From 7fb7c015bfd6fc6aab29f4a9fe72b1cb3abac9de Mon Sep 17 00:00:00 2001 From: John Winans Date: Tue, 18 Aug 2020 18:56:52 -0500 Subject: [PATCH] Spell IEEE-754 consistently. --- book/float/chapter.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/book/float/chapter.tex b/book/float/chapter.tex index 4844a23..a4c0273 100644 --- a/book/float/chapter.tex +++ b/book/float/chapter.tex @@ -107,11 +107,11 @@ normalized values by adding 1 to the significand. %\item $-((1 + \frac{1}{4} + \frac{1}{16}) \times 2^{128-127}) = -(1 \frac{5}{16} \times 2^{1}) = -(1.3125 \times 2^{1}) = -2.625$ \item $-((1 + \frac{1}{4} + \frac{1}{16}) \times 2^{128-127}) = -((1 + \frac{1}{4} + \frac{1}{16}) \times 2^1) = -(2 + \frac{1}{2} + \frac{1}{8}) = -(2 + .5 + .125) = -2.625$ -\item IEEE754 formats: +\item IEEE-754 formats: \begin{tabular}{|l|l|l|} \hline - & IEEE754 32-bit & IEEE754 64-bit \\ + & IEEE-754 32-bit & IEEE-754 64-bit \\ \hline sign & 1 bit & 1 bit \\ exponent & 8 bits (excess-127) & 11 bits (excess-1023) \\ @@ -127,7 +127,7 @@ the sign is zero, the number represents positive infinity. \item When the exponent is all ones, the mantissa is all zeros, and the sign is one, the number represents negative infinity. -\item Note that the binary representation of an IEEE754 number in memory +\item Note that the binary representation of an IEEE-754 number in memory can be compared for magnitude with another one using the same logic as for comparing two's complement signed integers because the magnitude of an IEEE number grows upward and downward in the same fashion as signed integers.