility
// Access: Public, Virtual
// Description: Should be overridden by derived classes to return
// true if this kind of node has the special property
// that just one of its children is visible at any given
// time, and furthermore that the particular visible
// child can be determined without reference to any
// external information (such as a camera). At present,
// only SequenceNodes and SwitchNodes fall into this
// category.
//
// If this function returns true, get_visible_child()
// can be called to return the index of the
// currently-visible child.
////////////////////////////////////////////////////////////////////
bool PandaNode::
has_single_child_visibility() const {
return false;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::get_visible_child
// Access: Public, Virtual
// Description: Returns the index number of the currently visible
// child of this node. This is only meaningful if
// has_single_child_visibility() has returned true.
////////////////////////////////////////////////////////////////////
int PandaNode::
get_visible_child() const {
return 0;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::copy_subgraph
// Access: Published
// Description: Allocates and returns a complete copy of this
// PandaNode and the entire scene graph rooted at this
// PandaNode. Some data may still be shared from the
// original (e.g. vertex index tables), but nothing that
// will impede normal use of the PandaNode.
////////////////////////////////////////////////////////////////////
PT(PandaNode) PandaNode::
copy_subgraph() const {
InstanceMap inst_map;
return r_copy_subgraph(inst_map);
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::find_child
// Access: Published
// Description: Returns the index of the indicated child node, if it
// is a child, or -1 if it is not.
////////////////////////////////////////////////////////////////////
int PandaNode::
find_child(PandaNode *node) const {
nassertr(node != (PandaNode *)NULL, -1);
CDReader cdata(_cycler);
// We have to search for the child by brute force, since we don't
// know what sort index it was added as.
Down::const_iterator di;
for (di = cdata->_down.begin(); di != cdata->_down.end(); ++di) {
if ((*di).get_child() == node) {
return di - cdata->_down.begin();
}
}
return -1;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::add_child
// Access: Published
// Description: Adds a new child to the node. The child is added in
// the relative position indicated by sort; if all
// children have the same sort index, the child is added
// at the end.
//
// If the same child is added to a node more than once,
// the previous instance is first removed.
////////////////////////////////////////////////////////////////////
void PandaNode::
add_child(PandaNode *child_node, int sort) {
nassertv(child_node != (PandaNode *)NULL);
// Ensure the child_node is not deleted while we do this.
PT(PandaNode) keep_child = child_node;
remove_child(child_node);
CDWriter cdata(_cycler);
CDWriter cdata_child(child_node->_cycler);
cdata->_down.insert(DownConnection(child_node, sort));
cdata_child->_up.insert(UpConnection(this));
new_connection(this, child_node);
// Mark the bounding volumes stale.
force_bound_stale();
// Call callback hooks.
children_changed();
child_node->parents_changed();
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::remove_child
// Access: Published
// Description: Removes the nth child from the node.
////////////////////////////////////////////////////////////////////
void PandaNode::
remove_child(int n) {
CDWriter cdata(_cycler);
nassertv(n >= 0 && n < (int)cdata->_down.size());
PT(PandaNode) child_node = cdata->_down[n].get_child();
CDWriter cdata_child(child_node->_cycler);
cdata->_down.erase(cdata->_down.begin() + n);
int num_erased = cdata_child->_up.erase(UpConnection(this));
nassertv(num_erased == 1);
sever_connection(this, child_node);
// Mark the bounding volumes stale.
force_bound_stale();
// Call callback hooks.
children_changed();
child_node->parents_changed();
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::remove_child
// Access: Published
// Description: Removes the indicated child from the node. Returns
// true if the child was removed, false if it was not
// already a child of the node. This will also
// successfully remove the child if it had been stashed.
////////////////////////////////////////////////////////////////////
bool PandaNode::
remove_child(PandaNode *child_node) {
nassertr(child_node != (PandaNode *)NULL, false);
// First, look for the parent in the child's up list, to ensure the
// child is known.
int parent_index = child_node->find_parent(this);
if (parent_index < 0) {
// Nope, no relation.
return false;
}
int child_index = find_child(child_node);
if (child_index >= 0) {
// The child exists; remove it.
remove_child(child_index);
return true;
}
int stashed_index = find_stashed(child_node);
if (stashed_index >= 0) {
// The child has been stashed; remove it.
remove_stashed(stashed_index);
return true;
}
// Never heard of this child. This shouldn't be possible, because
// the parent was in the child's up list, above. Must be some
// internal error.
nassertr(false, false);
return false;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::replace_child
// Access: Published
// Description: Searches for the orig_child node in the node's list
// of children, and replaces it with the new_child
// instead. Returns true if the replacement is made, or
// false if the node is not a child.
