Introduce small_vector to the TSTL

This commit is contained in:
Baptiste Wicht 2018-04-04 11:25:20 +02:00
parent d30253b05f
commit 808e70776c

View File

@ -0,0 +1,733 @@
//=======================================================================
// Copyright Baptiste Wicht 2013-2018.
// Distributed under the terms of the MIT License.
// (See accompanying file LICENSE or copy at
// http://www.opensource.org/licenses/MIT)
//=======================================================================
#ifndef SMALL_VECTOR_H
#define SMALL_VECTOR_H
#include <types.hpp>
#include <algorithms.hpp>
#include <vector.hpp>
#include <unique_ptr.hpp>
#include <iterator.hpp>
namespace std {
template<typename T>
struct vector_base_long {
size_t capacity;
T* data;
vector_base_long() = default;
vector_base_long(size_t capacity, T* array) : capacity(capacity), data(array) {}
vector_base_long(vector_base_long&) = delete;
vector_base_long& operator=(vector_base_long&) = delete;
vector_base_long(vector_base_long&&) = default;
vector_base_long& operator=(vector_base_long&&) = default;
};
static constexpr const size_t vector_min_capacity = 16;
static constexpr const size_t vector_words = vector_min_capacity / sizeof(size_t);
template<typename T>
struct vector_base_small {
static constexpr size_t min_capacity = vector_min_capacity / sizeof(T);
T data[vector_min_capacity];
vector_base_small() = default;
vector_base_small(vector_base_small&) = delete;
vector_base_small& operator=(vector_base_small&) = delete;
vector_base_small(vector_base_small&&) = default;
vector_base_small& operator=(vector_base_small&&) = default;
};
struct vector_base_raw {
size_t data[vector_words];
vector_base_raw() = delete;
vector_base_raw(vector_base_raw&) = delete;
vector_base_raw& operator=(vector_base_raw&) = delete;
vector_base_raw(vector_base_raw&&) = delete;
vector_base_raw& operator=(vector_base_raw&&) = delete;
};
template<typename T>
union vector_base_storage {
vector_base_small<T> small;
vector_base_long<T> big;
vector_base_raw raw;
vector_base_storage(){
//Default construction: Nothing to do
}
~vector_base_storage() {}
};
static_assert(vector_min_capacity == sizeof(vector_base_small<char>), "vector_base_small must be the correct SSO size");
static_assert(vector_min_capacity == sizeof(vector_base_long<char>), "vector_base_long must be the correct SSO size");
static_assert(vector_min_capacity == sizeof(vector_base_raw), "vector_base_raw must be the correct SSO size");
/*!
* \brief A string of the given character type.
*
* This implementation uses SSO to not allocate any dynamic memory on short strings (<16 chars)
*/
template<typename T>
struct small_vector {
using value_type = T; ///< The value type contained in the vector
using pointer_type = value_type*; ///< The pointer type contained in the vector
using reference_type = value_type&; ///< The pointer type contained in the vector
using const_reference_type = const value_type&; ///< The pointer type contained in the vector
using size_type = size_t; ///< The size type
using iterator = value_type*; ///< The iterator type
using const_iterator = const value_type*; ///< The const iterator type
using reverse_iterator = std::reverse_iterator<iterator>; ///< The reverse iterator type
using const_reverse_iterator = std::reverse_iterator<const_iterator>; ///< The const reverse iterator type
static constexpr size_t small_capacity = vector_min_capacity / sizeof(T);
private:
size_t _size;
vector_base_storage<T> storage;
void set_long(bool small){
if(small){
_size |= (1UL << 63);
} else {
_size &= ~(1UL << 63);
}
}
void set_small(bool small){
set_long(!small);
}
void set_size(size_t size){
if(is_long()){
_size = size | (1UL << 63);
} else {
_size = size;
}
}
bool is_long() const {
return _size & (1UL << 63);
}
bool is_small() const {
return !is_long();
}
void zero(){
for(size_t i = 0; i < vector_words; ++i){
storage.raw.data[i] = 0;
}
}
public:
//Constructors
/*!
