mirror of
https://github.com/johnwinans/rvalp.git
synced 2025-09-27 21:22:44 -04:00
Alt mantissa to significand, ref spec for specials
This commit is contained in:
parent
91d585d63f
commit
8a7e8c9917
@ -159,3 +159,13 @@
|
||||
howpublished = {\href{https://www.mathsisfun.com/definitions/subtrahend.html}{www.mathsisfun.com/definitions/subtrahend.html}},
|
||||
note = {Accessed: 2018-06-02}
|
||||
}
|
||||
|
||||
@article{ieee:754,
|
||||
author={},
|
||||
journal={IEEE Std 754-2019 (Revision of IEEE 754-2008)},
|
||||
title={IEEE Standard for Floating-Point Arithmetic},
|
||||
year={2019},
|
||||
volume={},
|
||||
number={},
|
||||
pages={1-84},}
|
||||
|
||||
|
@ -8,7 +8,7 @@
|
||||
\label{chapter::floatingpoint}
|
||||
|
||||
This section provides an overview of the IEEE-754 32-bit binary floating
|
||||
point format.
|
||||
point format.\cite{ieee:754}
|
||||
|
||||
\begin{itemize}
|
||||
\item Recall that the place values for integer binary numbers are:
|
||||
@ -121,10 +121,10 @@ min exponent & -126 & -1022 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\item When the exponent is all ones, the mantissa is all zeros, and
|
||||
\item When the exponent is all ones, the significand is all zeros, and
|
||||
the sign is zero, the number represents positive infinity.
|
||||
|
||||
\item When the exponent is all ones, the mantissa is all zeros, and
|
||||
\item When the exponent is all ones, the significand is all zeros, and
|
||||
the sign is one, the number represents negative infinity.
|
||||
|
||||
\item Note that the binary representation of an IEEE-754 number in memory
|
||||
@ -151,6 +151,12 @@ largest exponent allowed are in the {\em \gls{overflow}} areas.
|
||||
|
||||
\item Note that numbers have a higher resolution on the number line when the
|
||||
exponent is smaller.
|
||||
|
||||
\item The largest and smallest possible exponent values are reserved to represent
|
||||
things requiring special cases. For example, the infinities, values representing
|
||||
``not a number'' (such as the result of dividing by zero), and for a way to represent
|
||||
values that are not normalized. For more information on special cases see \cite{ieee:754}.
|
||||
|
||||
\end{itemize}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
Loading…
x
Reference in New Issue
Block a user