////////////////////////////////////////////////////////////////////
bool PandaNode::
replace_child(PandaNode *orig_child, PandaNode *new_child) {
nassertr(orig_child != (PandaNode *)NULL, false);
nassertr(new_child != (PandaNode *)NULL, false);
// First, look for the parent in the child's up list, to ensure the
// child is known.
int parent_index = orig_child->find_parent(this);
if (parent_index < 0) {
// Nope, no relation.
return false;
}
if (orig_child == new_child) {
// Trivial no-op.
return true;
}
// Don't let orig_child be destructed yet.
PT(PandaNode) keep_orig_child = orig_child;
int child_index = find_child(orig_child);
if (child_index >= 0) {
// The child exists; replace it.
CDWriter cdata(_cycler);
DownConnection &down = cdata->_down[child_index];
nassertr(down.get_child() == orig_child, false);
down.set_child(new_child);
} else {
int stashed_index = find_stashed(orig_child);
if (stashed_index >= 0) {
// The child has been stashed; remove it.
CDWriter cdata(_cycler);
DownConnection &down = cdata->_stashed[stashed_index];
nassertr(down.get_child() == orig_child, false);
down.set_child(new_child);
} else {
// Never heard of this child. This shouldn't be possible, because
// the parent was in the child's up list, above. Must be some
// internal error.
nassertr(false, false);
return false;
}
}
// Now adjust the bookkeeping on both children.
CDWriter cdata_orig_child(orig_child->_cycler);
CDWriter cdata_new_child(new_child->_cycler);
cdata_new_child->_up.insert(UpConnection(this));
int num_erased = cdata_orig_child->_up.erase(UpConnection(this));
nassertr(num_erased == 1, false);
sever_connection(this, orig_child);
orig_child->parents_changed();
new_connection(this, new_child);
new_child->parents_changed();
// Mark the bounding volumes stale.
force_bound_stale();
children_changed();
return true;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::stash_child
// Access: Published
// Description: Stashes the indicated child node. This removes the
// child from the list of active children and puts it on
// a special list of stashed children. This child node
// no longer contributes to the bounding volume of the
// PandaNode, and is not visited in normal traversals.
// It is invisible and uncollidable. The child may
// later be restored by calling unstash_child().
////////////////////////////////////////////////////////////////////
void PandaNode::
stash_child(int child_index) {
nassertv(child_index >= 0 && child_index < get_num_children());
// Save a reference count for ourselves. I don't think this should
// be necessary, but there are occasional crashes in stash() during
// furniture moving mode. Perhaps this will eliminate those
// crashes.
PT(PandaNode) self = this;
PT(PandaNode) child_node = get_child(child_index);
int sort = get_child_sort(child_index);
remove_child(child_index);
CDWriter cdata(_cycler);
CDWriter cdata_child(child_node->_cycler);
cdata->_stashed.insert(DownConnection(child_node, sort));
cdata_child->_up.insert(UpConnection(this));
new_connection(this, child_node);
// Mark the bounding volumes stale.
force_bound_stale();
// Call callback hooks.
children_changed();
child_node->parents_changed();
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::unstash_child
// Access: Published
// Description: Returns the indicated stashed node to normal child
// status. This removes the child from the list of
// stashed children and puts it on the normal list of
// active children. This child node once again
// contributes to the bounding volume of the PandaNode,
// and will be visited in normal traversals. It is
// visible and collidable.
////////////////////////////////////////////////////////////////////
void PandaNode::
unstash_child(int stashed_index) {
nassertv(stashed_index >= 0 && stashed_index < get_num_stashed());
// Save a reference count for ourselves. I don't think this should
// be necessary, but there are occasional crashes in stash() during
// furniture moving mode. Perhaps this will eliminate those
// crashes.
PT(PandaNode) self = this;
PT(PandaNode) child_node = get_stashed(stashed_index);
int sort = get_stashed_sort(stashed_index);
remove_stashed(stashed_index);
CDWriter cdata(_cycler);
CDWriter cdata_child(child_node->_cycler);
cdata->_down.insert(DownConnection(child_node, sort));
cdata_child->_up.insert(UpConnection(this));
new_connection(this, child_node);
// Mark the bounding volumes stale.
force_bound_stale();
// Call callback hooks.
children_changed();
child_node->parents_changed();
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::find_stashed
// Access: Published
// Description: Returns the index of the indicated stashed node, if
// it is a stashed child, or -1 if it is not.
////////////////////////////////////////////////////////////////////
int PandaNode::
find_stashed(PandaNode *node) const {
CDReader cdata(_cycler);
// We have to search for the child by brute force, since we don't
// know what sort index it was added as.
Down::const_iterator di;
for (di = cdata->_stashed.begin(); di != cdata->_stashed.end(); ++di) {
if ((*di).get_child() == node) {
return di - cdata->_stashed.begin();
}
}
return -1;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::add_stashed
// Access: Published
// Description: Adds a new child to the node, directly as a stashed
// child. The child is not added in the normal sense,
// but will be revealed if unstash_child() is called on
// it later.