* \brief Construct an empty vector
*/
small_vector() : _size(0){
set_small(true);
}
/*!
* \brief Construct a new vector of the given capacity.
*/
explicit small_vector(size_t __size, T value = T()) : _size(__size) {
set_small(__size <= small_capacity);
if(!is_small()){
new (&storage.big) vector_base_long<T>(__size, allocate(__size));
}
// Fill with the default value
for(size_t i = 0; i < __size; ++i){
new (&data_ptr()[i]) value_type(value);
}
}
/*!
* \brief Construct a vector containing the given values
*/
small_vector(initializer_list<T> values) : _size(values.size()) {
set_small(values.size() <= small_capacity);
if(!is_small()){
new (&storage.big) vector_base_long<T>(size(), allocate(size()));
}
size_t i = 0;
for(auto& v : values){
new (&data_ptr()[i++]) value_type(v);
}
}
/*!
* \brief Construct a new string from the given range of characters
*/
template <typename It>
small_vector(It it, It end) {
_size = std::distance(it, end);
auto capacity = size() + 1;
set_small(capacity <= small_capacity);
if(!is_small()){
new (&storage.big) vector_base_long<T>(capacity, allocate(capacity));
}
auto oit = begin();
while(it != end){
*oit++ = *it++;
}
(*this)[size()] = '\0';
}
//Copy
small_vector(const small_vector& rhs) : _size(rhs._size) {
if(!is_small()){
new (&storage.big) vector_base_long<T>(size() + 1, allocate(size() + 1));
}
// Copy the new values
for(size_t i = 0; i < size(); ++i){
new (&data_ptr()[i]) value_type(rhs.data_ptr()[i]);
}
}
small_vector& operator=(const small_vector& rhs){
if(this != &rhs){
set_size(rhs.size());
// We need to destruct the previous element
release();
if(capacity() < rhs.capacity()){
auto capacity = rhs.capacity();
if(is_small()){
new (&storage.big) vector_base_long<T>(capacity, allocate(capacity));
set_small(false);
} else {
storage.big.capacity = capacity;
storage.big.data = allocate(capacity);
}
}
// Copy the new values
for (size_t i = 0; i < size(); ++i) {
new (&data_ptr()[i]) value_type(rhs.data_ptr()[i]);
}
}
return *this;
}
//Move
small_vector(small_vector&& rhs) : _size(rhs._size) {
if(is_small()){
new (&storage.small) vector_base_small<T>(std::move(rhs.storage.small));
} else {
new (&storage.big) vector_base_long<T>(std::move(rhs.storage.big));
}
rhs.set_size(0);
rhs.zero();
}
small_vector& operator=(small_vector&& rhs){
auto was_small = is_small();
auto was_long = !was_small;
auto small = rhs.is_small();
auto lng = !small;
set_size(rhs.size());
if(was_small && small){
storage.small = std::move(rhs.storage.small);
} else if(was_long && lng){
storage.big = std::move(rhs.storage.big);
} else if(was_small && lng){
new (&storage.big) vector_base_long<T>(std::move(rhs.storage.big));
set_small(false);
} else if(was_long && small){
ensure_capacity(rhs.size() + 1);
std::move_n(rhs.begin(), size() + 1, begin());
}
rhs.set_size(0);
rhs.zero();
return *this;
}
//Destructors
/*!
* \brief Destructs the string and releases all its associated memory
*/
~small_vector(){
release();
}
//Modifiers
void adjust_size(size_t size){
set_size(size);
}
/*!
* \brief Clear the string
*/
void clear(){
destruct_all();
set_size(0);
}
/*!
* \brief Pop the last character of the string.
*/
void pop_back(){
set_size(size() - 1);
// Call the destructor of the erased value
data_ptr()[size()].~value_type();
}
/*!
* \brief Ensures a capacity of at least new_capacity
*/
void reserve(size_t new_capacity){
ensure_capacity(new_capacity);
}
/*!