//
// If the same child is added to a node more than once,
// the previous instance is first removed.
////////////////////////////////////////////////////////////////////
void PandaNode::
add_stashed(PandaNode *child_node, int sort) {
// Ensure the child_node is not deleted while we do this.
PT(PandaNode) keep_child = child_node;
remove_child(child_node);
CDWriter cdata(_cycler);
CDWriter cdata_child(child_node->_cycler);
cdata->_stashed.insert(DownConnection(child_node, sort));
cdata_child->_up.insert(UpConnection(this));
new_connection(this, child_node);
// Call callback hooks.
children_changed();
child_node->parents_changed();
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::remove_stashed
// Access: Published
// Description: Removes the nth stashed child from the node.
////////////////////////////////////////////////////////////////////
void PandaNode::
remove_stashed(int n) {
CDWriter cdata(_cycler);
nassertv(n >= 0 && n < (int)cdata->_stashed.size());
PT(PandaNode) child_node = cdata->_stashed[n].get_child();
CDWriter cdata_child(child_node->_cycler);
cdata->_stashed.erase(cdata->_stashed.begin() + n);
int num_erased = cdata_child->_up.erase(UpConnection(this));
nassertv(num_erased == 1);
sever_connection(this, child_node);
// Mark the bounding volumes stale.
force_bound_stale();
// Call callback hooks.
children_changed();
child_node->parents_changed();
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::remove_all_children
// Access: Published
// Description: Removes all the children from the node at once,
// including stashed children.
////////////////////////////////////////////////////////////////////
void PandaNode::
remove_all_children() {
CDWriter cdata(_cycler);
Down::iterator di;
for (di = cdata->_down.begin(); di != cdata->_down.end(); ++di) {
PT(PandaNode) child_node = (*di).get_child();
CDWriter cdata_child(child_node->_cycler);
cdata_child->_up.erase(UpConnection(this));
sever_connection(this, child_node);
child_node->parents_changed();
}
cdata->_down.clear();
for (di = cdata->_stashed.begin(); di != cdata->_stashed.end(); ++di) {
PT(PandaNode) child_node = (*di).get_child();
CDWriter cdata_child(child_node->_cycler);
cdata_child->_up.erase(UpConnection(this));
sever_connection(this, child_node);
child_node->parents_changed();
}
cdata->_stashed.clear();
// Mark the bounding volumes stale.
force_bound_stale();
children_changed();
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::steal_children
// Access: Published
// Description: Moves all the children from the other node onto this
// node.
////////////////////////////////////////////////////////////////////
void PandaNode::
steal_children(PandaNode *other) {
if (other == this) {
// Trivial.
return;
}
// We do this through the high-level interface for convenience.
// This could begin to be a problem if we have a node with hundreds
// of children to copy; this could break down the ov_set.insert()
// method, which is an O(n^2) operation. If this happens, we should
// rewrite this to do a simpler add_child() operation that involves
// push_back() instead of insert(), and then sort the down list at
// the end.
int num_children = other->get_num_children();
int i;
for (i = 0; i < num_children; i++) {
PandaNode *child_node = other->get_child(i);
int sort = other->get_child_sort(i);
add_child(child_node, sort);
}
int num_stashed = other->get_num_stashed();
for (i = 0; i < num_stashed; i++) {
PandaNode *child_node = other->get_stashed(i);
int sort = other->get_stashed_sort(i);
add_stashed(child_node, sort);
}
other->remove_all_children();
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::copy_children
// Access: Published
// Description: Makes another instance of all the children of the
// other node, copying them to this node.
////////////////////////////////////////////////////////////////////
void PandaNode::
copy_children(PandaNode *other) {
if (other == this) {
// Trivial.
return;
}
int num_children = other->get_num_children();
int i;
for (i = 0; i < num_children; i++) {
PandaNode *child_node = other->get_child(i);
int sort = other->get_child_sort(i);
add_child(child_node, sort);
}
int num_stashed = other->get_num_stashed();
for (i = 0; i < num_stashed; i++) {
PandaNode *child_node = other->get_stashed(i);
int sort = other->get_stashed_sort(i);
add_stashed(child_node, sort);
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::copy_tags
// Access: Published
// Description: Copies all of the tags stored on the other node onto
// this node. If a particular tag exists on both nodes,
// the contents of this node's value is replaced by that
// of the other.
////////////////////////////////////////////////////////////////////
void PandaNode::
copy_tags(PandaNode *other) {
if (other == this) {
// Trivial.
return;
}
CDWriter cdataw(_cycler);
CDReader cdatar(other->_cycler);
TagData::const_iterator ti;
for (ti = cdatar->_tag_data.begin();
ti != cdatar->_tag_data.end();
++ti) {
cdataw->_tag_data[(*ti).first] = (*ti).second;
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::list_tags
// Access: Published
// Description: Writes a list of all the tag keys assigned to the
// node to the indicated stream. Writes one instance of
// the separator following each key (but does not write
// a terminal separator). The value associated with
// each key is not written.
//
// This is mainly for the benefit of the realtime user,
// to see the list of all of the associated tag keys.
////////////////////////////////////////////////////////////////////
void PandaNode::
list_tags(ostream &out, const string &separator) const {
CDReader cdata(_cycler);
if (!cdata->_tag_data.empty()) {
TagData::const_iterator ti = cdata->_tag_data.begin();
out << (*ti).first;
++ti;
while (ti != cdata->_tag_data.end()) {
out << separator << (*ti).first;
++ti;
}
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::output
// Access: Published, Virtual
// Description:
////////////////////////////////////////////////////////////////////
void PandaNode::
output(ostream &out) const {
out << get_type() << " " << get_name();
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::write
// Access: Published, Virtual
// Description:
////////////////////////////////////////////////////////////////////
void PandaNode::
write(ostream &out, int indent_level) const {
indent(out, indent_level) << *this;
CDReader cdata(_cycler);
if (!cdata->_tag_data.empty()) {
out << " [";
list_tags(out, " ");
out << "]";
}
if (!cdata->_transform->is_identity()) {
out << " " << *cdata->_transform;
}
if (!cdata->_state->is_empty()) {
out << " " << *cdata->_state;
}
if (!cdata->_effects->is_empty()) {
out << " " << *cdata->_effects;
}
out << "\n";
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::is_geom_node
// Access: Published, Virtual
// Description: A simple downcast check. Returns true if this kind
// of node happens to inherit from GeomNode, false
// otherwise.
//
// This is provided as a a faster alternative to calling
// is_of_type(GeomNode::get_class_type()), since this
// test is so important to rendering.
////////////////////////////////////////////////////////////////////
bool PandaNode::
is_geom_node() const {
return false;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::as_light
// Access: Published, Virtual
// Description: Cross-casts the node to a Light pointer, if it is one
// of the four kinds of Light nodes, or returns NULL if
// it is not.
////////////////////////////////////////////////////////////////////
Light *PandaNode::
as_light() {
return NULL;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::propagate_stale_bound
// Access: Protected, Virtual
// Description: Called by BoundedObject::mark_bound_stale(), this
// should make sure that all bounding volumes that
// depend on this one are marked stale also.
////////////////////////////////////////////////////////////////////
void PandaNode::
propagate_stale_bound() {
// Mark all of our parent nodes stale as well.
CDWriter cdata(_cycler);
Up::const_iterator ui;
for (ui = cdata->_up.begin(); ui != cdata->_up.end(); ++ui) {
PandaNode *parent_node = (*ui).get_parent();
parent_node->mark_bound_stale();
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::recompute_bound
// Access: Protected, Virtual
// Description: Recomputes the dynamic bounding volume for this
// object. The default behavior is the compute an empty
// bounding volume; this may be overridden to extend it
// to create a nonempty bounding volume. However, after
// calling this function, it is guaranteed that the
// _bound pointer will not be shared with any other
// stage of the pipeline, and this new pointer is
// returned.
////////////////////////////////////////////////////////////////////
BoundingVolume *PandaNode::
recompute_bound() {
// Get the internal bound before we do anything else, since the
// is_bound_stale() flag may also apply to this.
const BoundingVolume *internal_bound = &get_internal_bound();
// Now, get ourselves a fresh, empty bounding volume. This will
// reset the is_bound_stale() flag if it was set.
BoundingVolume *bound = BoundedObject::recompute_bound();
nassertr(bound != (BoundingVolume*)NULL, bound);
// Also, recompute the net_collide_mask bits while we do this.
CDWriter cdata(_cycler);
cdata->_net_collide_mask = CollideMask::all_off();
// Now actually compute the bounding volume by putting it around all
// of our child bounding volumes.
pvector<const BoundingVolume *> child_volumes;
// It goes around this node's internal bounding volume . . .
child_volumes.push_back(internal_bound);
Down::const_iterator di;
for (di = cdata->_down.begin(); di != cdata->_down.end(); ++di) {
// . . . plus each node's external bounding volume.
PandaNode *child = (*di).get_child();
const BoundingVolume &child_bound = child->get_bound();
child_volumes.push_back(&child_bound);
cdata->_net_collide_mask |= child->get_net_collide_mask();
}
const BoundingVolume **child_begin = &child_volumes[0];
const BoundingVolume **child_end = child_begin + child_volumes.size();
bool success =
bound->around(child_begin, child_end);
#ifndef NDEBUG
if (!success) {
pgraph_cat.error()
<< "Unable to recompute bounding volume for " << *this << ":\n"
<< "Cannot put " << bound->get_type() << " around:\n";
for (int i = 0; i < (int)child_volumes.size(); i++) {
pgraph_cat.error(false)
<< " " << *child_volumes[i] << "\n";
}
}
#endif
// Now, if we have a transform, apply it to the bounding volume we
// just computed.
const TransformState *transform = get_transform();
if (!transform->is_identity()) {
GeometricBoundingVolume *gbv;
DCAST_INTO_R(gbv, bound, bound);
gbv->xform(transform->get_mat());
}
return bound;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::recompute_internal_bound
// Access: Protected, Virtual
// Description: Called when needed to recompute the node's
// _internal_bound object. Nodes that contain anything
// of substance should redefine this to do the right
// thing.