* \brief Resize the vector to the given size
*/
void resize(size_t new_size){
if(new_size > size()){
ensure_capacity(new_size);
// Default initialize the new elements
for(size_t i = size(); i < new_size; ++i){
new (&data_ptr()[i]) value_type();
}
set_size(new_size);
} else if(new_size < size()){
// Call the necessary destructors
for(size_t i = new_size; i < size(); ++i){
data_ptr()[i].~value_type();
}
//By diminishing the size, the last elements become unreachable
set_size(new_size);
}
}
/*!
* \brief Add an element at the back of the vector
*/
void push_back(value_type&& element){
const auto old_size = size();
ensure_capacity(old_size + 1);
new (&data_ptr()[old_size]) value_type(std::move(element));
set_size(old_size + 1);
}
/*!
* \brief Add an element at the back of the vector
*/
void push_back(const value_type& element){
const auto old_size = size();
ensure_capacity(old_size + 1);
new (&data_ptr()[old_size]) value_type(element);
set_size(old_size + 1);
}
/*!
* \brief Construct a new element inplace
*/
value_type& emplace_back(){
const auto old_size = size();
ensure_capacity(old_size + 1);
new (&data_ptr()[old_size]) value_type();
set_size(old_size + 1);
return back();
}
/*!
* \brief Construct a new element inplace
*/
template<typename... Args>
value_type& emplace_back(Args... args){
const auto old_size = size();
ensure_capacity(old_size + 1);
new (&data_ptr()[old_size]) value_type{std::forward<Args>(args)...};
set_size(old_size + 1);
return back();
}
/*!
* \brief Add an element at the front of the vector
*/
void push_front(value_type&& element){
const auto old_size = size();
ensure_capacity(old_size + 1);
if(!empty()){
new (&data_ptr()[old_size]) value_type(std::move(data_ptr()[old_size - 1]));
for (size_t i = old_size - 1; i > 0; --i) {
data_ptr()[i] = std::move(data_ptr()[i - 1]);
}
}
// At this point _data[0] has been deleted
data_ptr()[0] = std::move(element);
set_size(old_size + 1);
}
/*!
* \brief Add an element at the front of the vector
*/
void push_front(const value_type& element){
const auto old_size = size();
ensure_capacity(old_size + 1);
if(!empty()){
new (&data_ptr()[old_size]) value_type(std::move(data_ptr()[old_size - 1]));
for (size_t i = old_size - 1; i > 0; --i) {
data_ptr()[i] = std::move(data_ptr()[i - 1]);
}
}
// At this point _data[0] has been deleted
data_ptr()[0] = element;
set_size(old_size + 1);
}
/*!
* \brief Erase the element at the given position
*/
void erase(size_t position){
for(size_t i = position; i < size() - 1; ++i){
data_ptr()[i] = std::move(data_ptr()[i+1]);
}
set_size(size() - 1);
// Call the destructor of the last value
data_ptr()[size()].~value_type();
}
/*!
* \brief Erase the element at the given position
*/
void erase(iterator position){
for(size_t i = position - begin(); i < size() - 1; ++i){
data_ptr()[i] = std::move(data_ptr()[i+1]);
}
set_size(size() - 1);
// Call the destructor of the last value
data_ptr()[size()].~value_type();
}
/*!
* \brief Erase all the elements of the given range
*/
void erase(iterator first, iterator last){
auto n = std::distance(first, last);
for(size_t i = first - begin(); i < size() - n; ++i){
data_ptr()[i] = std::move(data_ptr()[i+n]);
}
// Call the destructors on the erase elements
for(size_t i = size() - n; i < size(); ++i){
data_ptr()[i].~value_type();
}
set_size(size() - n);
}
//Accessors
/*!
* \brief Returns the size of the string
*/
size_t size() const {
return _size & ~(1UL << 63);
}
/*!
* \brief Returns the capacity of the string
*/
size_t capacity() const {
if(is_small()){
return small_capacity;
} else {
return storage.big.capacity;
}
}
/*
* \brief Indicates if the string is empty
*/
bool empty() const {
return size() == 0;
}
T* data_ptr(){
if(is_small()){
return &storage.small.data[0];
} else {
return &storage.big.data[0];
}
}
const T* data_ptr() const {
if(is_small()){
return &storage.small.data[0];
} else {
return &storage.big.data[0];
}
}
/*!