////////////////////////////////////////////////////////////////////
BoundingVolume *PandaNode::
recompute_internal_bound() {
BoundingVolume *result = _internal_bound.recompute_bound();
return result;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::parents_changed
// Access: Protected, Virtual
// Description: Called after a scene graph update that either adds or
// remove parents from this node, this just provides a
// hook for derived PandaNode objects that need to
// update themselves based on the set of parents the
// node has.
////////////////////////////////////////////////////////////////////
void PandaNode::
parents_changed() {
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::children_changed
// Access: Protected, Virtual
// Description: Called after a scene graph update that either adds or
// remove children from this node, this just provides a
// hook for derived PandaNode objects that need to
// update themselves based on the set of children the
// node has.
////////////////////////////////////////////////////////////////////
void PandaNode::
children_changed() {
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::transform_changed
// Access: Protected, Virtual
// Description: Called after the node's transform has been changed
// for any reason, this just provides a hook so derived
// classes can do something special in this case.
////////////////////////////////////////////////////////////////////
void PandaNode::
transform_changed() {
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::r_copy_subgraph
// Access: Protected, Virtual
// Description: This is the recursive implementation of copy_subgraph().
// It returns a copy of the entire subgraph rooted at
// this node.
//
// Note that it includes the parameter inst_map, which
// is a map type, and is not (and cannot be) exported
// from PANDA.DLL. Thus, any derivative of PandaNode
// that is not also a member of PANDA.DLL *cannot*
// access this map.
////////////////////////////////////////////////////////////////////
PT(PandaNode) PandaNode::
r_copy_subgraph(PandaNode::InstanceMap &inst_map) const {
PT(PandaNode) copy = make_copy();
nassertr(copy != (PandaNode *)NULL, NULL);
if (copy->get_type() != get_type()) {
pgraph_cat.warning()
<< "Don't know how to copy nodes of type " << get_type() << "\n";
}
copy->r_copy_children(this, inst_map);
return copy;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::r_copy_children
// Access: Protected, Virtual
// Description: This is called by r_copy_subgraph(); the copy has
// already been made of this particular node (and this
// is the copy); this function's job is to copy all of
// the children from the original.
//
// Note that it includes the parameter inst_map, which
// is a map type, and is not (and cannot be) exported
// from PANDA.DLL. Thus, any derivative of PandaNode
// that is not also a member of PANDA.DLL *cannot*
// access this map, and probably should not even
// override this function.
////////////////////////////////////////////////////////////////////
void PandaNode::
r_copy_children(const PandaNode *from, PandaNode::InstanceMap &inst_map) {
CDReader from_cdata(from->_cycler);
Down::const_iterator di;
for (di = from_cdata->_down.begin(); di != from_cdata->_down.end(); ++di) {
int sort = (*di).get_sort();
PandaNode *source_child = (*di).get_child();
PT(PandaNode) dest_child;
// Check to see if we have already copied this child. If we
// have, use the copy. In this way, a subgraph that contains
// instances will be correctly duplicated into another subgraph
// that also contains its own instances.
InstanceMap::const_iterator ci;
ci = inst_map.find(source_child);
if (ci != inst_map.end()) {
dest_child = (*ci).second;
} else {
dest_child = source_child->r_copy_subgraph(inst_map);
inst_map[source_child] = dest_child;
}
add_child(dest_child, sort);
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::attach
// Access: Private, Static
// Description: Creates a new parent-child relationship, and returns
// the new NodePathComponent. If the child was already
// attached to the indicated parent, repositions it and
// returns the original NodePathComponent.
////////////////////////////////////////////////////////////////////
PT(NodePathComponent) PandaNode::
attach(NodePathComponent *parent, PandaNode *child_node, int sort) {
if (parent == (NodePathComponent *)NULL) {
// Attaching to NULL means to create a new "instance" with no
// attachments, and no questions asked.
PT(NodePathComponent) child =
new NodePathComponent(child_node, (NodePathComponent *)NULL);
CDWriter cdata_child(child_node->_cycler);
cdata_child->_paths.insert(child);
return child;
}
// See if the child was already attached to the parent. If it was,
// we'll use that same NodePathComponent.
PT(NodePathComponent) child = get_component(parent, child_node);
if (child == (NodePathComponent *)NULL) {
// The child was not already attached to the parent, so get a new
// component.
child = get_top_component(child_node, true);
}
reparent(parent, child, sort, false);
return child;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::detach
// Access: Private, Static
// Description: Breaks a parent-child relationship.
////////////////////////////////////////////////////////////////////
void PandaNode::
detach(NodePathComponent *child) {
nassertv(child != (NodePathComponent *)NULL);
nassertv(!child->is_top_node());
PT(PandaNode) child_node = child->get_node();
PT(PandaNode) parent_node = child->get_next()->get_node();
// We should actually have a parent-child relationship, since this
// came from a NodePathComponent that ought to know about this
// sort of thing.
nassertv(child_node->find_parent(parent_node) >= 0);
CDWriter cdata_child(child_node->_cycler);
CDWriter cdata_parent(parent_node->_cycler);
// Now look for the child and break the actual connection.
// First, look for and remove the parent node from the child's up
// list.
int num_erased = cdata_child->_up.erase(UpConnection(parent_node));
nassertv(num_erased == 1);
// Now, look for and remove the child node from the parent's down
// list. We also check in the stashed list, in case the child node
// has been stashed.
Down::iterator di;
bool found = false;
for (di = cdata_parent->_down.begin();
di != cdata_parent->_down.end() && !found;
++di) {
if ((*di).get_child() == child_node) {
cdata_parent->_down.erase(di);
found = true;
}
}
for (di = cdata_parent->_stashed.begin();
di != cdata_parent->_stashed.end() && !found;
++di) {
if ((*di).get_child() == child_node) {
cdata_parent->_stashed.erase(di);
found = true;
}
}
nassertv(found);
// Finally, break the NodePathComponent connection.
sever_connection(parent_node, child_node);
// Mark the bounding volumes stale.
parent_node->force_bound_stale();
// Call callback hooks.
parent_node->children_changed();
child_node->parents_changed();
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::reparent
// Access: Private, Static
// Description: Switches a node from one parent to another. Returns
// true if the new connection is allowed, or false if it
// conflicts with another instance (that is, another
// instance of the child is already attached to the
// indicated parent).
////////////////////////////////////////////////////////////////////
bool PandaNode::
reparent(NodePathComponent *new_parent, NodePathComponent *child, int sort,
bool as_stashed) {
nassertr(child != (NodePathComponent *)NULL, false);
// Keep a reference count to the new parent, since detaching the
// child might lose the count.
PT(NodePathComponent) keep_parent = new_parent;
if (!child->is_top_node()) {
detach(child);
}
if (new_parent != (NodePathComponent *)NULL) {
PandaNode *child_node = child->get_node();
PandaNode *parent_node = new_parent->get_node();
if (child_node->find_parent(parent_node) >= 0) {
// Whoops, there's already another instance of the child there.
return false;
}
// Redirect the connection to the indicated new parent.
child->set_next(new_parent);
// Now reattach the child node at the indicated sort position.
CDWriter cdata_parent(parent_node->_cycler);
CDWriter cdata_child(child_node->_cycler);
if (as_stashed) {
cdata_parent->_stashed.insert(DownConnection(child_node, sort));
} else {
cdata_parent->_down.insert(DownConnection(child_node, sort));
}
cdata_child->_up.insert(UpConnection(parent_node));
cdata_child->_paths.insert(child);
child_node->fix_path_lengths(cdata_child);
// Mark the bounding volumes stale.
if (!as_stashed) {
parent_node->force_bound_stale();
}
// Call callback hooks.
parent_node->children_changed();
child_node->parents_changed();
}
return true;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::get_component
// Access: Private, Static
// Description: Returns the NodePathComponent based on the indicated
// child of the given parent, or NULL if there is no
// such parent-child relationship.
////////////////////////////////////////////////////////////////////
PT(NodePathComponent) PandaNode::
get_component(NodePathComponent *parent, PandaNode *child_node) {
nassertr(parent != (NodePathComponent *)NULL, (NodePathComponent *)NULL);
PandaNode *parent_node = parent->get_node();
{
CDReader cdata_child(child_node->_cycler);
// First, walk through the list of NodePathComponents we already
// have on the child, looking for one that already exists,
// referencing the indicated parent component.
Paths::const_iterator pi;
for (pi = cdata_child->_paths.begin();
pi != cdata_child->_paths.end();
++pi) {
if ((*pi)->get_next() == parent) {
// If we already have such a component, just return it.
return (*pi);
}
}
}
// We don't already have a NodePathComponent referring to this
// parent-child relationship. Are they actually related?
int child_index = child_node->find_parent(parent_node);
if (child_index >= 0) {
// They are. Create and return a new one.