* \brief Returns a reference to the ith character
*/
T& operator[](size_t i){
return data_ptr()[i];
}
/*!
* \brief Returns a const reference to the ith character
*/
const T& operator[](size_t i) const {
return data_ptr()[i];
}
/*!
* \brief Returns a reference to the element at the front of the collection
*/
value_type& front(){
return data_ptr()[0];
}
/*!
* \brief Returns a const reference to the element at the front of the collection
*/
const value_type& front() const {
return data_ptr()[0];
}
/*!
* \brief Returns a reference to the element at the back of the collection
*/
value_type& back(){
return data_ptr()[size() - 1];
}
/*!
* \brief Returns a const reference to the element at the back of the collection
*/
const value_type& back() const {
return data_ptr()[size() - 1];
}
//Operators
/*!
* \brief Test if this string is equal to the given string
*/
bool operator==(const small_vector& rhs) const {
if(size() != rhs.size()){
return false;
}
for(size_t i = 0; i < size(); ++i){
if((*this)[i] != rhs[i]){
return false;
}
}
return true;
}
/*!
* \brief Test if this string is not equal to the given string
*/
bool operator!=(const small_vector& rhs) const {
return !(*this == rhs);
}
//Iterators
/*!
* \brief Returns an iterator to the first character of the string
*/
iterator begin(){
return iterator(&data_ptr()[0]);
}
/*!
* \brief Returns a const iterator to the first character of the string
*/
const_iterator begin() const {
return const_iterator(&data_ptr()[0]);
}
/*!
* \brief Returns an iterator the past-the-end character of the string
*/
iterator end(){
return iterator(&data_ptr()[size()]);
}
/*!
* \brief Returns a const iterator the past-the-end character of the string
*/
const_iterator end() const {
return const_iterator(&data_ptr()[size()]);
}
// Reverse Iterators
/*!
* \brief Return a reverse iterator to point to the first element
*/
reverse_iterator rbegin(){
return reverse_iterator(&data_ptr()[int64_t(size()) - 1]);
}
/*!
* \brief Return a reverse iterator to point to the first element
*/
constexpr const_reverse_iterator rbegin() const {
return const_iterator(&data_ptr()[int64_t(size()) - 1]);
}
/*!
* \brief Return a reverse iterator point to the past-the-end element
*/
reverse_iterator rend(){
return reverse_iterator(&data_ptr()[-1]);
}
/*!
* \brief Return a reverse iterator point to the past-the-end element
*/
constexpr const_reverse_iterator rend() const {
return const_reverse_iterator(&data_ptr()[-1]);
}
private:
static value_type* allocate(size_t n){
return reinterpret_cast<value_type*>(new uint8_t[n * sizeof(value_type)]);
}
static void deallocate(value_type* ptr){
delete[] reinterpret_cast<uint8_t*>(ptr);
}
void destruct_all(){
// Call the destructors
for(size_t i = 0; i < size(); ++i){
data_ptr()[i].~value_type();
}
}
void release(){
destruct_all();
if(!is_small()){
// Deallocate the memory
deallocate(storage.big.data);
storage.big.data = nullptr;
}
}
void ensure_capacity(size_t new_capacity){
// Note: We know that min capacity is constant, therefore
// augmenting the capacity always means going to long
// storage
if(new_capacity > 0 && (capacity() < new_capacity)){
auto new_cap = capacity() * 2;
if(new_cap < new_capacity){
new_cap = new_capacity;
}
auto new_data = allocate(new_cap);
// Move the old _data into the new one
for(size_t i = 0; i < size(); ++i){
new (&new_data[i]) value_type(std::move(data_ptr()[i]));
}
if(is_small()){
new (&storage.big) vector_base_long<T>(new_cap, new_data);
set_small(false);
} else {
release();
storage.big.data = new_data;
storage.big.capacity = new_cap;
}
}
}
};
} //end of namespace std
#endif