PT(NodePathComponent) child =
new NodePathComponent(child_node, parent);
CDWriter cdata_child(child_node->_cycler);
cdata_child->_paths.insert(child);
return child;
} else {
// They aren't related. Return NULL.
return NULL;
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::get_top_component
// Access: Private, Static
// Description: Returns a NodePathComponent referencing the
// indicated node as a singleton. It is invalid to call
// this for a node that has parents, unless you are
// about to create a new instance (and immediately
// reconnect the NodePathComponent elsewhere).
//
// If force is true, this will always return something,
// even if it needs to create a new top component;
// otherwise, if force is false, it will return NULL if
// there is not already a top component available.
////////////////////////////////////////////////////////////////////
PT(NodePathComponent) PandaNode::
get_top_component(PandaNode *child_node, bool force) {
{
CDReader cdata_child(child_node->_cycler);
// Walk through the list of NodePathComponents we already have on
// the child, looking for one that already exists as a top node.
Paths::const_iterator pi;
for (pi = cdata_child->_paths.begin();
pi != cdata_child->_paths.end();
++pi) {
if ((*pi)->is_top_node()) {
// If we already have such a component, just return it.
return (*pi);
}
}
}
if (!force) {
// If we don't care to force the point, return NULL to indicate
// there's not already a top component.
return NULL;
}
// We don't already have such a NodePathComponent; create and
// return a new one.
PT(NodePathComponent) child =
new NodePathComponent(child_node, (NodePathComponent *)NULL);
CDWriter cdata_child(child_node->_cycler);
cdata_child->_paths.insert(child);
return child;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::get_generic_component
// Access: Private
// Description: Returns a NodePathComponent referencing this node as
// a path from the root.
//
// Unless accept_ambiguity is true, it is only valid to
// call this if there is an unambiguous path from the
// root; otherwise, a warning will be issued and one
// path will be chosen arbitrarily.
////////////////////////////////////////////////////////////////////
PT(NodePathComponent) PandaNode::
get_generic_component(bool accept_ambiguity) {
bool ambiguity_detected = false;
PT(NodePathComponent) result =
r_get_generic_component(accept_ambiguity, ambiguity_detected);
if (!accept_ambiguity && ambiguity_detected) {
pgraph_cat.warning()
<< "Chose: " << *result << "\n";
nassertr(!unambiguous_graph, result);
}
return result;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::r_get_generic_component
// Access: Private
// Description: The recursive implementation of
// get_generic_component, this simply sets the flag when
// the ambiguity is detected (so we can report the
// bottom node that started the ambiguous search).
////////////////////////////////////////////////////////////////////
PT(NodePathComponent) PandaNode::
r_get_generic_component(bool accept_ambiguity, bool &ambiguity_detected) {
int num_parents = get_num_parents();
if (num_parents == 0) {
// No parents; no ambiguity. This is the root.
return get_top_component(this, true);
}
PT(NodePathComponent) result;
if (num_parents == 1) {
// Only one parent; no ambiguity.
PT(NodePathComponent) parent =
get_parent(0)->r_get_generic_component(accept_ambiguity, ambiguity_detected);
result = get_component(parent, this);
} else {
// Oops, multiple parents; the NodePath is ambiguous.
if (!accept_ambiguity) {
pgraph_cat.warning()
<< *this << " has " << num_parents
<< " parents; choosing arbitrary path to root.\n";
}
ambiguity_detected = true;
PT(NodePathComponent) parent =
get_parent(0)->r_get_generic_component(accept_ambiguity, ambiguity_detected);
result = get_component(parent, this);
}
return result;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::delete_component
// Access: Private
// Description: Removes a NodePathComponent from the set prior to
// its deletion. This should only be called by the
// NodePathComponent destructor.
////////////////////////////////////////////////////////////////////
void PandaNode::
delete_component(NodePathComponent *component) {
// We have to remove the component from all of the pipeline stages,
// not just the current one.
int max_num_erased = 0;
int num_stages = _cycler.get_num_stages();
for (int i = 0; i < num_stages; i++) {
if (_cycler.is_stage_unique(i)) {
CData *cdata = _cycler.write_stage(i);
int num_erased = cdata->_paths.erase(component);
max_num_erased = max(max_num_erased, num_erased);
_cycler.release_write_stage(i, cdata);
}
}
nassertv(max_num_erased == 1);
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::sever_connection
// Access: Private, Static
// Description: This is called internally when a parent-child
// connection is broken to update the NodePathComponents
// that reflected this connection.
//
// It severs any NodePathComponents on the child node
// that reference the indicated parent node. These
// components remain unattached; there may therefore be
// multiple "instances" of a node that all have no
// parent, even while there are other instances that do
// have parents.
////////////////////////////////////////////////////////////////////
void PandaNode::
sever_connection(PandaNode *parent_node, PandaNode *child_node) {
CDWriter cdata_child(child_node->_cycler);
Paths::iterator pi;
for (pi = cdata_child->_paths.begin();
pi != cdata_child->_paths.end();
++pi) {
if (!(*pi)->is_top_node() &&
(*pi)->get_next()->get_node() == parent_node) {
// Sever the component here.
(*pi)->set_top_node();
}
}
child_node->fix_path_lengths(cdata_child);
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::new_connection
// Access: Private, Static
// Description: This is called internally when a parent-child
// connection is established to update the
// NodePathComponents that might be involved.
//
// It adjusts any NodePathComponents the child has that
// reference the child as a top node. Any other
// components we can leave alone, because we are making
// a new instance of the child.
////////////////////////////////////////////////////////////////////
void PandaNode::
new_connection(PandaNode *parent_node, PandaNode *child_node) {
CDWriter cdata_child(child_node->_cycler);
Paths::iterator pi;
for (pi = cdata_child->_paths.begin();
pi != cdata_child->_paths.end();
++pi) {
if ((*pi)->is_top_node()) {
(*pi)->set_next(parent_node->get_generic_component(false));
}
}
child_node->fix_path_lengths(cdata_child);
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::fix_path_lengths
// Access: Private
// Description: Recursively fixes the _length member of each
// NodePathComponent at this level and below, after an
// add or delete child operation that might have messed
// these up.
////////////////////////////////////////////////////////////////////
void PandaNode::
fix_path_lengths(const CData *cdata) {
bool any_wrong = false;
Paths::const_iterator pi;
for (pi = cdata->_paths.begin(); pi != cdata->_paths.end(); ++pi) {
if ((*pi)->fix_length()) {
any_wrong = true;
}
}
// If any paths were updated, we have to recurse on all of our
// children, since any one of those paths might be shared by any of
// our child nodes.
if (any_wrong) {
Down::const_iterator di;
for (di = cdata->_down.begin(); di != cdata->_down.end(); ++di) {
PandaNode *child_node = (*di).get_child();
CDReader cdata_child(child_node->_cycler);
child_node->fix_path_lengths(cdata_child);
}
for (di = cdata->_stashed.begin(); di != cdata->_stashed.end(); ++di) {
PandaNode *child_node = (*di).get_child();
CDReader cdata_child(child_node->_cycler);
child_node->fix_path_lengths(cdata_child);
}
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::r_list_descendants
// Access: Private
// Description: The recursive implementation of ls().
////////////////////////////////////////////////////////////////////
void PandaNode::
r_list_descendants(ostream &out, int indent_level) const {
CDReader cdata(_cycler);
indent(out, indent_level) << *this;
if (!cdata->_tag_data.empty()) {
out << " [";
list_tags(out, " ");
out << "]";
}
if (!cdata->_transform->is_identity()) {
out << " " << *cdata->_transform;
}
if (!cdata->_state->is_empty()) {
out << " " << *cdata->_state;
}
if (!cdata->_effects->is_empty()) {
out << " " << *cdata->_effects;
}
out << "\n";
Down::const_iterator di;
for (di = cdata->_down.begin(); di != cdata->_down.end(); ++di) {
(*di).get_child()->r_list_descendants(out, indent_level + 2);
}
// Also report the number of stashed nodes at this level.
int num_stashed = get_num_stashed();
if (num_stashed != 0) {
indent(out, indent_level) << "(" << num_stashed << " stashed)\n";
}
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::register_with_read_factory
// Access: Public, Static
// Description: Tells the BamReader how to create objects of type
// PandaNode.
////////////////////////////////////////////////////////////////////
void PandaNode::
register_with_read_factory() {
BamReader::get_factory()->register_factory(get_class_type(), make_from_bam);
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::write_datagram
// Access: Public, Virtual
// Description: Writes the contents of this object to the datagram
// for shipping out to a Bam file.
////////////////////////////////////////////////////////////////////
void PandaNode::
write_datagram(BamWriter *manager, Datagram &dg) {
TypedWritable::write_datagram(manager, dg);
dg.add_string(get_name());
manager->write_cdata(dg, _cycler);
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::make_from_bam
// Access: Protected, Static
// Description: This function is called by the BamReader's factory
// when a new object of type PandaNode is encountered
// in the Bam file. It should create the PandaNode
// and extract its information from the file.
////////////////////////////////////////////////////////////////////
TypedWritable *PandaNode::
make_from_bam(const FactoryParams &params) {
PandaNode *node = new PandaNode("");
DatagramIterator scan;
BamReader *manager;
parse_params(params, scan, manager);
node->fillin(scan, manager);
return node;
}
////////////////////////////////////////////////////////////////////
// Function: PandaNode::fillin
// Access: Protected
// Description: This internal function is called by make_from_bam to
// read in all of the relevant data from the BamFile for
// the new PandaNode.
////////////////////////////////////////////////////////////////////
void PandaNode::
fillin(DatagramIterator &scan, BamReader *manager) {
TypedWritable::fillin(scan, manager);
string name = scan.get_string();
set_name(name);
manager->read_cdata(scan, _cycler);
}